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Noether symmetries and conservation laws of a reduced gauged
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A canonical Hamiltonian is found for a reduced version of the Jackiw-Pi model for

bilayer graphene. From the corresponding Lagrangian, the Noether point symme-

tries and conserved quantities are determined. The Noether symmetry group is the

same as the fifth-dimensional group for the time-dependent harmonic oscillator. The

realization of the algebra is achieved in terms of just one particular solution g1 of

the time-dependent harmonic oscillator equation underlying the reduced Jackiw-Pi

model. Some numerical solutions are worked out.
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I. INTRODUCTION

The experimental realization of stable graphene [1] is a current research topic specially in

view of possible new technologies such as new electronic devices. The concrete realization of

Dirac zero modes and fractional charge [2] can be also pursued, with the low-energy spectrum

of graphene described by the Dirac equation in two spatial dimensions. The existence of zero-

energy modes in monolayer graphene in principle can be obtained if the Dirac Hamiltonian

also has an interaction with a scalar potential, in terms of the Kekulé dimerization [3]. This

dimerization can be difficult to be produced, inspiring the investigation of bilayer graphene

where the two layers are superposed and separated by a dielectric barrier. A gauged version

of this system has an order parameter playing the same rôle of the Kekulé distortion [4],

allowing for topological effects, fractional charge and zero modes. The resulting Jackiw-

Pi model is modeled by a Dirac equation in two spatial dimensions where the four-spinor

describes the two Dirac points and the two sublattices (Eq. (2) of [4]). Separating the
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angular dependence one has a reduced version which is the radial Dirac equation in this

case [4, 5]. The purpose of the present work is to perform the Noether symmetry analysis

of this reduced Jackiw-Pi model, thanks to the identification of a suitable canonical action.

Symmetry is recognized as a fundamental subject, with Noether theorem providing a link

between the existence of conserved quantities and symmetries [6]. Here the treatment will

be restricted to Noether point (or geometrical) symmetries.

In [7] symmetries of the classical action for the Jackiw-Pi in 2 + 1 space-time dimensions

have been enumerated, without direct reference to Noether’s theorem. However, there is no

systematic search for Noether point symmetries as we did, for the reduced Jackiw-Pi model

presented below in Eqs. (1) and (2).

This work is organized as follows. In Section II, a canonical action in configuration

space is identified for the reduced Jackiw-Pi model. This allows the search of Noether

point symmetries and invariants, which is shown to be determined by the solution of a

third-order and a second-order linear ordinary differential equations. The corresponding

conserved quantities are obtained and interpreted. In Section III the concrete realization

of the symmetry algebra is shown to be achieved in terms of a single particular solution

of the time-dependent harmonic oscillator (TDHO) equation which is the same equation

underlying the reduced Jackiw-Pi model. Section IV presents the direct approach towards

the derivation of the full Noether symmetries and conserved quantities, after the choice

of the appropriate gauge field entering the model. The singular point of the basic TDHO

equation at zero time is identified. Section V shows numerical examples and Section VI

contains the conclusion and final remarks.

II. NOETHER SYMMETRIES. CONSERVATION LAWS

A reduced version of the Jackiw-Pi model for bilayer graphene [4] is given by

(Dr − Φ(r)) u(r) = V v(r) , (1)

(Dr + Φ(r)) v(r) = −V u(r) , (2)

where Dr = d/dr and

Φ(r) =
n

r

(

1

2
−A(r)

)

, (3)
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where A(r) is a gauge field such that A(0) = 0, A(∞) = 1/2 and V is an applied bias

potential, here assumed to be positive for the sake of definition, while n appears in the

angular part of the scalar field related to the interactions between electrons in one layer and

holes in the other. The reasoning towards Eqs. (1)-(2) starts from the Dirac equation in

two spatial dimensions, describing low-energy excitations of bilayer graphene. Assuming a

special form of the Dirac spinor with a vortex-like angular dependence (Eqs. (18a)-(18b) of

Ref. [4]) the result is the system (1)-(2), where r is the radial coordinate. Single-valuedness

of the Dirac spinor requires n to be an odd integer. So instead of the full Dirac equation

one has a reduced model which is a pair of first-order ordinary differential equations for

u, v. As shown in [5], u and v can be viewed as supersymmetric partners in supersymmetric

quantum mechanics.

