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Abstract. A quantum kinetic equation containing exchange-correlation described by

an effective potential is derived, in a non-relativistic electrostatic quantum plasma. The

velocity moments of the kinetic equation produce quantum fluid equations modified by

the exchange-correlation potential. Closure of the hydrodynamic equations is achieved

expressing the pressure dyad in terms of the number density, using a quantum corrected

local velocity-displaced Wigner function equilibrium. The propagation of ion-acoustic

waves in a quantum electron-ion plasma is analyzed, in the case of a completely

degenerate electron gas. The fluid and kinetic approaches are compared and shown

to agree in the long wavelength limit. A discussion on the equation of state and the

role of the exchange-correlation and quantum diffraction effects is provided. Possible

experimental parameters for the verification of the predictions are identified.
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1. Introduction

In most works on quantum hydrodynamic models for charged particle systems [1, 2, 3, 4,

5], the Pauli Principle is not fully taken into account. Although the fermionic statistics

can be included to some extent in terms of a Fermi-Dirac equilibrium and associated

equations of state, in such references a Hartree approximation is assumed. Namely,

the N−body electrons state is expressed as a product of one-particle wavefunctions,

without taking into account the fundamental anti-symmetry of the quantum state or

correlations. Therefore, the N−body Wigner function or equivalently the N−body

density operator become a product of one-particle quantities. The result is a mean field

theory where neither exchange effects (due to the Pauli Principle) nor correlation effects

are fully incorporated. Classically, the Hartree approximation follows after neglecting

the correlation between two or more particles in the BBGKY (Bogoliubov-Born-Green-

Kirkwood-Yvon) hierarchy of kinetic equations, directly leading to the Vlasov equation

[6]. In the quantum case, the result is the quantum Vlasov (or Wigner-Moyal) equation

satisfied by the Wigner function in the presence of the average collective field due to

all charged particles [7, 8, 9]. From the quantum Vlasov equation, suitable macroscopic

equations can be derived e.g. from the velocity moments of the Wigner function [10, 11],

in the same way as the classical fluid plasma equations can be derived from the velocity

moments of the particle distribution function satisfying Vlasov’s equation, which is the

usual route for classical plasma hydrodynamics [12, 13, 14, 15, 16].

In this context, it is indicated to improve quantum fluid models considering the anti-

symmetry of the N−body fermion wavefunctions right from the start. In the Hartree-

Fock approximation, the corresponding exchange effects are included assuming that the

electrons state is given in terms of a single Slater determinant. The associated Hartree-

Fock equations are integro-differential [17], analytically and computationally not very

accessible for many body systems. This motivates the adoption of phenomenological

effective potentials for the exchange and also for the correlation effects, which in the

Adiabatic Local Density Approximation (ALDA) are functions of the particle density

only [18]. In the case of quantum plasma hydrodynamics, effective exchange-correlation

potential potentials were introduced in [19], by direct plugging into the fluid equations

without a derivation from quantum kinetic theory. The modified physically appealing

hydrodynamics provides an efficient model for linear and (specially) nonlinear problems

such as quantum ion-acoustic waves [20], beam instabilities in ultra-small semiconductor

devices [21] and nano-cylindrical waveguides [22]. However, the ad hoc character of the

procedure from [19] is still questionable [23]. Here we show a first principles derivation of

the exchange-correlation modified hydrodynamics starting from quantum kinetic theory.

We follow as close as possible the well known moments method, adapted to a Fermi-

Dirac local equilibrium which is suited for dense plasmas.

This work is organized as follows. In Section II, a modified quantum Vlasov

equation is derived, taking into account exchange-correlation effects. In Section III,

starting from a local velocity-shifted Fermi-Dirac equilibrium, the expression of the
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pressure dyad is obtained, from which the appropriate equation of state and quantum

diffraction effects are found. Section IV considers the case of quantum-ion acoustic

waves as well as a discussion about the model’s applicability. Section V is reserved to

the conclusions.

