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Abstract

The one-dimensional Landau-Vlasov equation describing ultracold dilute bosonic gases in the

mean-field collisionless regime under strong transverse confinement is analyzed using traditional

methods of plasma physics. Time-independent, stationary solutions are found using a similar

approach as for the Bernstein-Greene-Kruskal nonlinear plasma modes. Linear stationary waves

similar to the Case-Van Kampen plasma normal modes are also shown to be available. The new

bosonic solutions have no decaying or growth properties, in the same sense as the analog plasma

solutions. The results are applied for real ultracold bosonic gases accessible in contemporary

laboratory experiments.

Keywords: cold dilute bosonic gas; Landau-Vlasov equation; Bernstein-Greene-Kruskal modes; Case-Van

Kampen modes.
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I. INTRODUCTION

When the average collision time in ultracold dilute gases made of bosonic atoms is much

larger than the relevant dynamics characteristic time scale, it is possible to have a model

based on the Landau-Vlasov equation [1]. The Landau-Vlasov equation is obtained from

the Boltzmann-Vlasov equation [1–4] neglecting the collision operator. The dynamics of

ultracold bosonic systems e.g. in the crossover from collisionless to collisional regimes needs

the Boltzmann-Vlasov equation [5]. Hydrodynamic equations [6, 7] are useful tools in the

collisional case, for instance for Bose-Einstein condensates [6] or the superfluid Fermi gas in

the BCS-BEC crossover [8].

Under a very strong transverse confinement, a bosonic gas is in a quasi one-dimensional

(1D) configuration. Experimental achievement of quasi-1D systems is realized in ultracold

atoms trapped in optical potentials with harmonic transverse confinement energies much

larger than the temperature or chemical potential [9]. The collisionless regime is enhanced

in the quasi-1D configuration. Indeed, in 1D binary elastic collisions, particles exchange their

energies completely, hence there is no sensible effects from these collisions between identical

particles. Consequently no thermalization is possible, as verified in ultracold bosonic atoms

trapped in 1D optical lattices [10, 11]. For these dilute 1D bosonic systems, the Landau-

Vlasov equation is applicable, provided the gas does not contain a quasi-condensate and

that it is not in the Tonks-Girardeau regime, with fermionic properties [10, 12]. We are

following the terminology of ultracold atoms community [12] (and references therein) when

referring to Landau-Vlasov’s equation. Namely, it is collisionless so that it has no ”Landau

collision operator”, as would be implied in the context of plasma physics.

Recently [12], the linear stability of solutions of the 1D Landau-Vlasov equation was

investigated by means of well-known methods from plasma physics, namely the Landau or

Laplace transform approach. In this method, the time-evolution of perturbations around

the equilibrium distribution function is treated as an initial-value problem. The linear Lan-

dau damping rate (or growth rate, for unstable equilibria) is therefore determined upon

the adequate analysis in the complex plane (Landau contour). The similarity between the

Landau-Vlasov equation and the Vlasov-Poisson system describing collisionless electrostatic

plasmas provides a stimulating scenario for the application of plasma techniques in a seem-

ingly uncorrelated area such as in the study of ultracold bosonic gases.
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In this context, the present work is dedicated to the discussion of time-independent

solutions and stationary wave solutions for the 1D Landau-Vlasov equation. In plasmas,

stationary solutions for the Vlasov-Poisson system can be derived starting from Jeans’s

theorem according to which the particle distribution function satisfying Vlasov’s equation

should be a function of the constants of motion. In the time-independent case, the particle

energy is such a constant of motion or invariant, as treated in the original work [13] by

Bernstein, Greene and Kruskal (BGK). By construction, these so-called BGK modes are

exact nonlinear plasma oscillations which do not present damping or growth. The BGK

approach where the energy is the central dynamical variable can be adapted for the derivation

of phase-space hole structures [14–17] and, to a more limited extent, to quantum plasmas

[18].

