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Abstract

Starting from first principles quantum kinetic theory for ideal plasmas with exchange effects,

the quantum hydrodynamic equations are derived taking moments of the corresponding exchange-

Vlasov equation. The case of an electron-ion plasma where ions are entirely classical is considered.

The linear dispersion relation for ion-acoustic waves is found from the macroscopic equations and

compared with exchange quantum kinetic theory, yielding a qualitative agreement apart from a

numerical factor of order one in the exchange contribution, assuming a Maxwellian background as

a first step, for analytical simplicity. The validity conditions of the treatment are discussed and

exchange effects are shown to be necessarily a correction, within the ideal and long wavelength

approximations.

Keywords: quantum plasmas, exchange interaction, ion-acoustic wave

1



I. INTRODUCTION

The exchange energy arises from the antisymmetrization of the electron wavefunctions

considered in the average electrostatic interaction energy. This exchange energy (per unit

volume) was first evaluated by Bloch [1], in terms of a ∼ n4/3 contribution, where n is the

electrons number density. Inclusion of exchange along the Thomas-Fermi model leads to the

Thomas-Fermi-Dirac equation. The overall effect of the exchange is to lower the energy and

pressure of the Thomas-Fermi model [2].

Recently, exchange effects have been incorporated in quantum kinetic theory for plasmas

[3], deriving the Wigner equation for electrons within the Hartree-Fock approximation, tak-

ing into account the complete antisymmetry of the N-particle electrons density matrix. It

was assumed that the plasma is not spin polarized and that the relevant length scales are

much longer than the thermal de Broglie wavelength. This later approximation means that

quantum diffraction effects are not taken into account. The exchange kinetic theory was

applied to ion-acoustic and Langmuir waves in completely degenerate plasmas [4], showing

exact agreement with previous results from another methods [5]-[7]. A generalization of ex-

change kinetic theory to electromagnetic (non electrostatic) phenomena has been proposed

[8]. The impact of exchange on linear plasma waves has always been treated perturbatively.

It happens that the resulting kinetic equation - the Vlasov equation modified by exchange

effects - is quite complicated, see Eq. (1) below, which makes its applicability limited to

some extent. Indeed it is a cumbersome nonlinear integro-differential equation in spite of

the approximations made. In practice, nonlinear phenomena are outside the scope of the

exchange kinetic theory. At the present, not even numerical simulations of the exchange

kinetic equation have been made, which could be useful for nonlinear waves. Nevertheless,

the first principles new kinetic equation can be used for the validation for other calculation

schemes, like density functional theory, for instance. It is clearly desirable to have simplified

models starting from the basic kinetic exchange equation, which are at the same time more

amenable to analytical and nonlinear approaches.

In this work we derive the macroscopic model based on the moments of the exchange

kinetic equation. The moments approach is traditional in classical kinetic theory [9]. It has

been also applied for quantum plasmas, either electrostatic [10] or electromagnetic in a gauge

invariant setting [11]. In contrast, exchange-correlation effects have been incorporated [12]
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in fluid models for plasmas in terms of effective potentials derived [13] in density functional

theory (DFT), becoming a popular approach [14]-[17]. However, the exchange fluid models

with effective DFT potentials have been examined, with the conclusion that they have a

good agreement with exchange kinetic theory for large phase velocities in comparison with

the Fermi velocity in degenerate plasmas, becoming less satisfactory for shorter wavelengths.

For instance, for high frequency waves, the DFT-based hydrodynamical model predicts the

wrong sign of the exchange contribution, for short wavelengths [18]. For these reasons, it is

an essential task, to derive exchange macroscopic models from first principles, starting right

from the kinetic theory and evaluating the moments dynamics. The price for the choice

of the moments method focused on the time-evolution of average quantities like number

density, fluid velocity field, pressure dyad etc. is the loss of information on kinetic aspects,

related to Landau damping, the plasma echo and so on.