We set

q = u , p = v , t = V r , φ(t) =
Φ(r)

V
(4)

to obtain

q̇ = p+ φ(t) q , ṗ = −q − φ(t) p , (5)

where the dot denotes derivative with respect to the independent variable t ≥ 0, which

formally plays the role of time.

Notice that q, p satisfy two uncoupled TDHO equations [5], namely

q̈ + (1− φ̇− φ2) q = 0 , p̈ + (1 + φ̇− φ2) p = 0 . (6)

As apparent, the equation for the partner variable p is the same as the equation for q,

provided the sign of φ = φ(t) is reversed.

It happens that (5) has a Hamiltonian form,

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
, (7)

with the quadratic time-dependent Hamiltonian function

H =
1

2
(p2 + q2) + φ(t) p q . (8)

This suggest a search for constants of motion using Noether’s theorem, which apply in a

more direct way using the associated Lagrangian L = p q̇ −H , viz.

L =
q̇2

2
−

1

2
(1− φ2(t)) q2 − φ(t) q q̇ . (9)
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Noether’s theorem [6, 8] states that if the action functional S =
∫ t2

t1
Ldt remains invariant

(up to addition of a numerical constant) under an infinitesimal point transformation

t → t + ε τ(q, t) , q → q + ε η(q, t) , (10)

where 0 < ε ≪ 1, then the quantity

I = τ

(

q̇
∂L

∂q̇
− L

)

− η
∂L

∂q̇
+ F . (11)

is a constant of motion (dI/dt = 0), the Noether invariant. The condition of (quasi) invari-

ance of the action is

τ
∂L

∂t
+ η

∂L

∂q
+ (η̇ − τ̇ q̇)

∂L

∂q̇
+ τ̇L = Ḟ , (12)

where F = F (q, t) is a function to be determined. In Eq. (12) one has e.g. Ḟ = Ft + Fq q̇,

where at this stage it is useful to denote partial derivatives by a subscript. For instance,

Ft = ∂F/∂t, Fq = ∂F/∂q.

For later reference, the generator of Noether point symmetries is

G = τ(q, t)
∂

∂t
+ η(q, t)

∂

∂q
. (13)

The procedure for calculating Noether point symmetries is well known [8]. In the present

case inserting the Lagrangian (9) into the invariance condition (12) gives that a third-order

polynomial in q̇ must vanishes identically. The vanishing of each monomial gives:

q̇3 ⇒ τq = 0 , (14a)

q̇2 ⇒ ηq − τt/2 = 0 , (14b)

q̇ ⇒ −τ φ̇ q − η φ+ ηt − φ q ηq = Fq , (14c)

q̇(0) ⇒ τ φ φ̇ q2 − η (1− φ2) q − φ q ηt − (1− φ2) q2 τt/2 = Ft . (14d)

From Eqs. (14a) and (14b) it follows that

τ = T (t) , η = Ṫ (t) q/2− g(t) , (15)

where T = T (t) and g = g(t) are functions depending on time only. Then from Eqs. (14c)

and (14d) together with Fqt = Ftq yields the vanishing of a linear polynomial in q. The

vanishing of the corresponding monomials yields

q ⇒
...
T + 4ω2 Ṫ + 4 ω ω̇ T = 0 , (16a)

q(0) ⇒ g̈ + ω2 g = 0 , (16b)
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where the time-dependent oscillator frequency ω = ω(t) comes from

ω2 = 1− φ̇− φ2 . (17)

Incidentally, the auxiliary variable g satisfies the same equation of the dynamical variable

q, as seen from Eqs. (6) and (16b).

