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Abstract
A Physics-informed neural network (PINN) is a deep learning framework for solving par-

tial differential equations (PDEs). In this work, we explore its application to the solution

of the viscous Burgers equation. Two approaches are tested, one with finite differences

and other with automatic differentiation. Numerical results are presented for a n-wave

solution.
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Introduction
A Physics-informed neural network (PINN, [3]) is a deep learning framework for solving

partial differential equations (PDEs). Deep learning is a field of machine learning by mul-

tiple levels of composition [1]. In this work, we discuss on the application of PINNs to

solve the viscous Burgers equation with Dirichlet boundary conditions

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−1, 1), t > 0, (1a)

u(0, x) = u0(x), x ∈ [−1, 1], (1b)

u(t,−1) = u(t, 1) = 0, t > 0. (1c)

Burgers equation is a benchmark problem to test new numerical approaches for solving

convective-diffusive PDEs. Since it has been introduced, it has been applied to the un-

derstanding of turbulent fluids, shock flows, wave propagation in combustion chambers,

vehicular traffic movement, acoustic transmission and many other applications. For small

values of ν, the convection term dominates and standard numerical discretization schemes

are numerically unstable.

PINNs
We assume an Artificial Neural Network (ANN) of the type Multi-layer Perceptron (MLP,

[2]). It has (x, t) ∈ D as inputs and the estimate ũ ≈ u(x, t) as the output. It is denoted as

ũ(x, t) = N
(
x, t;

{(
W (l), bbb(l), fff (l)

)}nl

l=1

)
, (2)

where
(
W (l), bbb(l), fff (l)

)
is the triple of weights W (l), bias bbb(l) and activation function fff (l) in

the l-th layer of the network, l = 1, 2, . . . , nl.
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Figura 1: MLP scheme.

Following the PINNs approach, the training of the MLP is performed by solving the

following minimization problem

min
{(W (l),bbb(l),f (l))}nl

l=1

 1

Nr

Nr∑
i=1

r2(xr,i, tr,i) +
p

Nb

Nb∑
i=1

[ũ(xb,i, tb,i)− u(xb,i, tb,i)]
2

 , (3)

where {(xr,i, tr,i)}Nr

i=1 are Nr selected collocation points x, t ∈ (−1, 1) × (0, T ] and

{(xb,i, tb,i)}Nb

i=1 are Nb selected initial and boundary points. The PDE residual is given

by

r(x, t) :=
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
, x ∈ (−1, 1), t > 0. (4)

• FD Approach

ũt(ts, xs) =
u(ts, xs)− u(ts − ht, xs)

ht
(5a)

ũx(ts, xs) =
u(ts, xs + hx)− u(ts, xs − hx)

2hx
(5b)

ũxx(ts, xs) =
u(ts, xs − hx)− 2u(ts, xs) + u(ts, xs + hx)

h2
x

(5c)

• AD Approach

ũt(ts, xs) = Nt(ts, xs), ũx(ts, xs) = Nx(ts, xs), ũxx(ts, xs) = Nxx(ts, xs) (6)

Results
• Test case ν = 0.01/π

– Initial condition

u0(x) = − sin(πx), −1 ≤ x ≤ 1 (7)

– Analytical solution

u(x) =
−
∫∞
−∞ sin(π(x− η))f (x− η)e−

η2

4νt dη∫∞
−∞ f (x− η)e−

η2

4νt dη
, (8)

where f (y) = e− cos(πy)/(2πν).

• MLP architecture, Adam optimizer

2− 50× 8− 1, f (l)(z) = tanh(z), f (nl)(z) = z (9)

• Uniform mesh

nt = 50, nx = 100 (10)
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Figura 2: PINNs versus analytic solutions.

Final Considerations
We compared two approaches on the application of PINNs to solve the viscous Burgers

equation. The FD approach consisted in estimating the residual of the Burgers equation

with finite differences. The AD approach consisted in computing the residual by automatic

differentiation on the ANN. Preliminary results indicate a much better performance of this

second approach.
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