As will be discussed, even in the macroscopic approach the exchange effects still have a

prominent influence of the underlying kinetic distribution function. As a first exploration,

here the exchange effects on ion-acoustic waves are studied from a fluid exchange model

assuming a background Maxwellian equilibrium. This choice is the same as in the exchange

kinetic treatment in Ref. [3], since in this case analytical results are more accessible than

for a Fermi-Dirac equilibrium, for instance. In this way we can have a detailed account on

the similarities and differences between the macroscopic and microscopic approaches.

The article is organized as follows. In Sec. II, the exchange fluid equations are derived

from the moments of the exchange kinetic equation in the electrostatic limit. In Sec. III, we

consider the impact on ion-acoustic waves by treating the exchange effects perturbatively

within the linear approximation. Section IV discuss the validity conditions of the present

approach. Section V compares the results from exchange kinetic and hydrodynamic moments

theories, regarding the ion-acoustic wave in a Maxwellian background. Section VI contains

the conclusions.

II. EXCHANGE FLUID EQUATIONS

The starting point is the kinetic equation derived in [3], see also [8], which is the evolution

equation for the electron Wigner function f = f(x,p, t) supposing the two-particle density

matrix as an antisymmetric product of one-particle density matrices. In the absence of
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spin polarization, neglecting correlation and quantum diffraction effects, and in the long

wavelength approximation, the kinetic equation is

∂
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where V (r) = e2/(4πε0r) and the symbols have their usual meaning [3, 8]. Summation over

repeated indexes is assumed. Equation (1) keeps the bare exchange effects, which presently

are our focus.

To proceed to evolution equations for macroscopic quantities, it is necessary to introduce

the zeroth, first and second order moments of the Wigner function, respectively the number

density n, the fluid velocity u and the pressure dyad P, defined according to

n =

∫
d3p f , (2)

mnu =

∫
d3pp f , (3)

P =
1

m

∫
d3pp⊗ p f −mnu⊗ u . (4)

It is also convenient to define a third order moment in a component-wise manner,

Qijk =
1

m2

∫
d3p (pi −mui)(pj −muj)(pk −muk) f . (5)

Integrating all terms of Eq. (1) over momenta assuming appropriate boundary conditions

yields
∂n

∂t
+∇ · (nu) = 0 , (6)

which is the continuity equation. Multiplying all terms in Eq. (1) by p/m, integrating over

momenta and using the continuity equation gives(
∂
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)
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It is important to notice that if the analysis is restricted to a 10-moment model (in terms

of n,u and the components of the the symmetric dyad Pij, then the last term in Eq. (1)
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with the second-order derivative ∂2
∂pi∂pj

would be entirely washed out. Indeed, it does not

contribute to Eq. (7) since∫
d3p pk
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∫
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= 0 , (8)

assuming surface terms do not contribute for quantities Aij satisfying decaying boundary

conditions in momentum space. Therefore the above mentioned last term in Eq. (1) can

contribute only in a higher-order moments hierarchy model.

For completeness, the evolution equation for the second order moment (the energy trans-

port equation) is also presented, as obtained after multiplying all terms in Eq. (1) by pipj

and integrating over momentum space,( ∂
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If the exchange terms are omitted, then Eqs. (6)-(9) reproduce previous results on electro-

static plasma [10] but now disregarding quantum diffraction.

III. ION-ACOUSTIC WAVES FROM EXCHANGE-FLUID THEORY

For the fluid treatment of ion-acoustic waves, we have to add the ions continuity equation,

∂ni

∂t
+∇ · (niui) = 0 , (10)

the ions force equation, (
∂

∂t
+ ui · ∇

)
ui =

eE

mi

, (11)

and Poisson’s equation,

∇ · E =
e

ε0
(ni − n) . (12)

We have denoted ni as the ions number density, ui the ions velocity field and mi the ions

mass. Due to their large mass, exchange effects were disregarded for ions, considered to
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be simply ionized and cold as well. Obviously the ionic fluid equations can be also derived

taking the moments of the respective Vlasov equation and assuming a cold velocity shifted

Maxwellian distribution function, which is appropriate since ions can be usually taken as

classical in view of their larger mass.

