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Abstract
The three-dimensional nonlinear dynamics of ultra-cold atomic clouds in a magneto-optical trap

is analyzed in terms of a self-consistent fluid formulation using a variational approach. A La-

grangian density is proposed in the case where thermal and multiple-scattering effects are both

relevant, in addition to damping. For closure, an adiabatic equation of state is assumed. After

adopting a Gaussian profile for the fluid density and appropriated spatial dependencies of the scalar

potential and potential fluid velocity field, a set of ordinary differential equations is derived. The

linear stability analysis and the prominent features of the associated normal modes are character-

ized. Unlike previous treatments in the literature, the analysis applies to non-spherically symmetric

trapped atomic gases. In addition, the use of a variational approach for a dissipative system is a

further distinctive feature of the work. The paper is restricted to potential flows.

PACS numbers: 31.15.ep, 47.10.Fg, 47.27.ed, 47.70.Nd, 67.85.-d

Keywords: trapped cold atoms, nonlinear dynamics, time-dependent variational method, magneto-optical

trap, multiple-scattering regime, normal modes.

I. Introduction

The optical confinement of large samples of alkaline atom clouds to produce Bose-Einstein
condensates (BECs) is a significant task [1]. Magneto-optical traps (MOTs) are one of the
most successful methods for this purpose. The environment that allows the confinement of
alkaline atoms originates from the potential well created by a magnetic field gradient (pro-
duced by anti-Helmholtz coils) and an intersection of three pairs of orthogonally positioned
circularly polarized beams that cools the sample [2, 3]. Such confinement involves the com-
bined effects of the magnetic trapping and Doppler cooling mechanisms [4, 5]. MOTs are
also essential in the realization of optical lattices [6, 7], observation of collective quantum
effects [8], self-induced electron trapping in freely expanding ultra-cold plasmas [9], coher-
ent excitation of Rydberg states in cold atomic gases [10], atomic clocks and performance
enhancement [11, 12] and they also provide a medium with several self-organized structures
[13].

At the low saturation regime, the dynamics of cold trapped gases share similarities with
confined non-neutral plasmas such as an antiproton gas in a Penning-Malmberg trap cooled
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to extremely low temperatures [14]. There are also analogies with the classical limit of an
electron gas in a semiconductor quantum well in the mean-field approximation [15] and
astrophysical models for pulsating stars [5, 16]. Such similarities make it possible to take
moments of the distribution function from kinetic theory, deriving hydrodynamic equations
for the macroscopic quantities, which can then be closed assuming a state equation. There-
fore, the atomic clouds in MOTs can be formally described using well known hydrodynamical
models from plasma physics. In some situations, this can be done when the diffusive term in
the Fokker-Planck equation can be neglected, which is valid when the laser light is so intense
that the effects of absorption and radiation trapping forces take over the photon exchange
with the cooling laser [17–20]. Previous studies rely on radially symmetric configurations,
restricted to the linear approximations [17–19], direct numerical analysis [21–23] or specific
analytic methods [24]. However, it must be emphasized that the spherical symmetry assump-
tion does not strictly apply to MOTs since anti-Helmholtz coils create an axially symmetric
magnetic field, see Eq. (4) below. This axial symmetry motivates our present analysis of
anisotropic trapped gases. For this purpose, the Doppler limit is assumed, i.e, the lower
temperature reached is delimited by the Doppler cooling limit. Nevertheless, sub-Doppler
temperatures can be obtained through Sisyphus cooling (when considering the polarization
of the laser beams) or evaporative cooling. The treatment consists of the minimization of the
action functional, reducing the problem to a set of coupled ordinary differential equations.
In addition, the linear stability analysis of the normal modes will be discussed.