In spite of the more popular view in terms of the surfing electron interpretation [19],

an alternative, more rigorous interpretation of Landau damping is in terms of the phase

mixing superposition of Case-Van Kampen modes [20]. Introduced by Van Kampen [21]

and demonstrated by Case [22] to form a complete orthogonal set for the linearized Vlasov-

Poisson system, the stationary wave or Case-Van Kampen modes have been discussed in a

variety of contexts. For instance, in plasmas with an ionic background slowly varying in time

[23], in multidimensional non-uniform plasmas [24], for nonlinear waves [25], extended Fermi

systems [26], electromagnetic [27], collisional [28] and quantum [29] plasmas. As discussed

in Section III, the Case-Van Kampen modes are also available for an ultracold boson gas

described by the Landau-Vlasov equation.

This work is organized as follows. In Section II, we revisit the 1D Landau-Vlasov equation,

which was derived and discussed in detail in [12]. Section III considers BGK modes and

Section IV the Case-Van Kampen modes for the 1D Landau-Vlasov equation. Section V is

reserved to the conclusions and final remarks.

II. THE ONE-DIMENSIONAL LANDAU-VLASOV EQUATION

The one-dimensional (1D) Landau-Vlasov equation is given [12] by[
∂

∂t
+

p

m

∂

∂x
− ∂

∂x

(
V (x) + g ρ(x, t)

) ∂

∂p

]
f = 0 , (1)
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where f = f(x, p, t) is the 1D probability distribution function, V (x) is the external con-

finement potential,

ρ = ρ(x, t) =

∫
dp f(x, p, t) (2)

is the axial local density and

g =
4 ~2as
ma2⊥

(3)

is the renormalized 1D interaction strength, in which ~ is the reduced Planck constant, m

is the atomic mass, as is the s-wave scattering length of the interaction between atoms and

a⊥ is the characteristic transverse width occupied by the dilute bosonic gas. The integrals

are taken from minus to plus infinity except if explicitly stated. The normalization

N =

∫
dx dp f(x, p, t) (4)

is adopted, where N is the total number of bosons. In some cases we will use the harmonic

external potential

V (x) =
1

2
mω2x2 (5)

although this choice is not decisive for the following treatment.

The validity conditions of the 1D Landau-Vlasov equation are

~ω⊥ ≫ < p2 >

2m
, (6)

where ~ω⊥ is the energy associated with the transverse confinement,

4π~2ρ2

< p2 >
≪ 1 , (7)

and
mg

~2ρ
≪ 1 . (8)

Equations (6), (7) and (8) are resp. Eqs. (10), (18) and (19) of Ref. [12], assuring a quasi-

1D configuration where the ultracold dilute bosonic gas is neither in a quasi-condensate or

Tonks-Girardeau regime.

III. BERNSTEIN-GREENE-KRUSKAL MODES

In the stationary case where ∂/∂t = 0 everywhere, the general solution to Eq. (1) is

f = f(H) , (9)
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where f is an arbitrary function of the energy function

H =
p2

2m
+ U(x) (10)

with the total potential

U(x) = V (x) + g ρ(x) . (11)

This holds for arbitrary external potential, as long as it is time-independent. The same

reasoning applies to the BGK solution for the stationary Vlasov-Poisson system, with some

differences. The energy function in the plasma problem contains the electrostatic potential,

while in the bosons problem H depends on the particle distribution function itself, through

the interaction potential g ρ where ρ is a functional of f , viz. Eq. (2). Moreover, there is

nothing similar to Poisson’s equation to be self-consistently solved, but only the normal-

ization condition (4). In this context, therefore, it is not an exaggeration to consider the

stationary Vlasov-Landau equation to be much simpler than the stationary Vlasov-Poisson

system. Nevertheless, concrete applications require a detailed analysis, as shown in the next

examples.

A. Maxwell-Boltzmann Distribution

The functional form of f(H) is entirely free, which is in accordance with the collision-

less assumption so that no particular equilibrium (e.g. the Bose-Einstein distribution) is

preferred. Suppose there is a Maxwell-Boltzmann distribution

f(H) =
A√
2π

exp(−β H) (12)

where β has the role of inverse temperature in energy units, A is a normalization constant

to be determined and 1/
√
2π is a numerical factor included for convenience.