For our purposes, while writing it for completeness, Eq. (9) for the time-evolution of

the third-order electrons moment can be ignored. Therefore we have the basic model in

terms of Eqs. (6) and (10), resp. the electrons and ions continuity equations, Eqs. (7) and

(11), resp. the electrons and ions force equations, and Poisson’s equation (12). These are 9

equations for the 9 relevant quantities, namely n, ni, the components of u,ui, and the scalar

potential ϕ such that E = −∇ϕ. As expected, we have a closure problem since Eq. (7) not

only contains the pressure dyad but also the electrons distribution function, which satisfies

the exchange kinetic equation. As usual the pressure term can be managed assuming an

equation of state compatible with a local thermodynamic equilibrium. We postpone the

problem of expressing the exchange term in Eq. (7) in terms of more familiar hydrodynamic

variables to future works. Nevertheless, we can provide a recipe to deal with the exchange

term in the case of linear waves, as follows.

Exchange effects on linear ion-acoustic waves can be investigated assuming

n = n0 + δn , ni = n0 + δni , ϕ = δϕ ,

u = δu , ui = δui , f = f0(p) + δf(p) , (13)

where the δ identify first order quantities all of them proportional to a plane wave exp[i(k ·

x− ωt)].

Retaining only first order terms we easily find

ωδn = n0k · δu , ωδni = n0k · δui , ωδui =
ekδϕ
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, k2δϕ =
e
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2
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where the inertialess electrons approximation is used in view of the low frequency assumption

and Pij = p(n)δij which is valid for isotropic equilibria. The ion-acoustic speed cs comes
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from

c2s =
1

mi

(
dp

dn

)
n=n0

. (16)

In view of the neglect of quantum diffraction (discussed in more detail in Section IV) it is

possible to expand the integrand in Eq. (15) for small k to obtain

0 = −mic
2
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The supposed leading order term (with k = 0) does not contribute in view of parity prop-

erties.

As mentioned earlier, there is an extra closure problem since the exchange term in the

electrons momentum equation involves the electrons probability distribution function, whose

variation δf therefore appears in Eq. (17). To deal with the question, notice that the ex-

change term is a correction term, an hypothesis to be confirmed at the end of the calculation.

Hence we can use just the linearized Vlasov equation without exchange term to derive in

the static approximation

k · p
m

δf(p) + ek · ∂f0(p)
∂p

δϕ ≃ 0 , (18)

which can be further simplified in the case of isotropic equilibria,

f0 = f0(ϵ) , ϵ =
p2

2m
⇒ δf(p) = −e df0

dϵ
δϕ . (19)

Inserting Eq. (19) into Eq. (17) the result is
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is the electrons susceptibility with ω2
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and where
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is the ions susceptibility.
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The result up to now is valid for isotropic electronic equilibrium distribution functions in

general, within the assumed validity conditions. The most prominent case for the evaluation

of exchange effects would be the Fermi-Dirac equilibrium, but for analytical reasons here we

follow the trend of [3] and consider a Maxwell-Boltzmann equilibrium,

f0(ϵ) =
n0

(2πmκBT )3/2
exp

(
− ϵ

κBT

)
. (24)

After a simple algebra one has

χe =
ω2
pi

c2sk
2

[
1− 1

12

(
~ωp

κBT

)2
]
, (25)

where ω2
p = n0e

2/mε0, and p = nκBT so that c2s = κBT/m.

To first order in the exchange effects, one has

ω2 =
ω2
pic

2
sk

2

ω2
pi + c2sk

2

[
1 +

1

12

(
~ωp

κBT

)2 ω2
pi

ω2
pi + c2sk

2

]
. (26)

Ion-acoustic waves in the quasi-neutral regime csk ≪ ωpi reduce to

ω = csk

[
1 +

1

24

(
~ωp

κBT

)2
]
, (27)

while ionic waves (csk ≫ ωpi, ω = ωpi) have exchange effects only at a higher order.