In the hydrodynamic model, the external gradient magnetic field provides the harmonic
confinement. This magnetic confinement arises from the Zeeman effect, which splits the
atomic energy levels. Such splitting depends of the configuration of the magnetic fields.
The most commonly used magnetic trap to confine ultracold atoms is the quadrupole field
created by anti-Helmholtz coils [2, 25–29]. However, this kind of trap leads to a loss of
particles since the magnetic field at the center of the trap is zero. The escape mechanism
is known as the spin-flip Majorana transition, which can be a problem when creating larges
samples of BECs. To overcome this issue, it is possible to modify MOTs by adding a
time-dependent rotating bias field in the xy-plane (TOP trap) [30–32] or using a pair of
Helmholtz coils with a series of wires around the two coils [33, 34] (Ioffe-Pritchard trap).
All of these traps share azimuthal symmetry [35], which will be adopted here as in Ref. [22].
Additionally, the presence of the lasers provides a damping mechanism, which is also included
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in our treatment. The repulsive collective force and the pressure term tend to expand the
atomic cloud. Experiments with MOTs are usually performed in the temperature-limited
(TL) regime or in the multiple-scattering (MS) regime, which dominates the long range
interactions. These regimes depend on the number of confined atoms. For certain conditions,
both effects can be important and in typical experiments with an intense magnetic gradient
field the underdamped regime can be accessed [24].

The dynamical study of nonlinear systems can be simplified using variational methods, as
in Bose-Einstein condensates [36–42] and quantum electron gases [15, 43, 44]. In this context,
the time-dependent variational method allows us to assess nonlinear and time-dependent
dynamics by adopting a trial function, frequently a Gaussian Ansatz. Since the Doppler
cooling produces a damping force, the proposed Lagrangian density has a time-dependent
exponential factor, and is linearly dependent on the velocity potential. This is similar to the
Caldirola-Kanai non-conservative variational approach for the damped harmonic oscillator
[45, 46].

The present article is organized as follows. Section II introduces the basic set of hy-
drodynamic equations and the Lagrangian density. A suitable time-dependent Ansatz is
proposed for the number density, which reduces the problem to a set of coupled nonlinear
second-order equations for the dynamical parameters of the Gaussian atomic cloud. Section
III applies the results to MOTs and introduces a pseudo-potential function, which allows an
accurate linear stability analysis and the assessment of the normal modes, to be performed
in Section IV. Section V contains the conclusions.

II. Basic model and time-dependent variational method

A cold trapped gas in a MOT can be described by the following hydrodynamic equations,

∂n

∂t
+∇ · (nv) = 0 , (1)

∂v

∂t
+ (v · ∇)v = −νv − 1

mn
∇p− 1

m
∇Vh +

1

m
∇Vc , (2)

∇2Vc = Qn , (3)

where Vh = m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2 is an external confining potential. Equations (1-3)
are respectively the continuity, momentum and Poisson equations. The system is composed
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of cold atoms (atomic mass m) with a number density n = n(r, t), a fluid velocity field
v = v(r, t) and the pressure p. When the ratio between the intensities of the incident laser
or saturation parameter sinc ≪ 1, the MOT force can be described as a harmonic force (with
an angular frequency which is not the same in all directions), and a dissipative force with
the damping coefficient ν. These forces originate, respectively, from the Zeeman shift and
Doppler cooling. In this context, the angular frequency and the damping coefficient can be
written in terms of the atomic transitions and confinement parameters,

ωz =
√
2ω⊥ = (2νµ/kL)

1
2 , ν = − 8h̄k2

Lsinc∆

mΓ(1 + 4∆2/Γ2)2
, (4)

where kL is the amplitude of the laser wave vector, h̄ is the reduced Planck constant, ∆ is the
detuning frequency between the laser frequency and the atomic transition frequency, and Γ is
the natural line width of the transition used in the cooling process. Also, µ = µBB0/h̄, with
µB being the Bohr magneton and B0 the intensity of the gradient field. The numerical factor
√
2 comes from the configuration of the magnetic field created by a pair of anti-Helmholtz

coils, namely B = B0(xêx + yêy − 2zêz), so that ωx = ωy = ω⊥. For the other forms of
magnetic traps it is necessary to derive appropriate expressions of the confinement force. In
MOTs the red detuning (∆ < 0) provides ν > 0.

