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Abstract

We analyze the role of collisional effects on the coupling between ion-acoustic waves and neutrino

flavor oscillations, discussing its relevance for plasma instabilities in extreme plasma environments

like in type II supernovae, where intense neutrino bursts exist. Electrons (leptons) are coupled to

the electron-neutrino fluid through the weak Fermi force, but the electron-neutrinos are allowed to

convert to other neutrino flavors and vice-versa. Due to the typically slow frequency of neutrino

flavor oscillations, many orders smaller than e.g. the plasma frequency, an effective energy transfer

between plasma waves and neutrino flavor oscillations take place at the low-frequency electrostatic

branch, viz. the ion-acoustic mode. We show the destabilization of ion-acoustic waves in dense

astrophysical scenarios, with a focus on the collisional effects mediated by electron-ion scattering.

The maximal instability growth-rate is evaluated and compared to characteristic inverse times of

type II supernova explosions. The results can be used for independent experimental verification of

the non-zero neutrino mass, in a plasma physics context.

PACS numbers: 13.15.+g, 52.35.Pp, 97.60.Bw
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I. INTRODUCTION

In a recent work [1] the coupling between ion-acoustic waves (IAWs) and neutrino flavor

oscillations was established using a model merging the well known models for neutrino-

plasma interactions [2]-[4] and for neutrino flavor oscillations [5]-[6]. Due to the slow char-

acter of both IAWs and flavor oscillations, a powerful interaction between them takes place,

with a corresponding plasma instability. Such instability is a suitable mechanism for su-

pernova explosions, where abundant neutrino sources are recognized. The timeliness of the

discovery is enhanced in view of the 2015’s Physics Nobel Prize awarded to T. Kajita and

A. B. McDonald by the empirical verification of neutrino flavor oscillations. Here a possible

avenue for an alternative experimental test of these oscillations is also provided, in terms

of collective plasma oscillations. Recently, also the impact of neutrino coupling on MHD

waves was established, with a new perspective for joint astrophysical plasma and elementary

particles approaches [7]. The radial flux far from the center of the neutrinosphere can be ac-

curately treated as a collimated beam, with small angular spread [4]. Sources of anisotropic

neutrino velocities distributions have been thoroughly analyzed [8].

The purpose of the present brief communication is to address the impact of collisional

effects in the new instability due to the coupling of IAWs and flavor oscillations. For this

purpose, the electrons and ions force equations of [1] will be modified by the addition of

friction forces between the two plasma species, adapting the recipe for purely classical plas-

mas of Ref. [9]. Here a fully ionized electron-ion plasma will be considered, viz. without a

neutral component, which is the more likely scenario in dense astrophysical plasmas as in

supernovae. In addition, the quasineutrality condition will be assumed, which is equivalent

to the treatment in [1] where slow waves of frequency ω ≪ ωpi where considered, where ωpi

is the ionic plasma frequency. As a warning to the reader, we remark that several steps

involved in the calculation will be omitted, as long as they do not involve collisional effects.

The complete treatment (but without collisions) is shown in detail in [1], where frictional

forces where not included in order to show the basic IAWs and flavor oscillations coupling in

a more net way. However, the study of the collisional impact on such coupling is certainly

necessary. More complex approaches for collisional IAWs could consider the Fokker-Planck

collision operator [10] instead of simple frictional forces.

The work is organized as follows. In Section II, the basic model is presented. In Section
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III, the procedure for the calculation of linear waves and instability growth rate is shown,

together with explicit estimates in astrophysical settings. Section IV is reserved for the

conclusions.