2. Kinetic equation

We start from the Schrödinger equation for the one-electron wavefunction ψα = ψα(r, t)

in a statistical ensemble {pα, ψα;α = 1, 2, ...N},

i~
∂ψα

∂t
= − ~2

2m
∇2ψα − (eϕ+ VX)ψα . (1)

Here, pα ≥ 0 is the statistical weight of the state ψα, such that
∑N

α=1 pα = 1. Moreover,

~ is the reduced Planck constant, m is the electron mass, −e is the electron charge, ϕ

is the electrostatic potential and VX is the exchange potential. Correlation effects will

be introduced soon. Notice the sign convention for VX .

For the sake of definiteness, at first we suppose the Dirac expression for the exchange

potential [25], which is based on the average Hartree-Fock potential for the homogeneous

electron gas,

VX = gD

(
n

n0

)1/3

, gD = 0.985
(3π2)2/3

4π

~2ω2
e

mv2F
. (2)

Here, the number density is

n =
∑
α

pα|ψα|2 , (3)

with an equilibrium number density n0, while ωe = [n0e
2/(mε0)]

1/2 is the electrons

plasma frequency, ε0 is the vacuum permittivity and vF = (~/m)(3π2n0)
1/3 is the Fermi

velocity. Each quantum state is normalized according to <ψα|ψα>= N , where N is

the total number of particles. Notice that the evolution of each ψα is influenced by the

quantum ensemble as a whole, due to Eq. (3).

The Wigner function f = f(v, r, t) is defined [24] by

f =
( m

2π~

)3∑
α

pα

∫
ds exp

(
imv · s

~

)
ψ∗
α

(
r+

s

2
, t
)
ψα

(
r− s

2
, t
)
, (4)

in terms of phase-space coordinates (v, r) and time. As is well known, the velocity

moments of the Wigner function determine the relevant macroscopic quantities such as

particle, current and energy densities. In particular,

n =

∫
dvf , (5)

which is equivalent to Eq. (3) with normalization
∫
dvdrf = N . Besides, we have

nu =

∫
dvfv , (6)

P = m

(∫
dvfv ⊗ v − nu⊗ u

)
. (7)
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where u and P are interpreted as the quantum fluid velocity field and pressure dyad,

respectively.

The time-evolution of the Wigner function can be obtained from standard methods

[7, 9], using the Schrödinger equation and its complex conjugate, as well as suitable

identities such as∫
dv exp

(
− imv · s

~

)
f(v, r, t) =

∑
α

pαψ
∗
α

(
r+

s

2
, t
)
ψα

(
r− s

2
, t
)
. (8)

The result is

∂f

∂t
+ v · ∇f =

( m

2π~

)3 gD
i~

∫
ds dv′ exp

[
im(v − v′) · s

~

]
f(v′, r, t)×

×

[(
n−1
0

∫
dv′′f(v′′, r+

s

2
, t)

)1/3

−
(
n−1
0

∫
dv′′f(v′′, r− s

2
, t)

)1/3
]
,

+
e

i~

( m

2π~

)3 ∫
ds dv′ exp

[
im(v − v′) · s

~

]
f(v′, r, t)×

×
(
ϕ(r+

s

2
, t)− ϕ(r− s

2
, t)
)
, (9)

which generalizes the Wigner-Moyal equation by the inclusion of the exchange effects.

It is instructive to obtain the kinetic equation starting from the simple Dirac form

of the exchange potential. However, a quick examination shows that all steps in the

procedure remain unchanged if VX(n) given by Eq. (2) is replaced by an exchange-

correlation potential VXC depending (in the ALDA spirit) on the particle density only,

VXC = VXC(n) = VXC

(∫
dv f

)
. (10)

The generalized Wigner-Moyal equation reads

∂f

∂t
+ v · ∇f +

1

i~

( m

2π~

)3 ∫
ds dv′ exp

(
im(v − v′) · s

~

)
f(v′, r, t)×

×
(
V (r+

s

2
, t)− V (r− s

2
, t)
)
= 0 , (11)

where

V (r, t) = −eϕ(r, t)− VXC

(∫
dvf(v, r, t)

)
+ VXC(n0) . (12)

The constant VXC(n0) was added for later convenience. Obviously, besides the exchange-

correlation and scalar potentials one could also include an external potential as an

additive term.