The self-consistent potential Vc is associated with the collective force, satisfying a Poisson
equation with an effective charge of the atoms given by q =

√
ϵ0Q =

√
(σR − σL)σLI0/c,

where ϵ0 is the vacuum permittivity, c is the speed of light and I0 is the total intensity of
the six laser beams, while σ⊥ and σR represent the emission and absorption cross sections
respectively [47]. This potential is a contribution of two parts, the first being an attractive
potential created by the imbalance of the absorption of light when the backward and forward
laser intensities are locally different. The second part comes from a repulsive potential. This
repulsion is a consequence of rescattering photons that tend to push away nearby atoms
[3, 48]. In typical experiments [49, 50] the repulsion dominates over the attractive force
(Q > 0).

For the sake of definiteness, assume an adiabatic equation of state p = n0kBT (n/n0)
5/3 for

fast processes, where n0 is a reference number density (that will be better defined later), kBT
is a reference thermal energy value where kB is the Boltzmann constant, and the respective
exponent corresponds to the adiabatic coefficient γ = (d+2)/d = 5/3 for the dimensionality
d = 3.
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The problem of solving the set of equations (1)-(3) for an irrotational velocity (∇×v = 0)
can be reinterpreted as a variational problem corresponding to the minimization of the action
functional S =

∫
dt d3rL, specified by the Lagrangian density

L = eνt
[
mn

(
1

2
|∇ϕ|2 + ∂ϕ

∂t
+ νϕ

)
+ n(Vh − Vc)−

(∇Vc)
2

2Q
+

∫
dn

∫
dp

n

]
, (5)

where the independent fields are the velocity potential ϕ = ϕ(r, t), so that v = ∇ϕ, the
number density n = n(r, t), and the self-consistent potential Vc = Vc(r, t). Indeed, it can
easily be shown that the minimization of the respective Lagrangian density corresponding to
Eq. (5), with respect to the fields ϕ, n and Vc respectively yields the continuity, momentum
and Poisson equations. The use of a Lagrangian formalism for dissipative systems is not
unusual for discrete dynamical systems [45, 46], but it is less frequent for continuous systems.

A normalized Gaussian Ansatz is adopted,

n(r, t) =
A

αxαyαz

exp

(
−ρ2

2

)
, (6)

where A = N/(2π)
3
2 , N is the number of confined atoms and

ρ(r, t) =

√
(x− dx(t))2

α2
x(t)

+
(y − dy(t))2

α2
y(t)

+
(z − dz(t))2

α2
z(t)

. (7)

The Gaussian form reflects the atomic confinement and is amenable for an analytic treatment
[15, 43]. The time-dependent coordinates di(t) and αi(t), with i = x, y, z, respectively give
the position of the center of mass and the width of the atomic cloud in the different directions.
In addition, define the reference number density as n0 = N/(αx0αy0αz0), where αi0 = αi(0).

Direct substitution of the Ansatz in the continuity equation leads to an exact solution for
the velocity field, given by

vi =
α̇i

αi

(ri − di) + ḋi . (8)

where vi is the i component of the fluid velocity field. Since u = ∇ϕ, the scalar field ϕ in
the Lagrangian density can be written as

ϕ =
∑
i

(
α̇i

2αi

(ri − di)
2 + ḋi(ri − di)

)
, (9)

where an extra purely time-dependent additive contribution was ignored.
In addition, the Poisson equation admits an approximate solution given by

Vc = −
√

π

2

QA

(αxαyαz)1/3
Erf(ρ/

√
2)

ρ
, (10)
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where Erf(s) = (2/π)
∫ s

0
e−s′2ds′ denotes the error function of a generic argument s. The

expression (10) is exact in the spherically symmetric case when αx = αy = αz, otherwise
it is just an approximation. The same self-consistent potential form was adopted in the
analysis of high-harmonic generation in a quantum electron gas trapped in a nonparabolic
and anisotropic well [43].