From Eqs. (2) and (10)-(12) the 1D particle number density is

ρ(x) = A

(
m

β

)1/2

exp
[
−β

(
V (x) + g ρ(x)

)]
. (13)

The axial local density appears in both sides of Eq. (13). Nevertheless, in this example

the determining equation can be easily disentangled according to

ρ(x) =
1

β g
W

(
g A

√
β m exp

(
−β V (x)

))
, (14)
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where the Lambert W function or product log function is defined [30] as the solution of

W (s) exp[W (s)] = s, in the domain s ≥ −1/e. By construction, the solution is analytically

exact. The exact total potential (11) is also entirely available. For simplicity, a repulsive

interaction (g > 0) is assumed, so that ρ(x) in Eq. (14) is automatically a real, positive

definite quantity.

The last step concerns the determination of the normalization constant A. For instance,

for the harmonic potential in Eq. (5), it is convenient to introduce the rescaled variables

x̄ =
x

L
, ḡ =

N β g

L
, Ā =

A

N β ω
, (15)

in terms of the characteristic length L = 1/(
√
β mω). The normalization condition (4)

yields

ḡ =

∫
dx̄W

[
ḡ Ā exp

(
− x̄2

2

)]
, (16)

which can not be analytically solved for Ā. Nevertheless, given the rescaled coupling constant

ḡ one can readily numerically obtain Ā, as shown in Fig. 1. It should be remarked that ḡ has

very small values in today’s experiments [12, 31], which allows to approximate W (s) ≃ s for

a generic argument s ≪ 1 in Eq. (16), yielding Ā = 1/
√
2π = 0.40 in this approximation.

For instance, with N = 100, g = 5 × 10−41kgm3 s−2,m = 9 × 10−27kg (Li atom) as in

Ref. [12] together with typical values ω = 700 rad/s, β = 1028J−1 [32, 33] one has L =

0.15mm, ḡ = 3.32 × 10−7. The validity conditions (7) and (8) are safely meet for these

parameters. Moreover, from Eq. (6) one would need an energy of transverse confinement

~ω⊥ with ω⊥ ≫ 106rad/s.

It is interesting to rewrite the validity condition (7) using the approximations ḡ ≪ 1 and

Ā ≃ 1/
√
2π so thatA ≃ Nβω/

√
2π. From Eq. (13) one has the estimate ρ ∼ Nω

√
βm/(2π).

Together with < p2 > /(2m) ∼ 1/β, one has that Eq. (7) becomes

1

β
≫ N ~ω , (17)

which has an evident thermodynamic meaning. Under the same approximation, the Lambert

function in Eq. (14) can be safely replaced by W (s) ≃ s so that the number density assumes

the Maxwellian form

ρ(x) = N ω

(
β m

2π

)1/2

exp
(
−β V (x)

)
. (18)

To summarize and without any approximation within the Landau-Vlasov model, for the

Maxwell-Boltzmann distribution (12) one has the exact number density (14), subject to
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FIG. 1: Numerical solution of Eq. (16) for 0 ≤ ḡ ≤ 1, where the interaction strength ḡ and the

normalization constant Ā are given in Eq. (15).

N =
∫
dx ρ(x) which determines the normalization constant A given an arbitrary external

potential V (x).

B. Water Bag Distribution

In a non-equilibrium situation we are free to have any function of the total energy as

a suitable particle distribution function. A second example is provided by a completely

degenerate Fermi-Dirac-like distribution

f(H) = AΘ(EF −H) , (19)

where Θ is the step function, A is a normalization constant and EF > 0 is a energy parameter

which would be the Fermi energy in a Fermi gas. Moreover we assume EF ≥ U(x), otherwise

some quantities become complex valued in the following. However, in the context of a bosonic

gas, EF is just a measure of the energy spread, precisely as in the water bag model for plasmas

[34]. By construction, Eq. (19) shows an exact stationary solution of the Landau-Vlasov

equation.

Integration in momentum space implicitly gives the 1D number density

ρ(x) = 2A
√
2m (EF − U(x))1/2 . (20)
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Note for real ρ one has EF ≥ U(x) and hence automatically EF ≥ V (x), supposing g > 0

(repulsive interaction). The always non-negative solution of Eq. (20) is

ρ(x) = 4mA2

[
−g +

(
g2 +

1

2mA2
(EF − V (x)

)1/2
]
. (21)

The exact total potential (11) is also immediately available, for arbitrary external potential.