For instance, a popular parametrization [26, 27] is given by the Hedin-Lundqvist

(HL) potential

VXC(n) = gD

(
n

n0

)1/3 (
1 +

0.034

aBn1/3
ln
(
1 + 18.37aBn

1/3
))

, (13)

where aB = 4πε0~2/(me2) is the Bohr radius. Without the logarithmic term, which is

associated to correlations, the Dirac exchange potential is recovered. Notice that the HL
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choice optimizes the description of stationary states of atomic and molecular systems,

so that it is not necessarily adapted to plasma and general non-equilibrium problems.

The quantum statistical ensemble approach allows to derive a kinetic equation for

the one body Wigner function taking into account exchange-correlation in terms of an

effective potential. An alternative to include exchange effects is to start from an anti-

symmetric N−body density matrix and then deriving a quantum BBGKY hierarchy

[28, 29, 30]. The later method, however, does not includes correlation corrections. In

the next Section, we derive hydrodynamic equations taking suitable moments of the

kinetic equation (11).

3. Quantum hydrodynamic model

It is straightforward to derive macroscopic equations using the moments (5), (6) and

(7) and the kinetic equation (11), yielding

∂n

∂t
+∇ · (nu) = 0 , (14)

m

(
∂u

∂t
+ u · ∇u

)
= − ∇ ·P

n
+ e∇ϕ+∇VXC(n) , (15)

It is remarkable that exchange-correlation effects appear precisely in the form proposed

in [19], as a simple gradient of the effective potential. The scalar potential is self-

consistently determined by Poisson’s equation (Section IV).

The moment transport equation (15) depends on the higher-order moment, namely

the pressure dyad. One could proceed for the time-evolution equation for P, which

contains the next order moment. Pursuing this approach one gets an infinite hierarchy

of equations, to be made finite by means of a choice of closure. The closure problem

can be attacked in a variety of ways [31]. Here we follow [1], supposing a local quantum

corrected velocity displaced thermodynamic equilibrium [32, 33]. This approach allows

to determine both the pertinent equation of state and the role of quantum diffraction,

which is still hidden since there is no sign of ~ in the fluid equations. In this context,

the generalized quantum Vlasov equation is solved to the leading order in the quantum

diffraction effects. Namely, one consider the semiclassic form of Eq. (11),

∂f

∂t
+ v · ∇f − 1

m
∇V · ∂f

∂v
+

~2

24m3

∂3V

∂xi∂xj∂xk

∂3f

∂vi∂vj∂vk
= O(~4) , (16)

where the summation convention is implied. Actually [1], the expansion parameter is

~2/(8m <K> L2), where <K> is the average kinetic energy and L is a characteristic

length. However, it is more expedite to use the shorthand O(~2). In addition, we assume

that quantum diffraction is a higher order effect compared to exchange-correlation, so

that V = −VXC − eϕ is left untouched in the expansion (16). This assumption should

be quantified in specific applications.

Since electrons in quantum plasmas can be at any degeneracy degree, it is useful

to consider the O(~2) stationary solution of the Eq. (16) starting from an unperturbed

Thomas-Fermi equilibrium where all quantities are assumed to be time-independent,
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obtained in [34] without exchange-correlation. Actually, the presence of VXC into the

potential V does not change anything in the semiclassical solution, which reads

f = f0 +
~2

8m

(
−∇2V

∂2f0
∂µ2

+
1

3

[
(∇V )2 +m(v · ∇)2V )

] ∂3f0
∂µ3

)
, (17)

where

f0 = f0(E) =
α

exp [β(E − µ)] + 1
, (18)

with v = |v| and

α = 2
( m

2π~

)3
, β =

1

κBT
, E =

mv2

2
+ V , V = V (r) . (19)