IV. VALIDITY CONDITIONS

We have made a number of assumptions to be detailed, as follows.

1. Neglect of quantum diffraction. Besides exchange effects whose origin is the fermionic

statistics alone, quantum undulatory effects (quantum diffraction) can also be a rel-

evant quantum effect. These last have been disregarded from the beginning, since

the derivation of the exchange kinetic theory have taken into account only the anti-

symmetry of the two-body electron particle distribution function in the otherwise

classical BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy. To estimate

the quantum diffraction and disregarding irrelevant numerical factors, we consider

the dispersion relation of quantum ion-acoustic waves without exchange correction
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[19, 20], where quantum diffraction comes from the Bohm potential term, providing

the condition

k2c2s ≫
~2k4

memi

⇒ ~k ≪ mvT , (28)

which is the long wave-length approximation implicit in the step from Eq. (15) to Eq.

(17), where vT =
√
κBT/m.

2. Non-degenerate assumption: κBT >> ϵF , where ϵF = (~2/2m)(3π2n0)
2/3 is the Fermi

energy. This assumption holds only for the choice of a Maxwellian equilibrium for the

sake of simplicity.

3. Ideality. Since we have started from the exchange kinetic theory which at the present

does not take into account collisions, we must have a small graininess parameter g,

which is the ratio between average electrostatic and kinetic energies. For a Maxwellian

plasma, we have

g =
e2

4πε0rSκBT
≪ 1 ,

4πr3S
3

=
1

n0

, (29)

where rS is the Wigner-Seitz radius. We find(
~ωp

κBT

)2

= 4

(
2

3π2

)1/3
ϵF
κBT

g , (30)

which explains why the exchange effects should be just a correction, at least for non-

strongly coupled and non-degenerate plasmas.

4. Neglect of Landau damping. Beyond dogmas, the concrete reasons for the need of

kinetic theory arise when the simpler, fluid model are not capable of describing some

relevant aspect addressed in kinetic theory. One such effect is Landau damping. Ion-

acoustic waves in classical plasma described by the Vlasov-Poisson system have a

negligible collisionless damping provided m ≪ mi and Ti ≪ T , where Ti is the ions

temperature [21]. Ref. [3] has obtained the Landau damping rate from exchange ki-

netic theory with an underlying Maxwellian equilibrium for electrons and cold ions and

found it is small provided m/mi ≪ 1, inline with the inertialess electrons assumption.

There the exchange effects provide a small correction to the already small classical

Landau damping (as shown in Eq. (16) of [3]).
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5. Inertialess electrons. The inertialess electrons condition is equivalent to a low fre-

quency assumption [21] given by

ω ≃ kcs ≪ kvT ⇒ m≪ mi . (31)

This condition is attained for heavy ions, the same rule for disregarding Landau damp-

ing of the ion-acoustic wave. For hydrogen plasma one has cs/vF = 0.02.

6. Neglect correlations. It has become popular [12], [14]-[17] to investigate exchange-

correlation effects in plasmas using effective empirical potentials directly taken from

equilibrium density functional theory (DFT). At the moment a quantum kinetic theory

for the full exchange-correlation effects is not available. Hence a fluid theory for

exchange-correlation from first principles is also not available, only exchange effects

have been presently taken into account. Nevertheless for the sake of an estimate it is

possible to measure the relevance of correlation effects using the DFT functionals VC

(for correlations) and VX (for exchange), using Eqs. (10) and (11) of [12] at equilibrium

(n = n0), yielding
VC

VX

= 0.25H2 ln

(
1 +

2.52

H2

)
< 0.63 , (32)

where H = ~ωp/mv2F and vF = (2ϵF/m)1/2 is the Fermi velocity. When H ≫ 1 one

has VC/VX ≃ 0.63, within the accuracy of the empirical DFT functionals, but in the

context of an ideal degenerate plasma one always has H ≪ 1. Figure (1) shows the

ratio between VC and VX which is a function of H2 only. The estimate shows that

exchange effects tend to be dominant, although not directly related to a Maxwellian

plasma as discussed here. Nevertheless in a rough translation the parameter H2 in

a degenerate plasma corresponds to the graininess parameter g in a non-degenerate

plasma, since it is the ratio between the average electrostatic and kinetic energies in

fully degenerate plasma. Hence Eq. (32) can be read as a function of g. In this picture,

VC/VX → 0 the more ideal the plasma is, which is not surprising.

