Chapter 1

The Data-Driven ANN-MoC Method to Neutral
Particle Transport Problems in 1D

P.H.A. Konzen, N.G. Roman and A. Tchantchalam

1.1 Introduction

Neutral particle transport mainly appears in the radiative heat [HoEtAI21, MoMa23]
and the neutron transport [Ku23, Le84] phenomena. The modelling of the first is im-
portant in engineering at high temperatures (e.g. glass and ceramic manufactures)
[LaEtAl02], combustion chambers [FrEtA104], solar energy production [FuEtAl17],
and many others. The neutron transport modelling is of main importance in nu-
clear energy production [St07]. Both are related to important applications in optical
medicine [Ba09, WaWu07].

We consider the fundamental model of neutral particle transport problems given
by the linear Boltzmann equation in 1D geometry

d
Vi pe Sl p) £ 0l = 03 (x) 4 (x ), (1.1)

where, from the radiative transport terminology, I = I(x, it) denotes the radiant in-
tensity at point x € D = [a,b] and in the direction u € (—1,1)\ {0}, g(x,u) the
source term, Oy, 05 > 0 are the extinction (kK = 6; — Oy the absorption) and the scat-
tering coefficients, respectively. The radiative density is
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The integro-differential equation (1.1) is assumed to be closed with the following
boundary conditions

Yu>0:1I(a,p) =1, (1.3)
Vi <0:1(b,p) = Iy. (1.4)

Computational methods for solving direct and inverse transport problems with
(1.1)-(1.4) can be found in the textbooks (see, for instance, [HoEtAl21, Ku23, Le84,
MoMa23, OzOr21]). More recently, it has been grown attention to the application of
deep learning techniques [GoEtAl16] to solve partial differential equations (PDEs).
The physics-informed neural networks [RaEtAl19] are one of the notable options,
which trains an artificial neural network (ANN) to estimate the given PDE solution
by minimizing the equation residual. An application of PINNs to solve transport
problems is found in the paper [MiMo21].

The use of deep learning for solving inverse transport problems dates back
decades. For parameter estimation problems, the first idea is to train an ANN as
a regression model for a given data set. The data set must be big enough to train the
network, and it can be generated by solving the direct transport problem for sev-
eral choices of the goal parameters. We have recently explored this approach in the
work [RoEtAl24]. The main disadvantage of this approach is the need to solve the
direct transport problem as many times as the size of the required data to train the
network. Alternatively, the PINN approach requires less data by training the ANN
based on the transport model and given data. However, this involves the training of
an ANN to fit the solution of the transport problem for the radiant intensities at all
points and directions. Commonly found in the transport solutions, discontinuities in
the parameters and in the phase space are difficult to learn by ANNs.

The main goal here is to introduce a viable alternative to the application of ANN
to solve direct and inverse transport problems modeled by equations (1.1)-(1.4).
The following described ANN-MoC method is designed as a data-driven integration
method to the transport equation. Firstly without data, the method was previously
presented in the work [Ko23]. Here, it is adapted to solve direct and inverse data-
driven neutral particle transport problems.

1.2 Data-Driven ANN-MoC Method

1.2.1 ANN-MoC Model Aware

The ANN-MoC method estimates the radiative density ¥ by a multilayer perceptron
(MLP) neural network

¥(x) = A (x:p),
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where p € R"? are the n, parameters p,, (weights and biases) of the network. An
MLP with given activation functions and architecture 1 —n, X n, — 1 (1 input, n,
neuron per each ny, hidden layers, 1 output) has n, = 4n, +n,(1 +n,)(n, — 1) pa-
rameters. See Fig. 1.1.

Fig. 1.1 The MLP network .#” with architecture 1 —n, X n, — 1, input x and output the estimated

radiative density ¥'(x).

The training of the network .4 has the goal to fit the parameters p,, that minimize
the error of the estimated ¥ in relation to the expected ¥ solution of the transport
problem (1.1)-(1.4). Since the latter is unknown, we calibrate the network by the
following gradient-like iteration

pU+U::pU%+h-d(V;q$(}“%p”ﬁ), (1.5)

where p(!) denotes the network parameters at the [-th iterate, I = 0,1,... ng, ng
a given maximum number of iterations. Given a learning rate /. > 0, the direction
update d € R is a function of the gradient of the loss function

Iy
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where W) (x,) is an approximation of ¥ (x,) at the domain point x; € D. To prevent
over-fitting, ) e R is randomly generated by a uniform distribution.