Here, κB is the Boltzmann constant, T is the temperature, µ is the chemical potential

and E is the particle’s energy. The chemical potential µ is determined [35] from

n0 = −α
(

2π

βm

)3/2

Li3/2
(
−eβµ

)
, (20)

where Li3/2 is a polylogarithm function. Polylogarithms can be defined in terms of

Fermi-Dirac integrals,

Liν(−z) = − 1

Γ(ν)

∫ ∞

0

sν−1ds

z−1es + 1
, ν > 0 , (21)

where Γ(ν) is the Gamma function. When ν < 0 one applies

Liν(−z) =
(
z
∂

∂z

)
Liν+1(−z) (22)

as many times as necessary.

In classical plasma theory, a frequent method [16] for the derivation of equations

of state is to start from a local quasi-equilibrium velocity-shifted distribution, assuming

the macroscopic quantities to be slowly varying in time and space. The same strategy

was pursued in [1], taking into account the lowest order quantum diffraction effects and

a local velocity-shifted perturbed Maxwellian, which is appropriate for the electron gas

in non-degenerate ultra-small semiconductor devices [7, 8]. Presently, we consider the

velocity-shifted version of the solution (18), obtained through the replacements

v → v′ = v − u(r, t) , E → E ′ =
m

2
(v − u(r, t))2 + V (r, t) . (23)

Also the temperature and the chemical potential could be allowed to be variable, but

for our present purposes they will be assumed strictly constant.

Calculating the moments n and P from the velocity-shifted version of Eqs. (17)

and (18) together with Eqs. (5) and (7) we get

n =
n0

Li3/2(−eβµ)

[
Li3/2(−eβµ̄) +

~2β2

12m
× (24)

×
(
−∇2V Li−1/2(−eβµ̄) +

β

2
(∇V )2Li−3/2(−eβµ̄)

)]
,
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Pij =
n0

β

Li5/2(−eβµ̄)
Li3/2(−eβµ)

δij +
~2n0β

12m

Li1/2(−eβµ̄)
Li3/2(−eβµ)

(
−∇2V δij +

∂2V

∂xi∂xj

)
+
n0~2β2(∇V )2

24m

Li−1/2(−eβµ̄)
Li3/2(−eβµ)

δij , (25)

where µ̄ = µ − V . By construction, Eq. (6) is already satisfied. In the case V = 0

and without quantum diffraction, the well-known [35] pair of equations of state for the

ideal non-relativistic Fermi gas is recovered. In the dilute limit with a small fugacity

z = exp(βµ) ≪ 1, the expressions from [1] are recovered, using Lin(−z) ≈ −z.
From now on, for simplicity we restrict to the deep degenerate case κBT ≪ EF . In

this situation, µ = EF and

Liν(−z) ≈ − (ln z)ν

Γ(ν + 1)
, βEF ≫ 1 , (26)

yielding

n = n0

(
1− V

EF

)3/2

− n0~2

16mE2
F

 ∇2V(
1− V/EF

)1/2 +
(∇V )2

4EF

(
1− V/EF

)3/2
 , (27)

Pij =
2

5
n0EF

(
1− V

EF

)5/2

δij +
n0~2

8mEF

(
1− V

EF

)1/2

×

×
(
−∇2V δij +

∂2V

∂xi∂xj

)
+
n0~2(∇V )2

32mE2
F

(
1− V

EF

)−1/2

δij . (28)

It was also assumed that βµ̄ ≫ 1, which in the deep degenerate case is assured except

if V ≈ EF .

Solving up to O(~2), it is straightforward to eliminate V between Eqs. (27) and

(28), yielding

Pij=
2

5
n0EF

(
n

n0

)5/3

δij+
~2

18m
∇2n δij−

~2

12m

(
∂2n

∂xi∂xj
− 1

3n

∂n

∂xi

∂n

∂xj

)
. (29)

The pressure dyad (29) agrees with [36, 37], derived from a principle of maximization

of the quantum entropy and expansion on the quantum diffraction parameter.

