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Abstract

In this work, we propose the ANN-MoC method for solving linear first-order partial dif-

ferential equations. It consists of coupling an Artificial Neural Network (ANN) into the

Method of Characteristics (MoC) for solving the equations. Alternatively to the usual in-

terpolation approach, the ANN is applied to estimate the solution values on cell edges.

Numerical experiments are shown to discuss the advantages and disadvantages of the pro-

posed approach.
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Introduction

Linear first-order partial differential equations appears in the modeling of many important

physical phenomena, such as heat radiative transfer [3] and neutron transport [4]. They

have applications in high temperature manufacturing (e.g., class and ceramic manufactu-

res), optical medicine, nuclear energy generation, and many others. In this work, we deal

with equations of the following form

Ω · ∇u + σtu = f in D, (1)

where u = u(xxx) ∈ R, xxx = (x, y) ∈ D = [a, b] × [c, d], σt > 0 and a given direction

Ω = (µ, η) in the unitary disc centered at the origin. Incoming boundary condition is

assumed as

u = uin on Γ−, (2)

where uin = uin(xxx) is given on Γ− = {xxx ∈ ∂D : Ω · nnn < 0}, with nnn denoting the outward-

pointing normal vector on the boundary.

The Method of Characteristics (MoC, [1]) is one of the approaches most used to solve

(1)-(2). And, in this work, we propose the ANN-MoC, an application of Artificial Neural

Networks (ANNs, [2]) to assist the MoC, by providing the needed estimates of the solu-

tion on the edge of mesh cells. The idea is to explore the ANNs as universal function

approximators and gain advantage by a learning transfer strategy in the Ω direction.

ANN-MoC Approach

Lets assume a given uniform rectangular mesh M build from the Cartesian product of

the partitions Phx
= {xi = a + (i − 1)hx}nx

i=1, hx = (b − a)/(nx − 1), and Phy
= {yj =

c + hy(j − 1)}ny

j=1, hy = (d− c)/(ny − 1), i.e. M = Phx
× Phy

. Without loss of generality,

lets assume Ω is in the first quarter of the unitary disc, i.e. µ > 0 and η > 0. The MoC

solution of (1) has the form

u(xxxij) = ũ(xxxij)e
−
∫ s

0 σt ds
′
+

∫ s

0

f (s′)e−
∫ s

s′ σt ds
′′
ds′, (3)

where xxxij = (xi, yj) and xxxij = xxxij − sΩ is a point on one of the cell edges that has xxxij as a

vertex.
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Figura 1: Left: ANN-MoC scheme. Right: Test case result.

In order to estimate the solution on cell edges, we apply an ANN of the type Multi-layer

Perceptron (MLP)

ũ(xxx) = N
(
xxx;

{(
W (l), bbb(l), fff (l)

)}nl

l=1

)
, (4)

where
(
W (l), bbb(l), fff (l)

)
denotes the triple of weights W (l), bias bbb(l) and activation function

fff (l) in the l-th layer of the network, l = 1, 2, . . . , nl.

By starting from the incoming boundary Γ−, we train the neural network by solving the

following minimization problem

min
{(W (l),bbb(l))}nl

l=1

1

ns

ns∑
m=1

(ũ(xxxs)− u(xxxs))
2 , (5)

where xxxs are mesh nodes on Γ−. The trained MLP is then applied to the computation of

new mesh nodes with cell edges on Γ−. Once the solution is known on all such new no-

des, the MLP is retrained with warm initialization, i.e. we use transfer learning from the

previous training to speed up computations.

Results
• Test case

D = [0, 1]2, Ω = (0.3, 0.5), σt = 1.0, f ≡ 0

u(x1, x2) = uin(x1 − sΩ1, 0)e
−σts, s =

x2
Ω2
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Figura 2: ANN-MoC solutions versus linear-MoC and quadratic-MoC solutions. MLP: 1− 100× 2− 1 with sigmoid activation
function.

Final Considerations
We presented the ANN-MoC method to the numerical solution of linear first-order partial

differential equations. As an alternative to interpolation, it applies an ANN to estimates

the solution on the edge of mesh cells. The numerical test case shows that the proposed

method is less diffusive in comparison to the linear interpolation approach. In contrast

to quadratic interpolation, it conserves the positiveness and has no observable spurious

oscillations.
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