Setting T = ρ2 yields

ρ
...
ρ + 3 ρ̇ ρ̈+ 4ω2 ρ ρ̇+ 2ω ω̇ ρ2 = 0 , (18)

which can be integrated once to give Pinney’s [9] equation

ρ̈+ ω2 ρ = κ/ρ3 , (19)

where κ is an arbitrary numerical constant.

From Eqs. (14c) and (14d) one then finds

F =

(

T̈

2
− φ Ṫ − φ̇ T

)

q2

2
− (ġ − φ g) q + F0 , (20)

where F0 is a numerical constants which will be set to zero without loss of generality.

Correspondingly, using Eq. (11) the Noether invariant is given by

I =
T

2
q̇2 −

Ṫ

2
q q̇ +

(

T̈ + 2ω2 T
) q2

4
+ g q̇ − ġ q . (21)

From Eq. (13) the generator of Noether point symmetries becomes

G = T
∂

∂t
+

(

Ṫ

2
q − g

)

∂

∂q
. (22)

From the total of five linearly independent solutions of the linear equations (16a) and (16b),

one naturally has a 5-parameter group of Noether point symmetries, whose five generators

are readily found from Eq. (22). To each generator there is one conserved quantity from

Eq. (21). Among these five invariants only two are functionally independent. Notice that

the asymptotes of the gauge field A(r) in Eq. (3) limits the admissible Noether symmetries

and invariants.

In terms of the solution ρ of the Pinney equation, so that T = ρ2, one has

I = IEL +W , (23)
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where

IEL =
1

2
(ρ q̇ − ρ̇ q)2 +

κ

2

(

q

ρ

)2

, W = g q̇ − ġ q (24)

are two functionally independent invariants. The conserved quantity (23) consists of two

parts, namely the Ermakov-Lewis part IEL and the remaining contribution W which is non-

zero for nontrivial g. The later part arises because both q and g satisfy the same TDHO

equation, as seen from Eqs. (6) and (16b), and the Wronskian of two independent particular

solutions of this linear second-order equation is a constant of motion. As remarked e.g. in

[10], the constancy of the Wronskian in this case is not an accidental fact, but a result from

a symmetry invariance.

In this version,

G = ρ2
∂

∂t
+ (ρρ̇ q − g)

∂

∂q
. (25)

However, the less traditional expressions (21) and (22) show in manifest way how the search

for Noether invariants and symmetries is reducible in this case to a pair of linear equations,

the third-order equation (16a) for T and the second-order equation (16b) for g.

III. REALIZATION OF THE SYMMETRY ALGEBRA AND NOETHER

INVARIANTS

Suppose one knows a exact particular nontrivial solution g1 = g1(t) for the TDHO equa-

tion (16b), which is formally the same equation satisfied by the dynamical variable q(t). As

is well-known, a second, linearly independent solution of the TDHO is then given by

g2 = g2(t) = g1(t)

∫

dt/g21(t) . (26)

This pair of solutions have a unit Wronskian g1ġ2 − g2ġ1 = 1. The general solution of Eq.

(16b) is

g = c1 g1 + c2 g2 , (27)

where c1,2 are arbitrary numerical constants. Of course a different pair of fundamental

solutions could be chosen, but having a unit Wronskian simplify several numerical factors

in the continuation. Given g1, Eq. (26) for g2 will be assumed henceforth.

The general solution of Pinney’s equation (19) is given [9] by the nonlinear superposition

law

ρ = (c3 g
2
1 + 2 c4 g1 g2 + c5 g

2
2)

1/2 , (28)
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where c3,4,5 are numerical constants satisfying c3 c5 − c24 = κ.

From T = ρ2 one then derive the general solution of the linear equation (16a) in the form

T = c3 T1 + c4 T2 + c5 T3 , (29)

where

T1 = g21 , T2 = 2 g1 g2 , T3 = g22 (30)

are linearly independent particular solutions. Inserting T1,2,3 indeed solves Eq. (16a), pro-

vided g1 solves the TDHO equation (16b) and g2 is given by Eq. (26).