Inserting Eq. (29) into the force equation (15) we find

m
du

dt
= −∇p

n
+ e∇ϕ+∇VXC +

~2

18m
∇
(
∇2

√
n√
n

)
, p =

2

5
n0EF

(
n

n0

)5/3

. (30)

The continuity equation (14) and the momentum transport equation (30) constitute

the fluid equations for electrons, complemented by the equation of state for the scalar

pressure and the chosen effective exchange-correlation potential. The electrostatic

potential obeys Poisson’s equation. This is exactly the model proposed ad hoc in [19],

now derived from quantum kinetic theory.
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4. Quantum ion-acoustic waves

Low frequency electrostatic waves can be explored including the ion dynamics. Due to

their larger mass, ions can be described by classical cold plasma fluid equations, namely

∂ni

∂t
+∇ · (niui) = 0 , (31)

∂ui

∂t
+ ui · ∇ui = − e∇ϕ

M
. (32)

Here, ni, ui, e and M ≫ m are respectively the ions number density, velocity field,

charge and mass. In this context, Poisson’s equation reads

∇2ϕ =
e

ε0
(n− ni) . (33)

Considering inertialess electrons, viz. neglecting the left-hand side of Eq. (30), we

can linearize Eqs. (14) and (30)-(33) around the equilibrium n = ni = n0,u = ui =

0, ϕ = 0. Supposing plane wave perturbation proportional to exp[i(k · r−ωt)], one gets

the linear dispersion relation for quantum ion-acoustic waves,

ω2 =

(
1 + ~2k2

36Mmc2s

)
c2sk

2

1 +
(
1 + ~2k2

36Mmc2s

)
c2sk

2

ω2
i

, (34)

where wi = [n0e
2/(Mε0)]

1/2 is the ions plasma frequency and cs given by

c2s =
(dp/dn)0 − n0(dVXC/dn)0

M
(35)

is the ion-acoustic velocity. The derivatives in Eq. (35) should be evaluated at the

equilibrium n = n0. In the long wavelength limit and to lowest order in quantum

diffraction, one has

ω2 = c2sk
2

(
1− c2sk

2

ω2
i

+
~2k2

36Mmc2s

)
+O

(
(
kcs
ωi

)6
)
. (36)

The results (34) and (36) formally agree with those from [38, 39, 40], except that now

the ion-acoustic velocity is generalized to include exchange-correlation effects.

In principle, the generalized quantum ion-acoustic speed from Eq. (35) could

vanishes, in view of the negative contribution from exchange-correlation (VXC should

always be an increasing function of density). We can assume HL potential from Eq.

(13), as well as the equation of state for the ideal Fermi gas. This yields

c2s =
2EF

3M
(1− f(H)) , H =

~ωe

EF

, f(H) = c1H2

(
1 +

c2
1 + c3/H2

)
,

(37)

where c1 = 0.188, c2 = 0.625, c3 = 10.081. The function f(H) is the exchange-correlation

correction. In fully degenerate plasma, the parameterH = ~ωe/EF ∼ n
−1/6
0 is a measure

of the collisional effects [9, 41]. Hence, degenerate plasma tends to be more ideal for

increasing density. More exactly, we can define a graininess parameter g = Up/<K>,

where Up = e2/(4πε0rs) is a rough estimate of the average electrostatic energy per
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particle, rs = [3/(4πn0)]
1/3 is the Wigner-Seitz radius and <K>= (3/5)EF is the average

kinetic energy per particle. A quick calculation gives g = 1.02H2. From Eq. (37), we see

that the relative role of the correlation effects (proportional to c2 < 1) tends to be smaller

for larger density, being always a correction to the exchange effects. In addition, from

Eq. (37) we have that the exchange-correlation correction is as expected an increasing

function of the density, with c2s < 0 for H > 2.11, or equivalently n0 < 1.23× 1028 m−3,

corresponding to strongly coupled plasma, formally beyond the present treatment [41].