II. BASIC MODEL

Denoting ne,i and ue,i as respectively the electron (e) and ion (i) fluid densities and

velocity fields, in a fluid setting one will have the continuity equations

∂ne

∂t
+∇ · (neue) = 0 ,

∂ni

∂t
+∇ · (niui) = 0 , (1)

the electrons force equation

me

(

∂

∂t
+ ue · ∇

)

ue = −κBTe
∇ne

ne

+ e∇φ+
√
2GF (Eν + ue ×Bν)

−meνei(ue − ui) , (2)

and the ions force equation

mi

(

∂

∂t
+ ui · ∇

)

ui = −e∇φ−miνie(ui − ue) , (3)

where ions are assumed cold for simplicity. In Eqs. (2) and (3), me,i are the electron (charge

−e) and ion (charge +e) masses, κB is Boltzmann’s constant, Te is the electron isothermal

fluid temperature, φ is the electrostatic potential and νei, νie are resp. the electron-ion and

ion-electron collision frequencies. Due to global momentum conservation one has meνei =

miνie. In addition, GF is Fermi’s coupling constant, and Eν ,Bν are effective neutrino electric

and magnetic fields,

Eν = −∇Ne −
1

c2
∂

∂t
(Neve) , Bν =

1

c2
∇× (Neve) , (4)

where Ne,ve are the electron-neutrino fluid density and velocity field and c the speed of

light. For completeness, we include Poisson’s equation

∇2φ =
e

ε0
(ne − ni) , (5)
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where ε0 the vacuum permittivity constant. However, for simplicity the quasineutrality

assumption will be assumed, so that Poisson’s equation will be avoided for the most part.

Denoting Nµ,vµ as the muon-neutrino fluid density and velocity field, one has two-flavor

neutrino oscillations mediated by

∂Ne

∂t
+∇ · (Neve) =

1

2
N Ω0 P2 , (6)

∂Nµ

∂t
+∇ · (Nµvµ) = − 1

2
N Ω0 P2 , (7)

where N = Ne + Nµ is the total neutrino fluid number density and P2 pertains to the

quantum coherence contribution in a flavor polarization vector P = (P1, P2, P3). Moreover,

Ω0 = ω0 sin 2θ0, where ω0 = ∆m2c4/(2 ~ E0) with ∆m2 being the squared neutrino mass

difference. In addition, E0 is the neutrino spinor’s energy in the fundamental state and θ0 is

the neutrino oscillations mixing angle. The convective terms on the left-hand sides of Eqs.

(6) and (7) are due to the neutrino flows, while the right-hand sides are neutrino sources

due purely to flavor conversion.

The neutrino force equations are

∂pe

∂t
+ ve · ∇pe =

√
2GF

(

−∇ne −
1

c2
∂

∂t
(neue) +

ve

c2
× [∇× (neue)]

)

, (8)

∂pµ

∂t
+ vµ · ∇pµ = 0 , (9)

where pe = Eeve/c
2, pµ = Eµvµ/c

2 are the electron and muon neutrino relativistic momenta,

and Ee, Eµ are the neutrino beam energies.

The flavor polarization vector P = (P1, P2, P3) equations in a material medium are given

[5, 6] by
∂P1

∂t
= −Ω(ne)P2 ,

∂P2

∂t
= Ω(ne)P1 − Ω0P3 ,

∂P3

∂t
= Ω0P2 , (10)

where Ω(ne) = ω0[cos 2θ0−
√
2GF ne/(~ω0)]. In a given point of space, one has ∂|P|2/∂t = 0.

However, the fluctuations of the electron fluid density change the neutrino oscillations in

space and time. For convenience we also define the neutrino-flavor oscillatory frequency

Ων =
√

Ω2(n0) + Ω2

0
, where n0 is the equilibrium electron (and ion) number density.

The general model was thoroughly discussed in [1], but with νei = νie = 0 therein. Here

we perform the relevant steps including collisional effects.
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III. LINEAR WAVES

Consider the homogeneous static equilibrium for Eqs. (1)-(3), (5)-(7) and (8)-(10), given

by

ne = ni = n0 , ue = ui = 0 , φ = 0 ,

Ne = Ne0 , Nµ = Nµ0 , ve = vµ = v0 , (11)

together with the equilibrium flavor polarization vector components

P1 =
Ω0

Ων

, P2 = 0 , P3 =
Ω(n0)

Ων

=
Ne0 −Nµ0

N0

, (12)

where Ne0, Nµ0 are the electron and muon equilibrium neutrino fluid densities.

