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Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brasil

Abstract

In a previous work [16], a new model was introduced, taking into account the role of the Fermi

weak force due to neutrinos coupled to magnetohydrodynamic plasmas. The resulting neutrino-

magnetohydrodynamics was investigated in a particular geometry associated with the magnetosonic

wave, where the ambient magnetic field and the wavevector are perpendicular. The corresponding

fast, short wavelength neutrino beam instability was then obtained in the context of supernova

parameters. The present communication generalizes these results, allowing for arbitrary direction

of wave propagation, including fast and slow magnetohydrodynamic waves and the intermediate

cases of oblique angles. The numerical estimates of the neutrino-plasma instabilities are derived in

extreme astrophysical environments where dense neutrino beams exist.

PACS numbers: 13.15.+g, 52.35.Bj, 95.30.Qd, 97.60.Bw
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I. INTRODUCTION

The neutrino-plasma coupling in magnetized media is a relevant issue in diverse situa-

tions, as near the core of proto-neutron stars, where it is a source of the free energy be-

hind the stalled supernova shock [1]–[4]. Neutrino-driven wakefields and neutrino effective

charge in magnetized electron-positron plasma [5, 6], the magnetized Mikheilev-Smirnov-

Wolfenstein effect of neutrino flavor conversion [7], spin waves coupled to neutrino beams

[8], neutrino cosmology and the early universe [9], neutrino emission and collective processes

in magnetized plasma, and neutrino-driven nonlinear waves in magnetized plasmas [10, 11],

are examples of neutrino influenced plasma phenomena. The existence of intense neutrino

beams in general astrophysical plasma is well documented [12]. The coupling between neu-

trino flavor oscillations and plasma waves has been also reported [13]–[15].

One of the most popular approaches to plasma astrophysics in the presence of magnetic

fields is magnetohydrodynamics (MHD), which usually does not account for neutrino species

not even in any approximate way. Actually, neutrino studies in a material medium are more

frequently pursued within the framework of particle physics, which in terms of language is

somewhat far from the majority of the plasma community. This has motivated the creation

of neutrino-magnetohydrodynamics (NMHD), where the interaction between neutrinos and

electrons is forwarded in terms of a coupling between the MHD and neutrino fluids [16].

As a first application, NMHD proved the destabilization of the magnetosonic wave by neu-

trino beams, yielding a plausible mechanism for type II supernova explosion. However, the

magnetosonic wave supposes a very particular geometry, where the wave propagation is

perpendicular to the ambient magnetic field. Therefore, it is advisable to perform a more

general linear stability analysis, allowing for arbitrary orientations. This is the purpose of

the present work, namely, the study of the impact of a neutrino beam on the stability of

general MHD waves. Namely, in the case of an ideally conducting fluid and using simpli-

fied MHD assumptions, these are the shear Alfvén wave, and fast and slow magnetosonic

waves. Therefore, the present work removes the orthogonality condition of [16], to obtain

instability growth-rates of simplified and ideal NMHD for arbitrary oblique angles between

wave propagation and equilibrium magnetic field. Similarly, the instability analysis of gen-

eral electrostatic perturbations in magnetized electron plus neutrino plasmas in an ionic

background was recently carried on [17].
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This work is organized as follows. Section II reviews the basic equations and validity

conditions of NMHD. Section III obtains the general linear dispersion of waves, where a few

extra details (not explicitly shown in [16]) of the algebra are provided. Section IV derives

the instability growth-rate in general, discussing it in the significant particular cases: fast

magnetosonic wave; slow magnetosonic wave; perpendicular wave propagation (with respect

to the ambient magnetic field); parallel wave propagation. The shear Alfvén wave is found

to be unaffected by neutrinos. The strong growth-rate is estimated in a typical case of type

II supernova parameters. Section V is reserved to the conclusions.

II. NEUTRINO-MAGNETOHYDRODYNAMICS MODEL

For completeness, we briefly review the NMHD model derived in [16], comprising the

following set of equations, namely, the continuity equations for the neutrinos,

∂nν

∂t
+∇· (nνuν) = 0 , (1)

and for the MHD fluid,
∂ρm
∂t

+∇ · (ρmU) = 0 , (2)

the momentum transport equations for the neutrinos,

∂pν

∂t
+ uν · ∇pν = −

√
2GF

mi

∇ρm , (3)

and for the MHD fluid,

∂U

∂t
+U · ∇U = −V 2

S∇ρm
ρm

+
(∇×B)×B

µ0 ρm
+

Fν

mi

, (4)

as well as the dynamo equation modified by the electroweak force,

∂B

∂t
= ∇×

(
U×B− Fν

e

)
. (5)