Nevertheless, the exchange-correlation correction can be significant even for H < 1, as

depicted in Figs. 1 and 2. In terms of the effective potential (13), one finds the estimate

1030m−3 < n0 < 1031m−3 in order to have both H < 1 and a quantum ion-acoustic

speed exchange-correlation correction above 10%, as shown in Fig. 3. Such densities

are clearly already experimentally accessible to laboratory experiments, keeping in mind

also the strong degeneracy κBT << EF assumption. Finally, from Eq. (36) we find

that the relative importance of quantum diffraction (the ratio between the third term

proportional to ~2k2 and the second term proportional to c2sk
2) is

~2ω2
i

36Mmc4s
=
H2

16

1

(1− f(H))2
. (38)

Although the role of quantum diffraction is by construction a second order correction,

it can be enhanced if the characteristic function f(H) becomes of order unity.

0.5 1.0 1.5 2.0
H

0.2

0.4

0.6

0.8

1.0

fHHL

Figure 1. Exchange-correlation correction f(H) ≡ c1H2[1 + c2/(1 + c3/H
2)] to the

quantum ion-acoustic speed, from Eq. (37), where H = ~ωe/EF , c1 = 0.188, c2 =

0.625, c3 = 10.081.

It is relevant to have a comparison between the fluid and kinetic approaches. For

this purpose, consider the Vlasov equation for ions,

∂fi
∂t

+ v · ∇fi −
e

M
∇ϕ · ∂fi

∂v
= 0 , (39)

where fi = fi(v, r, t) is the ions probability distribution function. Equations (11) and

(39) together with Poisson’s equation

∇2ϕ =
e

ε0

(∫
dvf(v, r, t)−

∫
dvfi(v, r, t)

)
(40)

constitute a quantum kinetic model taking into account exchange-correlation for

electrons, in the weak coupling approximation.
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0.75 0.80 0.85 0.90 0.95 1.00
H

0.12

0.14

0.16

0.18

0.20

0.22

fHHL

Figure 2. Same as Fig. 1, focusing in the region where H < 1 and f(H) > 1/10.

0.75 0.80 0.85 0.90 0.95 1.00
H

2

4

6

8

n0H 1030m-3
L

Figure 3. Number densities corresponding to Fig. 2, where H < 1 and f(H) > 1/10.

The system of Eqs. (11), (39) and (40) can be linearized for plane wave

perturbations around the equilibrium f = f0(v), fi = n0δ(v) (for cold ions), ϕ = 0.

The dispersion relation is ϵ(k, ω) = 0, where

ϵ(k, ω) = 1− ω2
i

ω2
− 1

n0

[
ω2
e +

n0k
2

m

(
dVXC

dn

)
0

(
ω2
i

ω2
− 1

)]
×

×
∫

dvf0(v)

(ω − k · v)2 − ~2k4/(4m2)
. (41)

In the special case f0(v) = α for v < vF and f0(v) = 0 for v > vF , corresponding to

strong electron degeneracy, and considering the static response approximation (ω ≈ 0

in the integral in Eq. (41)) which is appropriate to ion-acoustic waves, the result is

ϵ(k, ω) = 1− ω2
i

ω2
+

3

k2v2F

[
ω2
e +

n0k
2

m

(
dVXC

dn

)
0

(
ω2
i

ω2
− 1

)]
×

×
(
1− ~2k2

12m2v2F

)
, (42)

up to the leading quantum diffraction correction, see [40, 42] for details about the algebra

for the static response. For the sake of comparison with fluid theory, the integral in Eq.

(41) was taken in the principal value sense, ignoring the contribution from the poles.

As remarked in [42], Landau damping on quantum ion-acoustic waves described by the

usual Wigner-Poisson system is not a serious issue as long as the ionic temperature is
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much smaller than the electrons Fermi temperature, being a higher order correction

∼
√
m/M ≪ 1. Finally, solving ϵ(k, ω) = 0 from Eq. (42) in the long wavelength limit

kcs ≪ ωi ≪ 1 gives the same linear dispersion relation from the fluid model, as shown

in Eqs. (35) and (36), as it should be.

