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Introduction

The estimation of the medium absorption coefficient from external measurements can be
stated as an inverse problem, and has important applications in optical medicine, includ-
ing in optical tomography. In this work, we propose a framework based on artificial neural
networks (ANNs) to estimate the absorption coefficient in multi-region heterogeneous me-

dia. The associated direct transport problem [3] is given as

—l<pu<l,u#0: %gﬁ | ,ugi ol (t, p,x) = oW (t, ), (t,z) € (0,1 X (a,b),
(1a)
—1<pu<1:10,u,z)=0,2 € la,b), (1b)
p>0: It p,x) = qlt,p), t €[0,ty], (1c)
pw<0:I(t,pux)=0,1te|0,ty, (1d)

where I(t,u,x) |W/sr] is the particle intensity at the time ¢ [ps], in the direction
'sr], and at the point x |em], ¢ |[em/ps] is the average speed of light in the medium,
oi(x) = k(x)+os(x) [1/ecm] is the total absorption coefficient, x(x) [1/cm] is the absorp-
tion coefficient, and o4(x) [1/cm]| is the scattering coefficient. The average scalar flux is

1

denoted by U (¢, x) = 5 f_ll I(t, 1, x)dp’. The only source is a laser pulse given by [1]

e = () o (BB .

where g 1s the laser direction, 0, its angular spread, 7, its activation time, o its tempo-

rally center, and w(v) is the window function

1 v =0,
w(v) = ¢ exp ((26_1/M) /(lv]=1)) ,0<v <1, (3)
0 vl > 1.

Objective
The objective is to estimate the absorption coefficient x(x) from detector measurements

do(t) = V(t,a) and dy(t) = V(t,b), t € [0,4].
Methodology

We propose to estimate k as a piece-wise constant function.

MLP for absorption coeflicient estimation

k= MLP(d;0) =~ k = (K1, K2, ..., Kn,),
d = (dy(t1),do(t2), . .., do(ty,), di(t1), di(ts), ..., di(tn,)),

where, 0 are the weights and biases of the multi-layer perceptron (MLP, [2]), & is the es-
timation of the absorption coeflicient, n, is the number of regions in which & is piece-wise
constant, and n; is the number of time steps in which the detectors measure the scalar
flux. The training of the MLP is performed by minimizing the mean squared error (MSE)

loss function
n
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where ny, is the number of samples in the training set, and &) = MLP(d"): ) is the es-
timation of the absorption coefficient for the s-th sample. The optimization is performed

using the Adam algorithm, which is a stochastic gradient-based method.

Data generation: MoC solutions

The training and validation sets for the artificial neural network (ANN) of the multilayer
perceptron (MLP) type are generated from the solutions of the associate direct problem
(1) using the method of characteristics (MoC). The MoC method depends on parameters
n, (number of cells in the computational grid), N (number of Gaussian quadrature pairs),
and h; (time step). Assuming that the properties of the medium are known (o5, = 1), the

sets have been constructed for random values of 0.1 < k, < 0.9, distributed in a uniform
ng—1

grid of cells ([zy, Tg41]),2;

with n, > 1 defining the resolution.

Results

Detectors measurements and the absorption coeflicient
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Absorption estimations and the grid resolution
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Conclusions

As a work in progress, we have here preliminary test cases. The results indicate that the
symmetry assumption of 1D geometry transport is restrictive. Further work should focus

in formulating the transport problem in 2D geometry:.
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