The last step is the determination of the normalization constant A, once a specific external

potential is chosen. For the harmonic potential (5), it is convenient to introduce the rescaling

x̄ =
x

L
, ḡ =

N g

EF L
, Ā =

EF A

N ω
, ρ̄ =

ρ

N/L
, (22)

in terms of the characteristic length L =
√
EF/m/ω. The dimensionless 1D number density

becomes

ρ̄ = 4Ā2

[
−ḡ +

(
ḡ2 +

1

2 Ā2

(
1− x̄2

2

))1/2
]
, (23)

and the normalization condition
∫
dx ρ(x) = N yields

1

4 Ā2
=

∫ √
2

−
√
2

dx̄

[
−ḡ +

(
ḡ2 +

1

2 Ā2

(
1− x̄2

2

))1/2
]
, (24)

where EF ≥ V (x) yields x̄2 ≤ 2 in dimensionless variables. The integral in Eq. (24) can

be analytically done, but in terms of transcendental functions which are not useful to show

here. For specific values of ḡ, one can numerically determine Ā and hence the necessary

normalization, as depicted in Fig. 2. In the limit of very small ḡ one has Ā = 1/(2π) = 0.16.

The resulting dimensionless 1D number density is shown in Fig. 3.

Similarly to the Maxwellian case, it is possible to rewrite the validity condition (7) using

the approximations ḡ ≪ 1 and Ā ≃ 1/(2π). From Eq. (20) one has the estimate ρ ∼

2A
√
2mEF . Together with < p2 > /(2m) ∼ EF yields

EF ≫ N ~ω , (25)

with an evident thermodynamic meaning.

To summarize and without any approximation within the Landau-Vlasov model, for

the water bag, completely degenerate Fermi-Dirac-like distribution (19) one has the exact

number density (21), subject to N =
∫
dx ρ(x) which determines the normalization constant

A given an arbitrary external potential V (x). For the sake of introducing the next Section,

notice the correspondence between the Van Kampen mode decomposition and the water bag

distribution which is shown to be granted in the limit of an infinite number of bags [35].
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FIG. 2: Numerical solution of Eq. (24) for 0 ≤ ḡ ≤ 1, where the interaction strength ḡ and the

normalization constant Ā are given in Eq. (22).

IV. CASE-VAN KAMPEN MODES

The Case-Van Kampen modes are the normal modes in a plasma [21, 22]. For the Landau-

Vlasov equation, Case-Van Kampen modes can be derived starting from the assumption

V = 0. Experimentally, a 1D configuration of ultracold atoms free of external confinement

can be produced by means of a 1D ring geometry with large radius [11] or considering two

high barriers at the edges of a straight axial arrangement [36]. In both cases, spatial periodic

conditions can be assumed. The 1D Landau-Vlasov equation reduces to(
∂

∂t
+

p

m

∂

∂x
− g

∫
dp′

∂f(x, p′, t)

∂x

∂

∂p

)
f(x, p, t) = 0 , (26)

To proceed, we set

f(x, p, t) = f0(p) + δf(x, p, t) , (27)

where f0(p) is the equilibrium distribution subject to∫
dp f0(p) = n0 (28)

where n0 is the equilibrium 1D number density and δf(x, p, t) is a first-order perturbation.

Due to the periodic boundary conditions, it is meaningful to Fourier-transform according to

δf(x, p, t) =
∑
k

fk(p, t) e
i k x , (29)
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FIG. 3: Dimensionless 1D number density ρ̄ from Eq. (23), for interaction strength ḡ = 10−2 and

normalization constant Ā = 1/(2π).

where k is a multiple of a fundamental wavenumber. Linearizing the Landau-Vlasov equation

(26) the result is

∂fk(p, t)

∂t
+

i k p

m
fk(p, t)− i g k

∂f0(p)

∂p

∫
dp′ fk(p

′, t) = 0 . (30)

Complementary to the Landau approach where the linearized Landau-Vlasov equation

is taken as an initial value problem analyzed by Laplace transform methods, the Case-Van

Kampen approach assumes

fk(p, t) = fν(p)e
−i ω t , ν =

ω

k
, (31)

where ω is a real, arbitrary constant and ν is the phase speed. Inserting from Eq. (31) into

Eq. (30) gives the eigenvalue problem

(p−mν) fν(p) = g m
∂f0(p)

∂p

∫
dp′ fν(p

′) . (32)

Following [21, 22], it is convenient to assume the normalization∫
dp fν(p) = cte. = n0 , (33)

so that the integral equation (32) simplifies to

(p−mν) fν(p) = g mn0
∂f0(p)

∂p
. (34)
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In a distributional sense, the solution for Eq. (34) is

fν(p) = g mn0 ℘

(
∂f0(p)

∂p

1

p−mν

)
+ λ(ν) δ (p−mν) , (35)

where ℘ denotes the Cauchy principal value symbol, λ(ν) is a function to be determined

and where δ is the Dirac delta.