Here, nν and ρm are resp. the neutrino number density and the plasma mass density, uν

and U resp. the neutrino and plasma velocity fields, B the magnetic field, GF the Fermi

constant, mi the ion mass, VS the adiabatic speed of sound, µ0 the free space permeability,

e the elementary charge and Fν the neutrino force,

Fν =
√
2GF

[
Eν +

(
U− mi∇×B

eµ0ρm

)
×Bν

]
, (6)
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where Eν and Bν are effective fields induced by the weak interaction (c is the speed of light),

Eν = ∇nν −
1

c2
∂

∂t
(nνuν) , Bν =

1

c2
∇× (nνuν) . (7)

Finally, the neutrino relativistic beam momentum is pν = Eνuν/c
2, with a neutrino beam

energy Eν .
The assumptions behind the NMHD model are the same of the simplified and ideal MHD,

namely, a highly conducting, strongly magnetized medium, and low frequency processes in

a scale where electrons and ions couple so much as to be faithfully treated as a single fluid.

The neutrinos influence the plasma by means of the charged weak current coupling electrons

and electron-neutrinos, through the charged bosons W±. In addition, implicitly in Eq. (4)

the displacement current was neglected, supposing wave phase velocities much smaller than

c - although such a restriction has no rôle in the results of the present work. In conclusion,

Eqs. (1)-(5) are a complete set of 11 equations and 11 variables, namely nν , ρm and the

components of pν ,U and B. A more detailed derivation is provided in [16].

For convenience, it is useful to reproduce here Eq. (28) of [16], which collects the con-

ditions of high collisionality and high conductivity of the plasma, supposing a wave with

angular frequency ω,

mi|ω|
meωpe

≪ 2

3

lnΛ

Λ
≪ ωpe

|ω| , Λ =
4πn0λ

3
D

3
, λD =

vT
ωpe

, (8)

where n0 is the equilibrium electron (and ion) number density, me is the electron mass,

ωpe = [n0e
2/(meε0)]

1/2 is the electron plasma frequency, vT = (κBTe/me)
1/2 is the electrons

thermal velocity, κB is the Boltzmann constant and Te the electron fluid temperature. The

validity conditions of NMHD are essentially the same, since the neutrino component is a

second order influence. The derivation of Eq. (8) assumes the Landau electron-electron

collision frequency, and non-degenerate and non-relativistic electrons. More details on the

validity conditions of MHD can be found e.g. in [18, 19].

III. GENERAL DISPERSION RELATION

Starting from the homogeneous equilibrium

nν = nν0 , ρm = ρm0 , pν = pν0 , U = 0 , B = B0 , (9)
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and supposing plane wave perturbations proportional to exp[i(k · r− ω t)], it is possible to

obtain the dispersion relation for small amplitude waves. Here we provide a few more details

on the necessary algebra, in comparison with [16]. The idea is to express all perturbations

in terms of δU, the first-order plasma fluid correction. For instance, the linear correction to

the neutrino fluid velocity becomes

δuν =
c2

Eν0
(
δpν − uν0 uν0 · δpν/c

2
)

(10)

=

√
2GFρm 0c

2

miEν0 ω
(k− k · uν0 uν0/c

2)

(ω − k · uν0)
k · δU , (11)

where uν0 and Eν0 are resp. the equilibrium neutrino beam velocity and energy, viz. pν0 =

Eν0uν0/c
2. Equation (10) can be operationally found using the relation between neutrino

momentum and neutrino velocity and the energy-momentum relation Eν = (p2νc
2+m2

νc
4)1/2,

where the neutrino mass mν is eliminated at the end. The step from Eq. (10) to Eq.

(11) is made using the linearized plasma continuity equation (2) and the linearized neutrino

momentum transport equation (3).

To proceed, in view of Eq. (6) the linearized neutrino force becomes δFν =
√
2GF δEν

since the term containing the effective neutrino magnetic field Bν is of second order. The

perturbed effective neutrino electric field δEν can be found from Eq. (7), together with the

neutrino continuity equation (1) and Eq. (11). The result is

δFν =
2iG2

Fnν0ρm0 (k · δU)

miEν0 ω(ω − k · uν0)2
×

×
[(
(k · uν0)

2 − c2k2 − ω(k · uν0) + ω2
)
k+ ω

(
k2 − ω

c2
k · uν0

)
uν0

]
. (12)

As could have been expected, the neutrino force is enhanced for ω ≈ k · uν0, so that the

wave resonates with the neutrino beam.