Instead of the traditional approach starting from the nonlinear Pinney equation for a

given κ, we focus on the linear third-order equation (16a), which we show to be exactly

solvable provided only one particular solution of the TDHO equation is available. The

parameter κ is determined from c3,4,5 arbitrarily chosen.

From this reasoning, the symmetry generator in Eq. (22) is

G = c1G1 + c2G2 + c3G3 + c4G4 + c5G5 , (31)

where

G1 = −g1
∂

∂ q
, (32a)

G2 = −g2
∂

∂ q
, (32b)

G3 = g21
∂

∂ t
+ g1 ġ1 q

∂

∂ q
, (32c)

G4 = 2 g1 g2
∂

∂ t
+ (g1 ġ2 + g2 ġ1) q

∂

∂ q
, (32d)

G5 = g22
∂

∂ t
+ g2 ġ2 q

∂

∂ q
. (32e)

The corresponding Noether invariant in Eq. (21) is

I = c1 I1 + c2 I2 + c3 I3 + c4 I4 + c5 I5 , (33)
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where each Ii is associated to Gi, i = 1, . . . , 5 and

I1 = g1 q̇ − ġ1 q , (34a)

I2 = g2 q̇ − ġ2 q , (34b)

I3 =
1

2
(g1 q̇ − ġ1 q)

2 =
I21
2
, (34c)

I4 = g1 g2 q̇
2 − (g1 ġ2 + g2 ġ1) q q̇ + ġ1 ġ2 q

2 = I1 I2 , (34d)

I5 =
1

2
(g2 q̇ − ġ2 q)

2 =
I22
2
. (34e)

The Ermakov-Lewis invariant from Eq. (24) with ρ given by Eq. (28) can be expressed

as

IEL = c3 I3 + c4 I4 + c5 I5 , (35)

which could be expected a priori and can be also verified by direct calculation to be a

constant of motion. In this manner it is seen that the Ermakov-Lewis invariant can be

split into a linear combination of quadratic functions of the conserved Wronskians. The

remaining Wronskian part of the Noether invariant is

W = c1 I1 + c2 I2 . (36)

From the commutator [Gi, Gj] = Gi Gj −Gj Gi one finds the symmetry algebra

[G1, G2] = [G1, G3] = [G2, G4] = [G2, G5] = 0 , [G1, G4] = G1 , [G1, G5] = G2 ,

[G2, G3] = −G1 , [G3, G4] = 2G3 , [G3, G5] = G4 , [G4, G5] = 2G5 . (37)

The simplest description of the Noether symmetries and invariants if provided by the in-

variants I1,2 with corresponding commuting symmetry generators G1,2 expanding an Abelian

two-dimensional subgroup. The remaining I1,2,3 are quadratic functions of the building

blocks I1,2.

The fifth-dimensional group of Noether points symmetries is a subgroup of the maximal

eight-dimensional Lie group SL(3,ℜ) admitted by the simple harmonic oscillator [11, 12]

and the TDHO [13]. The connection with the TDHO comes because the Lagrangian in Eq.

(9) is

L = L −
d

dt

(

φ(t) q2

2

)

(38)

where

L =
1

2
q̇2 −

1

2
ω2(t) q2 (39)
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is the standard Lagrangian for the OHDT, where ω is given by Eq. (17). The addition of a

total time-derivative does not modify either the equations of motion or Noether symmetries.

It is interesting to have the invariants algebra expressing them in terms of (q, p, t) where

p = q̇ − φ(t)q is the canonical momentum and

{A,B} =
∂A

∂q

∂B

∂p
−

∂A

∂p

∂B

∂q
(40)

is the canonical Poisson bracket, where A = A(q, p, t), B = B(q, p, t). The essential results

are

{I1, I2} = 1 , {I1, I4} = {I3, I2} = I1 , {I1, I5} = {I4, I2} = I2 , (41)

{I1, I3} = {I2, I5} = 0 {I3, I4} = I21 , {I3, I5} = I1 I2 {I4, I5} = I22 .

Several numerical factors in both Eqs. (37) and (41) are simplified thanks to g1,2 having a

unit Wronskian.