Given the Gauss-Legendre quadrature {(;, Hj)}quI with 7, pairs, the (/) ap-
proximation of the density (1.2) is computed as

- 1 &
P00 =3 L1 e,
J=
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where I;l) is the radiant intensity in the direction u; that satisfies
d .
w510+ ot = o (xip! ) gl ), ()

and the associated boundary condition. We note that (1.7) is directly derived from
the transport equation (1.1) by substituting ¥ (x) by 4" (x).

The solution of (1.7) is computed by an application of the method of character-
istics (MoC). Assuming the change of variables x(u) = xo +u- u;, u € R, (1.7) is
equivalent of

d

ady (O G,I(.l)(u) =0, N (u;p(’)) +q(u),

du'’ J
where we assumed the notation Ij@ (u) = j@ (x(u)) and analogous for the other
terms. This ordinary differential equation has the solution

I}l)(u) = I](.l)(O)efa’” —|—/0 (o5 () +q(u)] e o= gy

where xo must be chosen so I;l) (0) is known (for instance, at the entrance boundary
point).

We note that the above procedure is an adapted source iteration, which is ex-
pected to converge to ¥ for o;/0; < 1 (see, for instance, [AdLa02]). One advan-
tage of the ANN-MoC method is that it provides a neural network .4 (x) that esti-
mates the radiative density ¥(x) at any point x in the computational domain. It does
not require any assumptions on interpolating discrete values of ¥. The ANN-MoC
method presented this way is model-only aware, i.e. it trains .4~ based just on the
transport model (1.1)-(1.4). However, .4 (x) can be forced to fulfill extra constraints
by adding them to the loss function (1.6). For instance, for direct and inverse data-
driven problems, the solution can be forced to fit the data. These are the applications

that we are exploring in the following.

1.2.2 ANN-MoC Data and Model Aware

The ANN-MoC can be easily adapted to data-driven problems. Let’s assume the
given ny data {(xy),'f’d(‘?))} K The data-driven problem is to estimate ¥ such
5=

that it satisfies the transport model (1.1)-(1.4) and Ehe given data. This can be com-
puted by the ANN-MoC method with a network ¥(x) = .4 (x; p = py) trained to
minimize the loss function

g

1 w1
Elggd(x;pw) = Z

S s=1

P (x) — P (xy)

2 td : - 2
+ ﬂ Z ’qfi(S) 7"?()(61) )
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where wi,w, > 0 are penalty scalars that control the weight of each term. With this
loss function, the network training is based on the transport model, and the given
data, i.e. ./ is model and data-aware.

1.2.3 Data-Driven ANN-MoC for Inverse Problems

The adaptation of the ANN-MoC method to inverse transport problems is also feasi-
ble. For instance, let us consider the problem of estimating the extinction coefficient

. y nd . . . . .

oy, given the n, data {(xt({”, ,%(s))} . Here, the idea is to add radiant intensity
s=1

information on selected directions to the loss function, to add an explicit relation

between the data and the unknown parameter o;. Therefore, let us assume the ny,

directions {1, }Zi , have been selected, ( jk)Zi | C (1,...,ny). The neural network is

then chosen as

y(x) = Mp(x;p = (pw, 1)),

where the output is y(x) = (P (x),I;, (x),...,ijnu (x)), i.e. the estimations of the

radiative density and the radiant intensities in the selected directions. See Fig. 1.2.

Fig. 1.2 The MLP network 4fpwith architecture 1 —n, x nj;, — 14 ny, input x and output the
estimated radiative density and radiant intensities in selected directions.

The network #{p is then trained to minimize the following loss function
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where w;, j =1,2,3,4,5, are the weights of each term, ny~¢ is the number of se-
lected positive directions (;, , and analogous for ny 9. We note that the third term is
the mean squared residual of the transport equation (1.1) on the sample points and
the selected directions (usually a small subset of the ordinates directions). The last
two terms are the boundary conditions (1.3)-(1.4). The training of the network .4{p
is again performed by the gradient-like method (1.5), but it now has (1 +n,)n, + 1
more parameters to be fitted. The derivative of [}, required in the residual can be
efficiently computed by automatic differentiation [BaEtAl18].

