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Introduction
The estimation of the medium absorption coefficient from external measurements can be
stated as an inverse problem, and has important applications in optical medicine, includ-
ing in optical tomography. In this work, we propose a framework based on artificial neural
networks (ANNs) to estimate the absorption coefficient in multi-region heterogeneous me-
dia. The associated direct transport problem [3] is given as
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(1a)
− 1 < µ < 1 : I(0, µ, x) = 0, x ∈ [a, b], (1b)
µ > 0 : I(t, µ, x) = q(t, µ), t ∈ [0, tf ], (1c)
µ < 0 : I(t, µ, x) = 0, t ∈ [0, tf ], (1d)

where I(t, µ, x) [W/sr] is the particle intensity at the time t [ps], in the direction µ

[sr], and at the point x [cm], c [cm/ps] is the average speed of light in the medium,
σt(x) = κ(x)+σs(x) [1/cm] is the total absorption coefficient, κ(x) [1/cm] is the absorp-
tion coefficient, and σs(x) [1/cm] is the scattering coefficient. The average scalar flux is
denoted by Ψ(t, x) = 1
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where µs is the laser direction, δµ its angular spread, τs its activation time, δt its tempo-
rally center, and w(ν) is the window function
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)
, 0 < ν < 1,

0 , |ν| ≥ 1.

(3)

Objective
The objective is to estimate the absorption coefficient κ(x) from detector measurements
d0(t) = Ψ(t, a) and d1(t) = Ψ(t, b), t ∈ [0, tf ].

Methodology
We propose to estimate κ as a piece-wise constant function.
MLP for absorption coefficient estimation

κ̃κκ = MLP(ddd;θθθ) ≈ κκκ = (κ1, κ2, . . . , κng
),

ddd = (d0(t1), d0(t2), . . . , d0(tnt
), d1(t1), d1(t2), . . . , d1(tnt

)),

where, θθθ are the weights and biases of the multi-layer perceptron (MLP, [2]), κ̃κκ is the es-
timation of the absorption coefficient, ng is the number of regions in which κ is piece-wise
constant, and nt is the number of time steps in which the detectors measure the scalar
flux. The training of the MLP is performed by minimizing the mean squared error (MSE)
loss function

MSE(θθθ) = 1

nkng

nk∑
s=1

‖κ̃κκ(s) − κκκ(s)‖22,

where nk is the number of samples in the training set, and κ̃κκ(s) = MLP(ddd(s);θθθ) is the es-
timation of the absorption coefficient for the s-th sample. The optimization is performed
using the Adam algorithm, which is a stochastic gradient-based method.
Data generation: MoC solutions
The training and validation sets for the artificial neural network (ANN) of the multilayer

perceptron (MLP) type are generated from the solutions of the associate direct problem
(1) using the method of characteristics (MoC). The MoC method depends on parameters
nx (number of cells in the computational grid), N (number of Gaussian quadrature pairs),
and ht (time step). Assuming that the properties of the medium are known (σs = 1), the
sets have been constructed for random values of 0.1 ≤ κg < 0.9, distributed in a uniform
grid of cells ([xg, xg+1])

ng−1
g=1 , with ng ≥ 1 defining the resolution.

Results
Detectors measurements and the absorption coefficient
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Absorption estimations and the grid resolution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
κ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

κ̃

ng = 5

ng = 4

ng = 3

ng = 2

Conclusions
As a work in progress, we have here preliminary test cases. The results indicate that the
symmetry assumption of 1D geometry transport is restrictive. Further work should focus
in formulating the transport problem in 2D geometry.
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