As can be readily verified, the naive solution (without principal value and with λ(ν) = 0)

can not be made compatible with the normalization (33). Indeed, to comply with the

normalization one needs

λ(ν) = n0 − g mn0 ℘

∫
dp

∂f0(p)

∂p

1

p−mν
, (36)

where the integral is taken in the principal value sense. The final result is

fν(p) = g mn0 ℘

(
∂f0(p)

∂p

1

p−mν

)
+ (37)

+

(
n0 − g mn0 ℘

∫
dp′

∂f0(p
′)

∂p′
1

p′ −mν

)
δ (p−mν) .

As apparent, these Case-Van Kampen modes are not damped (they are stationary waves)

and have a singular character. Following Case, by means of the introduction of adequate

adjoint solutions it is possible to demonstrate that the Eq. (37) provides a complete set, in

the sense that all solutions to the linearized Landau-Vlasov equation can be expressible as

a linear combination of these modes. More precisely, for simplicity we have discussed only

the class 1a among the four classes of eigenfunctions in Case’s terminology, as detailed in

the original article [22] and textbooks [37]. To demonstrate the completeness of the full set

of Case-Van Kampen eigenfunctions makes necessary to introduce an auxiliary (or adjoint)

equation with a different set of eigenfunctions, orthogonal to those in the original set, except

when the eigenvalues coincide. The complete analysis is not trivial but entirely similar to

the Vlasov-Poisson case, shown in [22, 37] for instance.

It is worth to comment that in spite of the singular character of the Case-Van Kampen

modes, they can be used to compute well behaved physical quantities. For instance, we can

consider the 1D number density perturbation

δn(x, t) =

∫
dp dw c(ω) δf(x, p, t) , (38)

where c(ω) is an arbitrary weight function. Allowing a superposition law taking into ac-

count a frequency spread is valid in the context of the linearized Landau-Vlasov equation.
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Restricting to the k−th Fourier component, applying Eqs. (31) and (37), we have the well

behaved function

δn(x, t) =
n0 k

m

∫
dp c

(
ω =

k p

m

)
ei k (x− p t

m
) , (39)

after using the property δ(p − mω/k) = (k/m)δ(ω − k p/m). In this case, the first and

last terms of Eq. (37) cancel upon integration (the same occurs for Vlasov-Poisson plasmas

[37]).

As a simple illustration, the Gaussian weight function

c(ω) =
δn0√
2πΩn0

exp

(
− (ω − ω0)

2

2Ω2

)
(40)

produces from integration of Eq. (39) the density perturbation

δn(x, t) = δn0 exp

(
i (k x− ω0 t)−

Ω2t2

2

)
. (41)

This is an example of the well known fact that although the isolated Case-Van Kampen

eigenmodes are stationary waves, they can produce damped macroscopic objects, taking

into account phase mixing. Consistently, the monochromatic limit Ω → 0 is not damped.

V. CONCLUSION

In the context of mean-field collisionless theory for 1D ultracold dilute Bose gases, non-

decaying nor growing in time structures have been analyzed. For this purpose, traditional

methods from plasma theory have been adapted to the Landau-Vlasov equation. Nonlinear

stationary solutions have been derived in analogy with the BGK modes of the Vlasov-Poisson

system in plasmas. Specific kinetic equilibria have been worked out in detail, together with

the associated validity conditions in real ultracold bosonic gases. Linear, normal modes have

been also derived, in analogy with the plasma Case-Van Kampen stationary wave modes.

These results are a necessary complementary development to the analysis of Landau damping

and instabilities for the 1D Landau-Vlasov equation [12]. The stability of the BGK modes

for the Landau-Vlasov equation is an important point to be addressed in future works.
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