We can compare the present results with the findings from recent quantum kinetic

models [28]-[30], where exchange effects were included considering from the beginning

the antisymmterization of the N−particle density matrix, without correlation or (using

a long wavelength limit) quantum diffraction effects. Ion-acoustic waves in the dilute

plasma limit (κBT ≪ EF ) have been considered, yielding

ω/k = csc

[
1 + 0.8

(
~ωe

mv2T

)2

− i
(πm
8M

)1/2(
1− 3

(
~ωe

mv2T

)2
)]

, (43)

as shown in Eq. (16) of [28], where csc =
√
m/M vT is the classical ion-acoustic speed

assuming cold ions, vT is the electrons thermal speed. The parameter [~ωe/(mv
2
T )]

2

plays the role of a coupling parameter on non-degenerate plasma. On the opposite limit

of strong degeneracy, one has from Eq. (11) of [29]

ω/k =

(
2EF

3M

)1/2 (
1− 0.62H2(1 + 0.59i)

)
, (44)

see also Eq. (26) of [30]. According to Eq. (43), exchange effects increase the phase

speed of the otherwise classical ion-sound waves, while from Eq. (44) these effects have

the opposite influence in completely degenerate plasma. Moreover, while in the dilute

limit one has a Landau damping of order
√
m/M ≪ 1, in the fully degenerate plasma

one apparently can have from inspection of the imaginary part in Eq. (44) a strong

damping due only to exchange effects provided H is reasonable high. On the other hand,

the present quantum kinetic theory as well as the fluid model from [19] give a smaller

phase speed due to exchange effects, as shown in Eq. (37), with some discrepancy on

the numerical factors in comparison with Eq. (44). For a proper comparison, c2 must

be set to zero in Eq. (37) because correlation effects are not included in Eq. (44).

Moreover, Eq. (41) gives no strong Landau damping due to exchange, since a separate

calculation following [42] shows a ∼
√
m/M correction in this regard. Finally, applying

Eq. (41) together with a Maxwellian equilibrium would be inappropriate, since the HL

exchange-correlation potential is based on an homogeneous zero-temperature Fermi gas.

5. Conclusion

We have deduced a quantum kinetic equation starting from a quantum statistical

ensemble with exchange-correlation potentials. Quantum plasma hydrodynamics was

found from the moments of the resulting generalized Wigner-Moyal equation (11).

Closure of the fluid equations was obtained assuming a local velocity-shifted quasi-

equilibrium Wigner function and small quantum diffraction effects, or, equivalently,

the weak coupling assumption. By definition, as in classical plasma, the isothermal

quasi-equilibrium assumption tends to work better for low frequency waves. The case
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of linear quantum ion-acoustic waves in completely degenerate plasma was worked

out. The precise conditions for reasonably large exchange-correlation effects compatible

with the weak coupling assumption were discussed, indicating possible experiments to

check the accuracy of the present theory, as well as of alternative approaches [28]-

[30]. Similarly, the HL form of the exchange-correlation potential can be also checked

against experiments on low frequency electrostatic waves in quantum plasma, since

this parametrization is a key ingredient in the resulting wave dispersion. Several

extensions of the kinetic equation (11) and the associated hydrodynamics are also

desirable, considering for instance finite-temperature effects, gradient corrections for

the exchange-correlation potential, spin polarization and magnetized plasmas. Finally, a

more profound comparison with time-dependent density functional and quantum kinetic

theories with collisional operators such as the Lenard-Balescu one and others is also

highly indicated [43, 44, 45, 46].
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[8] A. Jüngel, Transport equations for semiconductors (Springer, New York, 2009).

[9] F. Haas, Quantum plasmas: an hydrodynamic approach (Springer, New York, 2011).

[10] F. Haas, M. Marklund, G. Brodin & J. Zamanian, Phys. Lett. A 374, 481 (2010).

[11] F. Haas, J. Zamanian, M. Marklund & G. Brodin, New J. Phys. 12, 073027 (2010).