We suppose a linearization around the equilibrium for plane wave perturbations, with a

δ standing for first-order quantities. For instance, ne = n0 + δne exp[i(k · r − ωt)]. In this

way, the continuity equations (1) give

ωδne = n0k · δue , ωδni = n0k · δui . (13)

The electrons and the ions force equations (2) an (3) give

meωδue =
κBTe

n0

kδne − ekδφ+

√
2GF

c2
(

(c2k− ωv0)δNe − ωNe0δve

)

− imeνei(δue − δui)

(14)

and

miωδui = ekδφ− imiνie(δui − δue) (15)

Taking the scalar product of both sides of Eqs. (14) and (15) with k, summing the results

to eliminate δφ, using Eq. (13) and mi ≫ me, and applying the quasineutrality condition

δni ≈ δne yields

(ω2 − c2sk
2)δne =

√
2n0GF

mic2
(

(c2k2 − ωk · v0)δNe − ωNe0k · δve

)

, (16)

where cs =
√

κBTe/mi is the IAW speed.
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Apparently from Eq. (16) the collisional effects have disappeared altogether. This is

manifestly true if the neutrino effects are switched off, as already known for classical IAWs

in the quasineutrality approximation [9]. However, in the enlarged context some care is

needed since the electrons-neutrino velocity ve is influenced by the electron fluid, which is

collisional. Therefore in principle the quantity δve in the right-hand side of Eq. (16) can

have a collisional contribution.

To proceed and evaluate such frictional effects on δve, notice that the steps involved in

the derivation of Eq. (A3) of [1] remain valid, so that

δve =

√
2GF

E0 (ω − k · v0)

[

c2 k δne − n0 ω δue −
(

k · v0 δne −
n0 ω

c2
v0 · δue

)

v0

− n0 (v0 · δue k− k · v0 δue)
]

, (17)

where in the right-hand side it was approximated Ee0 ≈ E0. Hence it is found that the

∼ δve contribution in Eq. (16) is at least of order O(G2

F ). Due to the smallness of Fermi’s

constant we then just need the classical expression for δue, which is found from Eq. (14)

with formally GF ≡ 0 in it. Inserting δui from Eq. (15) in this classical equation, we get

meωδue =
κBTe

n0

kδne − ekδφ− iνieδue + i
meνei
ω + iνie

(

ekδφ

mi

+ iνieδue

)

. (18)

We don’t need to solve this last equation for δue but just remark that it implies that δue is

parallel to k in the classical approximation. Hence from the electrons continuity equation it

is found

δue ≈
ωkδne

n0k2
, (19)

which inserted into Eq. (17) gives

δve =

√
2GF

E0 (ω − k · v0)

(

c2 − ω2

k2

)

(

k− k · v0

v0

c2

)

δne . (20)

The important point is that collisional effects have indeed disappeared altogether. Inserting

Eq. (20) into Eq. (16), one regains Eq. (26) of [1], reproduced here for convenience,

(

ω2 − c2sk
2 +

2G2

F Ne0 n0 ω (c2k2 − (k · v0)
2)

mi c2 E0 (ω − k · v0)

)

δne =

√
2GFn0

mi c2
(c2k2 − ω k · v0) δNe .(21)

A critical examination of the remaining steps detailed in [1] shows that these are not
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changed by collisional effects. Hence one still finds

(ω − k · v0) δNe =

√
2GF Ne0

E0 (ω − k · v0)

(

c2 k2 − (k · v0)
2
)

δne +

√
2

2

N0 Ω
2

0
ωGF δne

(ω2 − Ω2
ν)~Ων

. (22)

Here E0 = Ee0 ≈ Eµ0 is the equilibrium quasi-mono-energetic neutrino beam energy.

From Eqs. (21) and (22) one then find the dispersion relation

ω2 = c2s k
2 +

∆e c
2 k2 Λ(θ) (c2 k2 − ω2)

(ω − k · v0)2
+

∆Ω2

0
ω E0 (c2 k2 − ω k · v0)

2 ~Ων (ω − k · v0) (ω2 − Ω2
ν)

, (23)

where

∆e =
2G2

F Ne0 n0

mi c2 E0
, ∆ =

2G2

F N0 n0

mi c2 E0
, Λ(θ) =

(

1− v2
0

c2

)

cos2 θ + sin2 θ , (24)

with k · v0 = k v0 cos θ.