IV. DIRECT APPROACH

The direct approach towards the explicit symmetry algebra starts from a known gauge

field A(r) with the expected asymptotes. Then proceed in a systematic way to the following

steps:

• From A(r), derive Φ(r), φ(t) and ω(t) using resp. Eqs. (3), (4) and (17).

• Obtain a particular solution g1(t) solving Eq. (16b) and then g2 by the quadrature

(26).

• The Noether symmetry generators are found from Eqs. (32a)-(32e) and invariants

from Eqs. (34a)-(34e).

Starting from A(r) or φ(t) is clearly equivalent. From Eq. (3) one has

n

(

1

2
−A(r)

)

= V r φ(V r) , (42)

where n is an odd integer. From the asymptotes A(0) = 0 , A(∞) = 1/2 one should have

t φ(t) ∼
n

2
as t → 0 , t φ(t) → 0 as t → ∞ . (43)
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FIG. 1: Numerical solution of Eq. (16b) with φ given by Eq. (44), with n = 1, t0 = 10−2.

(a) Left panel: g(t0) = 1, ġ(t0) = 0. (b) Right panel: g(t0) = 0, ġ(t0) = 1.

V. EXAMPLE

From Eq. (43) one generically have ω2 ∼ 1/t2 as t → 0, which makes t = 0 a singular

point of Eq. (16b) so that it is difficult to find exact analytical solutions. Nevertheless one

can solve numerically with g(t0) = 1, ġ(t0) = 0 (it gives g1) and with g(t0) = 0, ġ(t0) = 1 (it

gives g2), so that g1,2 have unit Wronskian, where t0 > 0 is a reference time. The amplitude

of the solution is found to be quite sensitive to the choice of t0, n. Since ω2 → 1 for large t

the solution always becomes sinusoidal with unity angular frequency. On the other hand, it

is expressible in terms of Bessel functions for t → 0 as remarked in [4].

For the sake of illustration, we take

φ =
n

2
K1(t) , (44)

which satisfies the conditions (43), where K1(t) is a modified Bessel function of the second

kind. This is similar to the profile of vector potentials for decaying magnetic fields in vortex

solutions for gauged Ginzburg-Landau theory [14]. Examples of numerical solutions are

shown in Figs. (1)-(3) for different n, t0. The details of amplitude and phase can be seen to

be very sensitive to n, t0.

VI. CONCLUSIONS

In this work the Noether point symmetries for the reduced gauged bilayer Jackiw-Pi

graphene model have been analyzed. The symmetry algebra is found to be the same as for

the TDHO, in view of the existence of an equivalent TDHO Lagrangian. However, in terms
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FIG. 2: Numerical solution of Eq. (16b) with φ given by Eq. (44), with n = 3, t0 = 10−2.

(a) Left panel: g(t0) = 1, ġ(t0) = 0. (b) Right panel: g(t0) = 0, ġ(t0) = 1.
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FIG. 3: Numerical solution of Eq. (16b) with φ given by Eq. (44), with n = 1, t0 = 10−4.

(a) Left panel: g(t0) = 1, ġ(t0) = 0. (b) Right panel: g(t0) = 0, ġ(t0) = 1.

of L given by Eq. (9) one has q and p = q̇ − φq directly entering the vortex Dirac spinor

as detailed in [4], which is not the case if the discussion is made in terms of the standard

TDHO Lagrangian L in Eq. (39).

The realization of the symmetry algebra is shown to be achieved in terms of a single

particular solution g1 of the linear equation (16b), together with g2 which is found from g1

after a quadrature. However, the asymptotes of the gauge field φ always produce t = 0 as a

singular point of the TDHO equation (16b), so that exact analytical solutions are difficult.

The essential third-order linear equation (16a) was also shown to be solved from quadratic

functions of g1,2, as in Eq. (29). In this context this allows to ignore the (nonlinear) Pinney

equation, if desired. The application of the same methods can be a fruitful approach to

similar problems such as graphene submitted to external magnetic fields [15].
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