1.1 Some Basic Mathematical Models; Direction Fields

Maple Setup

We'll need the DEtools package to make DEplot available. (Recall that green, underlined text is a hyperlink that opens Help pages, other Maple worksheets, or Internet sites.) DEplot graphs direction fields with solution curves. End the statement with a colon to suppress printing the entire list of routines in the DEtools package. We'll also use the \underline{D} operator for differentiating functions and diff for differentiating expressions.

```
> with(DEtools):
```


Problem 27

Draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t approaches infinity. If this behavior depends on the initial value of y at $t=0$, describe this dependency.
27. $y^{\prime}=t e^{-2 t}-2 y$.

Define the differential equation, once more remembering that Maple requires us to use the full function expression $y(t)$. For variety, we'll use the derivative function diff, then y^{\prime} is entered as $\operatorname{diff}(\mathbf{y}(\mathbf{t}), \mathbf{t})$. (Remember, green text is a hyperlink that can lead to help pages.) Maple uses exp for the exponential function e^{x}.
$>$ ode $:=\operatorname{diff}(y(t), t)=t * \exp (-2 * t)-2 * y(t)$;

$$
o d e:=\frac{\mathrm{d}}{\mathrm{~d} t} y(t)=t \mathrm{e}^{-2 t}-2 y(t)
$$

Now draw a direction field using DEplot.
$>$ DEplot (ode, $y(t), t=-3 . .6, y=-5 . .5)$;

Since this equation includes terms with t, the behavior is more complicated. We see a pattern that indicates solution curves tend to $y=0$. Let's investigate with the initial values $y_{0}=-4,-2,0,2$,
and 4. Again, put the points $\left[0, y_{0}\right]$ in a list.
> InitialValues $:=[[0,-4]$, $[0,-2],[0,0],[0,2],[0,4]] ;$
DEplot(ode, y(t), t=-2..3, y=-5..5, InitialValues, linecolor= black) ;

InitialValues := [[0,-4], [0, -2], [0, 0], [0, 2], [0, 4]]