In order to derive the dynamical behavior of the new coordinates, the Lagrangian is
computed. After the substitution of Eqs. (6), (9) and (10) into Eq. (5), the following is
obtained,

L(di, ḋi, αi, α̇i) ≡ − 1

mN

∫
d3rL = eνt

[∑
i

1

2

(
(ḋi

2
+ α̇i

2)− ναiα̇i

)
− Ud − Uα

]
, (11)

where
Ud =

∑
i

ω2
i

2
d2i (12)

and
Uα =

∑
i

(
ω2
i

2
α2
i +

b

8

(
∏

j αj)
1/3

α2
i

)
+

3a

2

1

(
∏

i αi)2/3
, (13)

which are, respectively, the pseudo-potentials corresponding to the dipole and oscillating
width modes, where the constants a =

√
3kBTα

2
0/(2

√
5πm) and b = NQ/(π

3
2m) are intro-

duced and assuming that αi0 = α0. Also, in Eq. (13), the term ∼ ω2
i is related to the

harmonic confinement, the term ∼ b corresponds to the self-consistent potential and the
term ∼ a is due to the adiabatic pressure.

Once the Lagrangian is obtained, one can apply the Euler-Lagrange equations for each
variational parameter thus deriving the equations of motion. The dynamics of the center of
mass is given by

d̈i + νḋi + ω2
i di = 0 , (14)

which, as can directly be seen, is decoupled to the width equations showing damped oscilla-
tions around the origin (damped Kohn oscillations). Furthermore, this motion is linear and
independent of the number of atoms.

The equations of motion for the oscillating widths are

α̈x + να̇x +

(
ω2
x −

ν2

2

)
αx =

a

α
5/3
x α

2/3
y α

2/3
z

+
b

24

(
5α

1/3
y α

1/3
z

α
8/3
x

− α
1/3
y

α
2/3
x α

5/3
z

− α
1/3
z

α
2/3
x α

5/3
y

)
, (15)

α̈y + να̇y +

(
ω2
y −

ν2

2

)
αy =

a

α
2/3
x α

5/3
y α

2/3
z

+
b

24

(
5α

1/3
x α

1/3
z

α
8/3
y

− α
1/3
x

α
2/3
y α

5/3
z

− α
1/3
z

α
5/3
x α

2/3
y

)
, (16)
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and

α̈z + να̇z +

(
ω2
z −

ν2

2

)
αz =

a

α
2/3
x α

2/3
y α

5/3
z

+
b

24

(
5α

1/3
x α

1/3
y

α
8/3
z

− α
1/3
x

α
5/3
y α

2/3
z

− α
1/3
y

α
5/3
x α

2/3
z

)
. (17)

The above set of equations apply for a confined atomic gas under arbitrary external harmonic
confinement. In the following Section, the applications of this method for MOTs will be
pursued in more detail.

III. The MOT case

Confinement in MOTs has axially symmetric traps, ωx = ωy = ω⊥, so that it is allowed
to take αx = αy = α⊥. In this way, the equations of motion become

α̈⊥ + να̇⊥ +

(
ω2
⊥ − ν2

2

)
α⊥ =

a

α
7/3
⊥ α

2/3
z

+
b

24

(
4α

1/3
z

α
7/3
⊥

− 1

α
1/3
⊥ α

5/3
z

)
(18)

and
α̈z + να̇z +

(
ω2
z −

ν2

2

)
αz =

a

α
4/3
⊥ α

5/3
z

+
b

24

(
5α

2/3
⊥

α
8/3
z

− 2

α
4/3
⊥ α

2/3
z

)
, (19)

or
α̈⊥ + να̇⊥ = −1

2

∂U

∂α⊥
, α̈z + να̇z = − ∂U

∂αz

, (20)

where U = U(α⊥, αz) is the pseudo-potential defined by

U(α⊥, αz) = (ω2
⊥ − ν2/2)α2

⊥ +
(ω2

z − ν2/2)α2
z

2
+

3a

2α
4/3
⊥ α

2/3
z

+
b

8

(
2α

1/3
z

α
4/3
⊥

+
α
2/3
⊥

α
5/3
z

)
, (21)

present in the associated Lagrangian function exp(νt)[(1/2)(2α̇2
⊥ + α̇2

z)− U ].
From Eqs. (18) and (19), the oscillating widths are described by coupled nonlinear

damped oscillator equations. In the undamped case ν = 0 and in the case with equal
frequencies ω⊥ = ωz corresponds to a Hamiltonian Ermakov system [51]. The nonlinearity
comes from the repulsive interactions due to the pressure and self-consistent interaction
(collective force) terms. The isotropic situation, when ω⊥ = ωz and α⊥ = αz, corresponds to
the radially symmetric case considered in Ref. [24], which uses a non-variational approach.