The remaining straightforward steps allow to express the linearized plasma momentum

transport equation (4) in terms of δU only,

ω2δU =

(
V 2

A + V 2

S + V 2

N

(c2k2 − (k · uν0)
2 + ω(k · uν0)− ω2

(ω − k · uν0)2

))
(k · δU)k

+ (k ·VA)
(
(k ·VA)δU− (δU ·VA)k− (k · δU)VA

)

−
ω V 2

N

(
k2 − ωk · uν0/c

2
)
(k · δU)uν0

(ω − k · uν0)2

+
iV 2

NVA(k · δU)

Ωi(ω − k · uν0)2

(
k2 − ω k · uν0

c2

)
VA ×

(
k× (k× uν0)

)
, (13)

5



where the vector Alfvén velocity VA and VN are given by

VA =
B0

(ρm0µ0)1/2
, VN =

(
2G2

Fρm0nν0

m2
iEν0

)1/2

, (14)

while Ωi = eB0/mi is the ion cyclotron frequency. As apparent, the characteristic neutrino-

plasma speed VN contains both MHD and neutrino variables, emphasizing the mutual cou-

pling.

The somewhat formidable expression can be considerably simplified for low frequency

waves such that ω/k ≪ c, allowing to disregard the terms containing ω in the numerators

of the right-hand side of Eq. (13), as deduced from appropriated order of magnitude esti-

mates. In the same trend, the very last term proportional to Ω−1
i can be discarded, provided

kVA/Ωi ≪ c/VA, or equivalently ck/ωpe ≪ ωpe/Ωe, where Ωe = eB0/me is the electron

cyclotron frequency. Such a condition tend to be easily satisfied wavelengths much larger

than the plasma skin depth c/ωpe, and large enough densities so that ωpe ≫ Ωe. Finally,

Eq. (13) reduces to

ω2δU =

(
V 2

A + V 2

S + V 2

N

(c2k2 − (k · uν0)
2)

(ω − k · uν0)2

)
(k · δU)k

+ (k ·VA)
(
(k ·VA)δU− (δU ·VA)k− (k · δU)VA

)
, (15)

which is shown in [16].

In [16], for simplicity it was supposed that k · VA = 0, which allows to discard several

terms of Eq. (15). This corresponds to the magnetosonic wave modified by the neutrino

component, for which δU ‖ k as seen from inspection. The corresponding instability due to

the neutrino beam was then evaluated. Our goal now is to consider the general situation,

where the wavevector and the ambient magnetic field have an arbitrary orientation, as shown

in Fig. 1.

It turns out that Eq. (15) is formally the same as the one for linear waves in simplified

ideal MHD, provided the adiabatic sound speed VS is replaced by ṼS(ω,k) defined by

Ṽ 2

S (ω,k) = V 2

S + V 2

N

(c2k2 − (k · uν0)
2)

(ω − k · uν0)2
, (16)

so that

ω2δU =
(
V 2

A + Ṽ 2

S (ω,k)
)
(k · δU)k

+ (k ·VA)
(
(k ·VA)δU− (δU ·VA)k− (k · δU)VA

)
, (17)
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FIG. 1. Wave vector and ambient magnetic field.

which is exactly the same as the well known simplified and ideal MHD system for linear

waves, with the replacement VS → ṼS(ω,k). Hence, the usual procedure applies, as follows.

Assuming the geometry of Fig. 1, where without loss of generality the y−component of k

and VA is set to zero, and from the characteristic determinant of the homogeneous system

(17) for the components of δU, the result is

(ω2 − k2 V 2

A cos2 θ)
[
ω4 − k2

(
V 2

A + Ṽ 2

S (ω,k)
)
ω2 + k4 V 2

A Ṽ 2

S (ω,k) cos2 θ
]
= 0 . (18)

As apparent from the factorization, one root is ω = k VA cos θ, which is the shear Alfvén

wave, unaffected by the neutrino beam. This happens because k · δU = 0 for the shear

Alfvén wave, which eliminates the neutrino contribution in Eq. (17). Presently, the more

interesting modes comes from the second bracket in Eq. (18), to be discussed in the next

Section.

IV. INSTABILITIES

Ignoring the shear Alfvén wave, the general dispersion relation (18) yields

ω4−k2(V 2

A+V 2

S )ω2+k4 V 2

A V 2

S cos2 θ =
V 2
Nk

2 (c2k2 − (k · uν0)
2) (ω2 − k2V 2

A cos2 θ)

(ω − k · uν0)2
, (19)

where the neutrino term was isolated in the right-hand side. Due to the small value of the

Fermi constant, the neutrino contribution is always a perturbation, even for the neutrino-

beam mode. The natural approach to Eq. (19) is then to set

ω = Ω+ δω , Ω ≫ δω , Ω = k · uν0 , (20)
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where Ω is the classical (no neutrinos) solution,

Ω4 − k2(V 2

A + V 2

S )Ω2 + k4 V 2

A V 2

S cos2 θ = 0 , (21)

and where in Eq. (20) the neutrino-beam mode was selected in order to enhance the neutrino

contribution.