[12] E. Siregar & M. L. Goldstein, Phys. Plasmas 3, 1437 (1996).

[13] P. Goswami, T. Passot & P. L. Sulem, Phys. Plasmas 12, 102109 (2005).

[14] J. J. Ramos, Phys. Plasmas 12, 052102 (2005).

[15] P. M. Bellan, Fundamentals of plasma physics (Cambridge University Press, Cambridge, 2012).

[16] A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko & K. N. Stepanov, Plasma

electrodynamics - vol. I (Pergamon, Oxford, 1975).

[17] B. H. Brandsen & C. J. Joachain, Quantum mechanics 2nd. ed. (Prentice Hall, New York, 2000).

[18] R. M. Dreizler & E. K. U. Gross, Density functional theory: an approach to the quantum many-

body problem (Springer, Berlin, 1990).

[19] N. Crouseilles, P.-A. Hervieux & G. Manfredi, Phys. Rev. B 78, 155412 (2008).

[20] K. Ourabah & M. Tribeche, Phys. Rev. E 88, 045101 (2013).

[21] I. Zeba, M. E. Yahia, P. K. Shukla & W. M. Moslem, Phys. Lett. A 376, 2309 (2012).

[22] Y. Ma, S. Mao & J. Xue, Phys. Plasmas 18, 102108 (2011).

[23] Z. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz & T. Ramazanov, Phys. Plasmas 22, 102104

(2015).

[24] M. Hillery, R. F. O’Connell, M. O. Scully & E. P. Wigner, Phys. Rep. 106, 121 (1984).



Kinetic theory derivation of exchange-correlation in quantum plasma hydrodynamics 13

[25] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc 26, 376 (1930).

[26] L. Hedin & B. I. Lundqvist, J. Phys. C 4, 2064 (1971).

[27] L. Brey, J. Dempsey, N. F. Johnson & B. I. Halperin, Phys. Rev. B 42, 1240 (1990).

[28] J. Zamanian, M. Marklund & G. Brodin, Phys. Rev. E 88, 063105 (2013).

[29] R. Ekman, J. Zamanian & G. Brodin, Phys. Rev. E 92, 013104 (2015).

[30] G. Brodin, R. Ekman & J. Zamanian, Plasma Phys. Control. Fusion 59, 014043 (2017).

[31] E. Tassi, Eur. J. Phys. D 71, 269 (2017).

[32] E. P. Wigner, Phys. Rev. 40, 749 (1932).

[33] E. M. Lifshitz & L. P. Pitaevskii, Physical kinetics (Butterworth Heinemann, Oxford, 1999).

[34] A. Smerzi, Phys. Rev. A 52, 4365 (1995).

[35] R. K. Pathria & P. D. Beale, Statistical mechanics 3rd. ed. (Butterworth-Heinemann, Oxford,

2011).

[36] M. Trovato & L. Reggiani, Phys. Rev. E 81, 021119 (2010).

[37] M. Trovato & L. Reggiani, Phys. Rev. E 84, 061147 (2011).

[38] D. Michta, F. Graziani & M. Bonitz, Contrib. Plasma Phys. 55, 437 (2015).

[39] M. Akbari-Moghanjoughi, Phys. Plasmas 22, 022103 (2015).

[40] F. Haas & S. Mahmood, Phys. Rev. E 92, 053112 (2015).

[41] S. V. Vladimirov & Yu O. Tyshetskiy, Phys. Usp. 54, 1243 (2011).

[42] D. B. Melrose & A. Mushtaq, Phys. Rev. E 82, 056402 (2010).

[43] M. Schlanges, T. Bornath, J. Vorberger & D. O. Gericke, Contrib. Plasma Phys. 50, 64 (2010).

[44] M. W. C. Dharmawardana, Contrib. Plasma Phys. 55, 85 (2015).

[45] F. R. Graziani, J. D. Bauer & M. S. Murillo, Phys. Rev. E 90, 033104 (2014).

[46] L. G. Stanton & M. S. Murillo, Phys. Rev. E 91, 033104 (2015).