V. COMPARISON WITH EXCHANGE KINETIC THEORY

The linear dispersion relation for ion-acoustic waves described by the exchange kinetic

theory was previously obtained in [3]. However, it is relevant to analyze the kinetic ap-
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FIG. 1: Relative strength of correlation effects compared to exchange effects using the empirical

DFT functionals, from Eq. (32).

proach again, to have a detailed comparison with the fluid approach. Consider the electrons

susceptibility

χe =
e

ε0k2

∫
d3p

δf

δϕ
. (33)

Using Eq. (1) in the static limit (ω ≪ kvT ), for isotropic equilibrium, with a small k

expansion like for Eq. (17), and approximating δf in the exchange term by the Vlasov

expression as in Eq. (19), the result is

χe =
ω2
pi

c2sk
2

[
1− ~2me4c2s

ε20ω
2
pi

∫
d3p

k · p
∂

∂p
•
∫

d3q

(
k

2q2
− k · qq

q4

)
f0(ϵ+)

(
df0
dϵ

)
ϵ−

]
. (34)

With the Maxwellian equilibrium this can be analytically calculated yielding

χe =
ω2
pi

c2sk
2

[
1− 1

6

(
~ωp

κBT

)2
]
, (35)

which is the same as the exchange fluid result (25) except for a factor 2 in front of the

exchange contribution. Proceeding with the same ions susceptibility as before and in the

quasi-neutral approximation one find

ω = csk

[
1 +

1

12

(
~ωp

κBT

)2
]
, (36)

to be compared with Eq. (27) for the exchange fluid dispersion relation.
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In Ref. [3], the exchange correction for ion acoustic waves in a Maxwellian background

was derived from kinetic theory without applying the static limit (ω ≪ kvT ). For this reason,

the dispersion relation was obtained only after a numerical integration, while here Eq. (34)

can be analytically solved. Equation (16) in [3] shows ω = csk[1+0.8(~ωp/κBT )
2], omitting

the small Landau damping term, while Eq. (36) shows a numerical factor 1/12 = 0.08 for

the exchange correction.

For the sake of comparison, we see that the exchange fluid electrons susceptibility from

Eq. (21) has a different expression for the exchange correction, as for the exchange kinetic

general result in Eq. (34). This is the origin of the factor 2 difference appearing in Eqs.

(27) and (36) resp. for the fluid and kinetic exchange contributions. One more source of

discrepancy is the ∂2/∂pi∂pj term in the exchange contribution in the kinetic equation (1),

which is immediately washed out in a low order moments approach. In the static limit,

this term can be shown to have no impact in the exchange kinetic electrons susceptibility.

However, it can be significant for fast waves other than slow waves such as the ion-acoustic

branch.

VI. CONCLUSION

In this work, we have developed the macroscopic, fluid theory arising after taking mo-

ments from the recently introduced first principles exchange kinetic theory [3]. The model is

then applied to the case of linear ion-acoustic waves. Closure is obtained assuming that the

exchange effects are a correction, which is verified at the end of the calculation in view of

the underlying collisionless and long wavelength approximations. The analytical expression

have been obtained for general isotropic equilibria and developed in all detail in the case

of a Maxwellian equilibrium. The results were compared with those from exchange kinetic

theory and their validity conditions discussed. At the same time, these validity conditions

show natural issues in order to generalize the available kinetic and fluid exchange models.

Alternative closure methods will be reported soon. The exchange-fluid equations can be an

useful tool to investigate nonlinear aspects of quantum plasmas where exchange effects are

prominent.
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