Formally setting ∆ = 0 in Eq. (23) would reproduce Eq. (13) of [11], which describes

neutrino-plasma IAWs without flavor conversion, taking into account cs ≪ c which is neces-

sary for non-relativistic electrons. From inspection, one will have a strong coupling between

IAWs, the neutrino beam and the neutrino oscillations if and only if

ω ≈ cs k = Ων = k · v0 . (25)

The corresponding growth-rate instability γ was found in [1], reading

γ = (γ3

ν + γ3

osc
)1/3 , (26)

where

γν =

√
3

2

(

∆e

2

(

c

cs

)4
)1/3

Ων , γosc =

√
3

2

(

G2

F N0 n0 Ω
2

0

4 ~κB Te

)1/3

. (27)

The quantity γν is due to the usual neutrino-plasma coupling, while the flavor conversion

effect is entirely contained in γosc.

As an example, we compute the growth rate in type II core-collapse supernovae settings,

as in the supernova SN1987A with a neutrino flow of 1058 neutrinos of all flavors and energy

between 10 − 15 MeV [12]. We use GF = 1.45 × 10−62 J.m3 and take ∆m2 c4 = 3 ×
10−5 (eV)2 , sin(2θ0) = 10−1, which are appropriate to solve the solar neutrino problem [6].
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Moreover set E0 = 10MeV, κBTe = 35 keV, N0 = 1041 m−3, n0 = 1035 m−3. For these values

ω ≈ Ων = 1.94 × 107 rad/s, much smaller than ωpi = 4.16 × 1017 rad/s. In addition, cs =

1.83× 106 m/s ≪ c and k = Ων/cs = 10.61m−1, corresponding to a wavelength λ = 2π/k =

0.59m. Finally, γosc = 31.03 s−1 and the maximal growth rate is γmax = 39.13 s−1. Therefore,

1/γmax ∼ 0.03 s, much smaller than the accepted characteristic time of supernova explosions

around 1 second. Figure 1 shows the numerical value of instability growth rate, as a function

of the initial normalized electron-neutrino population. The difference in comparison to the

estimates in [1] is that here a smaller plasma temperature enhances γν in comparison to γosc

so that for a pure electron-neutrino initial condition (Ne0 = N0) they are equal. Otherwise,

γosc > γν , showing the dominant role of neutrino flavor oscillations in this case.

Γ

Γosc

ΓΝ

0 0.2 0.4 0.6 0.8 1

10

20

30

40

Ne0�N0

Γ Hs-1L

FIG. 1. Continuous line: growth rate γ from Eq. (26) as a function of the normalized electron-

neutrino population. Line-dashed curve: the growth rate γν without taking into account neutrino

oscillations. Horizontal dot-dashed line: the growth rate γosc associated to neutrino oscillations,

from Eq. (27). Parameters: E0 = 10MeV, N0 = 1041m−3, n0 = 1035m−3, κBTe = 35 keV.

IV. CONCLUSION

In this work we have shown that the coupling between IAWs and neutrino flavor os-

cillations in a completely ionized plasma is not affected by collisional effects, confirming

the instability growth-rate estimates described in [1]. For simplicity, the quasineutrality

condition was assumed. An intuitive explanation for the result is that in an ideal (infi-

nite conductivity) plasma the electron and ion fluid velocities adjust themselves so that

n0k · (ue − ui) = ω(δne − δni) ≈ 0, so that the two-fluid friction forces become irrelevant.
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Such feature happens for very slow waves so that ω ≪ ωpi. A less immediate finding is

that the collisional force on electrons gives just a higher-order contribution on the neutrino

fluid momentum, as manifest in Eq. (20). A complete treatment beyond quasineutrality

would deserve the full account of Poisson’s equation, which although certainly feasible is

much more cumbersome in view of the coupling with all the neutrino quantities. However,

since the present analysis is devoted more to IAWs than to ionic waves, the quasineutral-

ity approximation is well justified. Further improvements would involve a non-zero ionic

temperature, magnetic fields, and degenerate and relativistic electrons.
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