MAT01191 – Vetores e Geometria Analítica – Professora Miriam Telichevesky Lista de Exercícios 12

- 1. Suponha que um novo sistema $\tilde{\Sigma}$ de eixos \tilde{x} e \tilde{y} foi obtido a partir do sistema Σ de eixos x e y através de uma translação para a nova origem $\tilde{O} = (h, k)_{\Sigma}$ (ou seja, as coordenadas no sistema original da nova origem são h e k, nesta ordem). Em cada item, faça o que se pede:
 - (i) Escreva \tilde{x} e \tilde{y} em função de x e y.
 - (ii) Faça um esboço da situação.
 - (iii) Esboce a cônica muito bem posicionada no sistema $\tilde{\Sigma}$
 - (iv) Apresente uma equação em x e y para a cônica do item (iii).

(a)
$$\tilde{O} = (8, -5)_{\Sigma},$$
 $\frac{\tilde{x}^2}{4} - \frac{\tilde{y}^2}{36} = 1$

(b)
$$\tilde{O} = (-3, 4)_{\Sigma},$$
 $\frac{\tilde{x}^2}{36} + \frac{\tilde{y}^2}{9} = 1.$

(c)
$$\tilde{O} = (0,7)_{\Sigma}, \qquad \qquad \tilde{x}^2 = \tilde{y}.$$

- 2. Completando quadrados, defina um novo sistema de coordenadas $\tilde{\Sigma}$ onde cada uma das equações abaixo represente uma cônica muito bem posicionada.
 - (a) $-5x^2 + 4y^2 + 40x + 12y + 29 = 0$
 - (b) $x^2 6x 5y + 14 = 0$.
 - (c) $x^2 + 2y^2 4x 4y 1 = 0$
- 3. Suponha que um novo sistema Σ' de eixos x' e y' foi obtido a partir do sistema Σ de eixos x e y através de uma rotação de um ângulo θ . Em cada item, faça o que se pede:
 - (i) Escreva x' e y' em função de x e y.
 - (ii) Faça um esboço da situação.

$$(-1)(1) = -/2$$
 (1)

(a)
$$\theta = \pi/3$$
. (b) $\theta = \pi/4$.

(c)
$$\theta = 5\pi/6$$
.

4. Suponha que um novo sistema Σ' de eixos x' e y' foi obtido a partir do sistema Σ de eixos x e y através de uma rotação de um ângulo θ . Cada uma das equações a seguir está expressa em termos de x' e y'. Transforme-a em uma equação na forma geral $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, nas variáveis x e y.

(a)
$$\frac{x'^2}{9} + \frac{y'^2}{2} = 1$$
, $\theta = \pi/6$.

(b)
$$\frac{x'^2}{16} - \frac{y'^2}{25} = 1$$
, $\theta = 3\pi/4$.

(c)
$$x'^2 = -16y$$
, $\theta = \pi/2$.

- 5. Para cada um dos itens do exercício anterior, faça o que se pede:
 - (i) Esboce os sistemas de eixos x e y.
 - (ii) Identifique a cônica que está muito bem posicionada no sistema x' e y' e esboce-a.

6. Monte um resumo que contenha o procedimento para eliminar termo misto da equação $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ através de uma rotação de ângulo θ , obtendo uma equação da forma

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0.$$

Aproveite este resumo para chamar atenção que existem sempre dois possíveis ângulos de rotação entre 0 e π que eliminam o termo misto, sendo que um deles está no primeiro quadrante e outro no segundo quadrante.

- 7. Seja θ_1 o menor ângulo entre 0 e π tal que a rotação de θ_1 do sistema de eixos xy para x'y' elimina o termo misto das equações a seguir. Em cada item, faça o que se pede:
 - (i) Calcule as constantes A' e C' (seguindo a notação vista em aula e também no exercício anterior).
 - (ii) Obtenha $tan(2\theta_1)$ e $cos(2\theta_1)$ em termos das constantes A, B, C, A', C'.
 - (iii) Usando as expressões

$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}, \ \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$

calcule $\cos \theta_1$ e sen θ_1 . Lembre que θ_1 está no primeiro quadrante.

- (iv) Escreva a mudança de coordenadas de xy para x'y' que elimina o termo misto.
- (v) Obtenha a equação em x', y', sem termos mistos.
- (a) $x^2 + 18\sqrt{3}xy + 19y^2 56 = 0$
- (b) $5x^2 2xy + 5y^2 12 = 0$
- (c) $3x^2 + 8xy 3y^2 5 = 0$
- (d) $25x^2 + 120xy + 144y^2 + 12x 5y = 0$
- 8. Repita o exercício anterior para o ângulo θ_2 no segundo quadrante, que também elimine termo misto. Compare os resultados com os do Exercício 7. Você consegue interpretar geometricamente esta comparação?
- 9. Esboce as cônicas do Exercício 7. Para isso, encontre a equação em x' e y' que a torne "muito bem posicionada".
- 10. Suponha que um novo sistema Σ' de eixos x' e y' foi obtido a partir do sistema Σ de eixos x e y através de uma rotação de um ângulo θ , e que o sistema $\tilde{\Sigma}$ foi obtido a partir de Σ' através de uma translação para o ponto $\tilde{O} = (h, k)_{\Sigma'}$ (salientamos que h e k são as coordenadas de \tilde{O} no sistema Σ' , e não Σ). Faça um esboço dos três sistemas de eixos em cada um dos casos:
 - (a) $\theta = \pi/4$, $\tilde{O} = (8, -5)_{\Sigma'}$.
 - (b) $\theta = \pi/3$, $\tilde{O} = (-3, 4)_{\Sigma'}$.
 - (c) $\theta = 5\pi/6$, $\tilde{O} = (0,7)_{\Sigma'}$.
- 11. * Encontre um novo sistema $\tilde{\Sigma}$ de eixos, via rotação e translação conforme visto em aula, que torne cada uma das equações abaixo o mais simples possível. Faça um esboço da situação e da cônica correspondente.
 - (a) $21x^2 + 6xy + 13x^2 114x + 34y + 73 = 0$
 - (b) $4x^2 4xy + y^2 8\sqrt{5}x 16\sqrt{5}y = 0$.