From the shape of the pseudo-potential (Fig. 1), one has that α⊥ and αz will always
execute damped oscillations around the unique minimum point (α⊥eq,αzeq), since a > 0, b >

0. Looking for periodic oscillations restrict ourselves to ω⊥ > ν/
√
2 (which also implies

ωz > ν/
√
2), which are safely satisfied by MOT parameters.
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FIG. 1. Pseudo-potential from Eq. (21). Parameters are indicated in the text.

Equations (18) and (19) can be numerically solved for typical MOT parameters [2, 4,
23, 49, 50], namely: T = 0.3mK, n0 = 1016m−3, m = 1.41 × 10−25 kg (rubidium), Q ∼

10−36Nm2, ω⊥ = 697 rad/s, ν = 231 s−1, for |∆| = 2.5Γ where Γ = 2π × 6MHz, kL ∼

107m−1, sinc = 0.1, |∇B| = 25G/cm, and α0 = 1.5mm. The resulting damped nonlinear
oscillations are shown in Fig. 2.

5 10 15 20 25 30
ω⊥t

0.2

0.4

0.6

0.8

1.0

α/α0

FIG. 2. Numerical solution of Eqs. (18) and (19) normalized to α0. Parameters are indicated in

the text. Dashed curve: α⊥; dotted curve: αz; full curves: equilibrium solutions α⊥eq/α0 = 0.26

and αzeq/α0 = 0.19. Initial conditions: α⊥0 = αz0 = α0 and α̇⊥0 = α̇z0 = 0.

It is useful to consider a dimensionless function measuring the anisotropy,

χ =
α⊥

αz

. (22)
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This is shown in Fig. 3, using the same parameters as Fig. 2. It can be seen that anisotropy
can be quite strong, contrary to the spherical symmetry assumption.

5 10 15 20 25 30
ω⊥ t

5

10

15

20

25

χ

FIG. 3. Numerical simulation results for the anisotropy parameter χ from Eq. (22). Dashed curve:

numerical simulation for χ. The horizontal curve shows the equilibrium state χeq = α⊥eq/αzeq =

1.34, using the same parameters as Fig. 2

IV. Linear stability analysis

For the linear stability analysis, restricted to the MOT case, rewrite the Eqs. (18) and
(19) as

α̇⊥ = β = f1 , (23)

α̇z = γ = f2 , (24)

β̇ = −νβ −
(
ω2
⊥ − ν2

2

)
α⊥ +

a

α
7/3
⊥ α

2/3
z

+
b

24

(
4α

1/3
⊥

α
7/3
z

− 1

α
1/3
⊥ α

5/3
z

)
= f3 ,

γ̇ = −νγ −
(
ω2
z −

ν2

2

)
αz +

a

α
4/3
⊥ α

5/3
z

+
b

24

(
5σ

2/3
⊥

σ
8/3
z

− 2

σ
4/3
⊥ σ

2/3
z

)
= f4 , (25)

or simply ξ̇m = fm, m = 1, 2, 3, 4, where ξm = (α⊥, αz, β, γ).
The stationary solutions corresponding to critical points of the pseudo-potential (21) are

obtained by setting ξ̇m = 0. These solutions satisfy the following equations,(
ω2
⊥ − ν2

2

)
α⊥eq −

a

α
7/3
⊥eqα

2/3
zeq

− b

24

(
4α

1/3
z eq

α
7/3
⊥eq

− 1

α
1/3
⊥eqα

5/3
zeq

)
= 0 , (26)
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(
ω2
z −

ν2

2

)
αz eq −

a

α
4/3
⊥eqα

5/3
z eq

− b

24

(
5α

2/3
⊥eq

α
8/3
z eq

− 2

α
4/3
⊥eqα

2/3
z eq

)
= 0 , (27)

which can be numerically solved using βeq = 0, γeq = 0.
Following the standard procedure, setting