Therefore, the zeroth-order solution gives the fast (+) and slow (-) magnetosonic waves,

Ω = Ω± = kV± , V± =
[
1

2

(
V 2

A + V 2

S ±
√
(V 2

A − V 2
S )

2 + 4V 2
A V 2

S sin2 θ
)]1/2

. (22)

Taking into account Eq. (19) and Eq. (20) as well as the expression of the unperturbed

frequency, we get

(δω)3 =
±V 2

N (c2k2 − (k · uν0)
2)
(
V 2
±
− V 2

A cos2 θ
)
k

2V±

√
(V 2

A − V 2
S )

2 + 4V 2
A V 2

S sin2 θ

≈
±V 2

Nc
2
(
V 2
±
− V 2

A cos2 θ
)
k3

2V±

√
(V 2

A − V 2
S )

2 + 4V 2
A V 2

S sin2 θ
, (23)

where in the last step Ω = k · uν0 and V 2
±

≪ c2 were used. The unstable root with

γ = Im(δω) > 0 yields the growth-rate

γ = γ± =

√
3 k

24/3


 ∆c4|V 2

±
− V 2

A cos2 θ|
V±

√
(V 2

A − V 2
S )

2 + 4V 2
A V 2

S sin2 θ




1/3

, (24)

introducing the dimensionless quantity

∆ =
V 2
N

c2
=

2G2
Fn0nν0

mic2Eν0

, (25)

using ρm0 ≈ n0mi. The parameter ∆ is endemic in neutrino-plasma problems, as in the

neutrino and anti-neutrino effective charges in magnetized plasmas [5] or in the expression

of the neutrino susceptibility [20].

The weak beam condition γ/Ω ≪ 1 can be worked out as

∆c4|V 2
±
− V 2

A cos2 θ|
V 4
±

√
(V 2

A − V 2
S )

2 + 4V 2
A V 2

S sin2 θ
≪ 1 , (26)

which is independent of the magnitude k of the wavenumber. In the unlikely cases where

Eq. (26) is not satisfied, one must go back to the sixth-order polynomial equation (19), to

be numerically solved.
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The growth-rate (24) is completely general, in the sense that it is valid for arbitrary

geometries of the wave propagation, as long as the weak beam assumption holds, and is the

main result of this work. It is interesting to evaluate the instability in the separate fast and

slow magnetosonic cases, as well as for perpendicular (k ⊥ VA) and parallel (k ‖ VA) to

the magnetic field wave propagation.

A. Destabilization of the fast magnetosonic wave

The choice of the plus sign in Eq. (24) corresponds to the fast magnetosonic wave, with

a growth-rate γ ≡ γ+. From now on, parameters of Type II core-collapse scenarios like for

the supernova SN1987A will be applied. There one had neutrino bursts of 1058 neutrinos

and energies of the order of 10 − 15 MeV, strong magnetic fields B0 ≈ 106 − 108 T and

neutrino beam densities nν0 between 1034 − 1037 m−3 [21]. In the following estimates, we

set Eν0 = 10MeV, n0 = 1034 m−3, nν0 = 1035 m−3, B0 = 5 × 107 T, and an electron fluid

temperature Te = 0.1MeV, appropriate for the slightly degenerate and mildly relativistic

hydrogen plasma in the center of the proto-neutron star. In addition, we use GF = 1.45 ×
10−62 J.m3, VS = (κBTe/mi)

1/2. For these parameters, one has ∆ = 1.75 × 10−33, VA/c =

3.64 × 10−2, VS/c = 1.03 × 10−2. We set k = 106 m−1, which is fully consistent with the

applicability condition (8). Finally, the simplifying assumption of page 6, viz. ck/ωpe ≪
ωpe/Ωe, becomes k ≪ 1.2× 1010 m−1, which is obviously satisfied.

From Eq. (24), the result is then shown in Fig. 2, displaying the growth-rate as a function

of the orientation angle. One has a fast instability with the estimate 1/γ+ ≈ 10−3 s, while

the characteristic time of supernova explosions is ∼ 1 second. On the other hand, the weak

beam assumption γ+ ≪ Ω+ (equivalent to Eq. (26)) is fairly satisfied, since Ω+ ≈ 1013 rad/s

without much variation as a function of the angle. The conclusion from Fig. 2 is that the

instability becomes stronger for more perpendicular waves. One could have even stronger

instabilities for a denser plasma, but some of the above calculations, although remaining

approximately accurate, would need to be slightly revised in view of stronger degeneracy

and relativistic effects.