1.3 Numerical Experiments

We now present numerical experiments to show the availability of the ANN-MoC
method to solve data-driven problems of neutral particle transport. In all the follow-
ing test cases, we are considering the transport problem (1.1)-(1.4) with the manu-
factured solution

I(x, 1) = e %o~ (1.8)

where & = 5 and o5 = 0.5. Therefore, radiative density is
Y(x)=e %%,

and the source is
—ooyx

q(x,pu) =[(1-pa)o; —oile

In the previous work [Tc24], it has been found that an adequate network .4 to
this problem is an MLP of architecture 1 —200 x 3 — 1 with the hyperbolic tangent
and the softplus as the activation functions in the hidden and the output layers, re-
spectively. From that, we also choose the Adam gradient-like method [KiBal7] to
perform the parameter updates (1.5), with learning rate [, = 1073, At each iteration
ny = 100 collocation samples x; € D are randomly selected. The Gaussian quadra-
ture set is fixed with n, = 4. The iterations stop when the relative absolute difference
of successive P~V and ¥ are less then 0.49 x 1074,

Fig. 1.3 shows the ANN-MoC versus the exact solutions for o; = 0.5,1.0,1.5.
These results have been found without any extra data, i.e. the network .4 has been
trained to minimize the loss function (1.6). It is notable the good precision of the
ANN-MoC estimations.
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Fig. 1.3 The ANN-MoC versus the exact solutions for o; = 0.5,1.0, 1.5 without extra data.

1.3.1 Model and Data-Driven Application

The data-driven ANN-MoC method allows extra data to be considered in the train-
ing of the network .4". An application of it is the acceleration of the convergence
of the source iteration procedure. For instance, lel us assume the given n; = 5 data

NY S 3 N .
{xfls), ‘I{‘,(b) }s=1’ xg) =0.25(s—1), ‘IZZ(S) =y (xff)). We also warm start the param-

eters of the network .4 (x; pE? )> to fit the linear interpolator of the given data. The

loss function penalty parameters have been fixed to wi =w, = 1.

Fig. 1.4 shows the convergence of the absolute error H‘PU) — || for both the
model-only and the data-driven ANN-MoC iterations. Taking into consideration the
stochastic behavior of the iterates (samples points x e D are randomly chosen
at each iterate /), we have performed 5 runs for each version of the method. We
have discarded the fasted and the slower runs. We note that the data-driven method
requires about 50% less iterates to reach the stop criteria.
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Fig. 1.4 Error converge comparison between model-only versus data-driven ANN-MoC iterations.

1.3.2 Inverse Problem Application

The inverse problem to be considered here is to estimate the extinction coefficient
o; from given data sensors { (a, ‘Pd(a)) , (b, ‘Pd(b)) } at the boundaries of the domain

D = [a,b] and assuming the transport problem holds with the manufactured solution
(1.8). To this goal, the network .#” has been chosen to output the estimated ¥ (x)

and only the two raidant intensities J,,, and I, for uy = \/(3/7) +(2/7)\/6/5 =~
0.861136. The loss function penalty parameters have been fixed to w; =wy = w3 =

ws = ws = 1. Here we have changed the stop criteria to |6,<l) — 6;17”\ < 0.49 x
1075.

Fig. 1.5 shows the results of three ANN-MoC runs with the initial approximations
6,(0) =0.25,0.75, 1. The expected coefficient is 6, = 0.5. We note that as usual, the
far is the initial approximation from the expected value, the more ANN-MoC iterates

were required to reach the stop criteria. In the worse case 6}(0) = 1, the number of
iterations was 20, which is very reasonable.
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Fig. 1.5 The estimations &) over the iterates [ for three different initial guesses. 6; = 0.5.

1.4 Final Considerations

We presented the ANN-MoC method to solve data-driven neutral particle transport
problems. The method can be adapted to direct and inverse (parameter estimation)
problems. It estimates the radiative density by an artificial neural network (ANN),
which is iteratively trained from the method of characteristic (MoC) solution in each
source iteration. At each iteration, the ANN loss function is the mean squared error
between expected and estimated densities from the MoC solution.

For direct data-driven problems, the method fits the data and accelerates the
source iterations. This is possible by simply adding a penalty term to the loss func-
tion related to the data. In the numerical experiment shown above, with a data set of
just 5 points, the data-driven ANN-MoC took at least 50% less iterations to reach
the stop criteria than its model-only version.

The method can also be adapted to solve indirect parameter estimation problems.
It requires an additional change to the architecture of the ANN to estimate the den-
sity together with selected radiant intensities. With this, the loss function is built
with extra penalty terms regarding the residual of the transport equation, which has
a direct relation with the parameter to be estimated. Automatic differentiation can
be applied to compute the directional derivatives of the selected radiant intensities.
For the ANN, the parameter to be estimated is just one more in many other of its
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weights and biases. The numerical test shown above indicates the method converges
to the expected parameter value in a reasonable number of iterations.

The data-driven ANN-MoC is a new conceptual method to solve direct and in-
verse neutral particle transport problems. Much work is still necessary to study the
limitations of the method, such as sensibility tests on noisy data. Its most notable
advantage is its versatility and capacity to solve problems with few extra data avail-
able.
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