ξm = ξm eq + δξm exp(iΩt) (28)

and linearizing around the equilibria, one derives

det(iΩI− J) = 0 , (29)

where I is the 4X4 identity matrix and J is the Jacobian matrix whose (m,n)th entry is
Jmn = (∂fm/∂ξn)eq evaluated at equilibrium, for m,n = 1, 2, 3, 4. In terms of the pseudo-
potential in Eq. (21), the equation for the characteristic frequency Ω becomes

det


iΩ 0 −1 0

0 iΩ 0 −1

1
2

(
∂2U
∂α2

⊥

)
eq

1
2

(
∂2U

∂α⊥∂αz

)
eq

iΩ + ν 0(
∂2U

∂α⊥∂αz

)
eq

(
∂2U
∂α2

z

)
eq

0 iΩ + ν

 = 0 ,

which can be managed to[(
Ω− iν

2

)2

+
ν2

4

]2

−
[
1

2

∂2U

∂α2
⊥
+

∂2U

∂α2
z

]
eq

[(
Ω− iν

2

)2

+
ν2

4

]
+

+
1

2

[(
∂2U

∂α2
⊥

)
eq

(
∂2U

∂α2
z

)
eq

−
(

∂2U

∂α⊥∂αz

)2

eq

]
= 0 . (30)

The quartic equation (30) can be immediately solved, yielding

Ω = ± 1√
2

√√√√(
1

2

∂2U

∂α2
⊥
+

∂2U

∂α2
z

)
eq

+

√(
1

2

∂2U

∂α2
⊥
− ∂2U

∂α2
z

)2

eq

+ 2

(
∂2U

∂α⊥∂αz

)2

eq

− ν2

2
+

iν

2
(31)

and

Ω = ± 1√
2

√√√√(
1

2

∂2U

∂α2
⊥
+

∂2U

∂α2
z

)
eq

−

√(
1

2

∂2U

∂α2
⊥
− ∂2U

∂α2
z

)2

eq

+ 2

(
∂2U

∂α⊥∂αz

)2

eq

− ν2

2
+

iν

2
, (32)

which for MOT parameters always corresponds to an asymptotically stable fixed point
(Re(Ω) > 0, Im(Ω) > 0). If nonlinearity and damping were negligible, one would find
the solutions Ω2 = ω2

⊥ and Ω2 = ω2
z , as expected.
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The asymptotically stable motion is expected from the shape of the pseudo-potential U ,
shown in Fig. 1. Using the parameters of Figs. 1, 2 and 3, and Eqs. (31) and (32), one
finds Im(Ω) = 1.2× 102 s−1 and Re(Ω) = ±1.7× 103 rad/s or Re(Ω) = ±1.2× 103 rad/s.

V. Conclusion

In this work, ultra-cold atomic clouds confined in MOTs have been studied. The main
result is the linear and nonlinear analysis of a trapped atomic gas in an anisotropic config-
uration. This is unlike most works in the literature, which are restricted to the spherically
symmetric case that can not be really adapted to MOTs. Our treatment was restricted to
quadrupole fields created by a pair of anti-Helmholtz coils, which produced an azimuthal
symmetric harmonic force. Moreover, the use of a variational approach for a dissipative
system is a further distinctive feature of the present study. The basic equations for the ax-
ially symmetric three-dimensional variational description have been derived, when thermal
and multiple-scattering effects are both relevant. For this purpose, the starting point was
a hydrodynamic set of equations reinterpreted in terms of the minimization of an action
functional, adopting a Gaussian Ansatz. The stability analysis was performed obtaining
the normal modes by solving the corresponding eigenvalue problem. Moreover, the results
were applied to typical experiments and observed damped nonlinear coupled oscillations.
In addition, the present approach can be directly adapted to non-neutral confined plasmas,
where the damping mechanism can be traced back to collisions with neutrals.
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