9



0 Π

4
Π

2
3 Π
4

Π

2

4

6

8

ΘHradL

Γ+ H103s-1L

FIG. 2. Growth-rate of the destabilized fast magnetosonic wave, for the set of parameters described

in the text.

B. Destabilization of the slow magnetosonic wave

Setting exactly the same parameters used for the fast magnetosonic wave and using Eq.

(24), one gets the growth-rate shown in Fig. 3 below, which is also such that 1/γ− ≈ 10−3 s.

The weak beam condition (26) is satisfied except for θ → π/2 rad, where both Ω− and γ−

go to zero. Contrarily to the fast magnetosonic wave, the slow magnetosonic wave becomes

more unstable for parallel and anti-parallel propagation, while it stabilizes for perpendicular

orientation between k and B0.
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FIG. 3. Growth-rate of the destabilized slow magnetosonic wave, for the set of parameters described

in the text.

10



C. Perpendicular wave propagation (k ⊥ VA)

It is useful to collect the special cases of Eq. (24) for noteworthy orientations. For

instance, when k ⊥ B0, or θ = π/2 rad, it is found

γ+ =

√
3∆1/3c4/3k

24/3(V 2
A + V 2

S )
1/6

, γ− = 0 . (27)

At this point it is interesting to critically compare with the instability calculations from

[16], where k ⊥ B0 from the beginning. There, the growth-rate was found as

γ =
∆1/2c2k
√
V 2
A + V 2

S

, (28)

see Eq. (32) therein, in the case of almost perpendicular neutrino propagation (k ·uν0 ≈ 0),

which yields the larger instabilities. While Eqs. (27) for γ+ and (28) for γ are similar, there

are some decisive discrepancies, and effectively γ+ ≫ γ by many orders of magnitude. This is

because of the exceedingly small coupling in terms of ∆1/3 ∼ G
2/3
F in Eq. (27) and ∆1/2 ∼ GF

in Eq. (28). What is the origin of the discrepancy? It happens that in [16] the neutrino-

beam mode was selected with ω = k ·uν0+ iγ and γ ≪ Ω = (V 2
A +V 2

S )
1/2k, with wavevector

almost perpendicular to neutrino beam velocity, but the resonance condition k · uν0 = Ω

was not enforced. By definition, the resonance condition enhances the interaction between

the wave and the neutrino beam, producing a larger instability. In this context the present

findings are more appropriate.

D. Parallel wave propagation (k ‖ VA)

When k ‖ B0, or θ = 0, we get

γ+ = 0 , γ− =

√
3∆1/3c4/3k

24/3V
1/3
S

, (29)

where the result supposes VA > VS. Otherwise, if VS > VA, then γ+ is interchanged with γ−

in Eq. (29). The case of parallel propagation has two fundamental modes: the pure Alfvén

wave Ω = kVA, which is unaffected by the neutrino beam, and the sonic mode Ω = kVS,

which is destabilized according to Eq. (29). The anti-parallel case (θ = π rad) is similar.
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V. CONCLUSION

The linear dispersion relation of simplified and ideal NMHD was examined in detail, to-

gether with the validity conditions of the theory. With the additional hypothesis of very

subluminal waves (V± ≪ c) and wavelengths not very small compared to the plasma skin

depth, the linear dispersion relation becomes formally the same as for usual simplified and

ideal MHD, provided the adiabatic sound speed is replaced by a quantity VS(ω,k) contain-

ing the neutrino beam contribution. Therefore the standard procedure for waves with an

arbitrary orientation applies. Due to the small value of the Fermi coupling constant, the

neutrino term is nearly always a perturbation, to be treated as a second order effect. Nev-

ertheless, the corresponding instability growth-rate is found to be strong enough to be a

candidate for triggering cataclysmic events in supernovae. The central result of the work

is the growth-rate in Eq. (24), valid for arbitrary geometries and considerably enlarging

the results from [16], which are restricted to perpendicular wave propagation (k ·B0 = 0).

The particular cases of destabilized fast and slow magnetosonic waves, and perpendicular

and parallel propagation have been discussed. It would be interesting to relax some of the

assumptions behind Eq. (15), e.g. the hypotheses of very subluminal waves, as well as the

introduction of non-ideality effects. In this way, even more general (and more complicated)

phenomena could be addressed.
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