
Mini-course at IMPA on area, curvature and radius estimates for
constant mean curvature surfaces

William H. Meeks III, University of Massachusetts Amherst
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Lectures based on references appearing in last slide. Slides of talks appear on web
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Lecture 1: Background material, statements of the main results.

Lecture 2: Area estimates for embedded 3-periodic H-surfaces.

Lecture 3: H-surfaces in homogeneous 3-manifolds.

Lecture 4: Reduction of Hopf uniqueness theorem to area estimates.

Lecture 5: Area estimates for H-spheres in Hopf uniqueness theorem.
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Homogeneous manifolds

Homogeneous manifolds

Definition

A Riemannian manifold M is called homogeneous if for any given points
p, q ∈ M there exists an isometry ϕ : M → M such that ϕ(p) = q.

Examples
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Homogeneous manifolds Metric Lie groups

Metric Lie groups

Definition

A Lie group Z is a smooth manifold with a group structure, whose
group operation ∗ : Z × Z → Z satisfies that (x , y) 7→ x−1 ∗ y is a
smooth map.

Let y ∈ Z . The respective left and right translations by y are the
maps defined by

ly : Z → Z
x 7→ y ∗ x ,

ry : Z → Z
x 7→ x ∗ y .

A Riemannian metric on a Lie group Z is called left invariant if the
translations lx are isometries for all x ∈ Z . A Lie group equipped with
a left invariant metric is called a metric Lie group.
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Homogeneous manifolds Metric Lie groups

Every metric Lie group is a homogeneous manifold:

Proof: If X is a metric Lie group and x , y ∈ X , then lyx−1 is an isometry
of X which maps x to y . �
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Homogeneous manifolds Metric Lie groups

Examples

The euclidean space.

(R3,+, ds2
flat)

The hyperbolic space.

H3 can be seen as the group of similarities of R2, i.e., as a set
H3 = {(x , y , z) ∈ R3 | z > 0} = R3

+ and it acts on R2 via

φ(x ,y ,z) : R2 → R2

(p1, p2) 7→ z(p1, p2) + (x , y)

The group structure is that of composition of maps and is given by

(x1, y1, z1) ∗ (x2, y2, z2) = (x1 + z1x2, y1 + z1y2, z1z2)
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Homogeneous manifolds Metric Lie groups

Examples

The three sphere.

If identify R4 with the quaternion group (x , y , z ,w) ≡ x + iy + jz + kw
and endow it with the quaterion operation defined by

ij = k , jk = i , ki = j , i2 = j2 = k2 = −1,

then one can identify the unit sphere
S3 = {(x , y , z , w) ∈ R4 | x2 + y2 + z2 + w2 = 1} as the subgroup of
quaternions of length 1, also denoted SU(2).

Remark.

The underlying group SU(2) admits a three-parameter family of
non-isometric left invariant metrics. When the dimension of the isometry
group of SU(2) with one of such metrics g has dimension 4, we say that
(SU(2), g) is a Berger sphere. When the isometry group of (SU(2), g̃) has
dimension 6, we obtain S3(κ), the simply connected homogeneous
manifold with constant sectional curvature κ > 0.
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Homogeneous manifolds Metric Lie groups

More properties on Lie groups

A vector field E on a Lie group Z is called left invariant if it is
invariant under left translations, i.e., if d(lx)y (E (y)) = E (lx(y)) for
all x , y ∈ Z .

If E1, E2 are two left invariant vector fields on Z , then their Lie
bracket [E1, E2] is also left invariant.

The set of all left invariant vector fields on Z is called the Lie algebra
of Z .

A left invariant vector field is uniquely determined by its value at
some point. Hence, there is a canonical identification between the Lie
algebra of Z and its tangent space at the identity element.

A vector field F on a Lie group Z is right invariant if it is invariant
under right translations.

The flow of a right invariant vector field F on Z is by left
translations. In particular, if X = (Z , 〈 , 〉) is a metric Lie group, any
right invariant vector field is a Killing field.
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Homogeneous manifolds Metric Lie groups

Simply connected homogeneous 3-manifolds and metric Lie
groups

Remark:

Since S2 does not admit a everywhere nonzero tangent vector field,
there is no Lie group diffeomorphic to S2. In particular, S2(κ) is not
isometric to any metric Lie group;

Moreover, since the second homotopy group of any Lie group is
trivial, S2(κ)× R is also not isometric to a metric Lie group.

Theorem.

A simply connected homogeneous 3-manifold Y is isometric to S2(κ)× R,
where S2(κ) is a sphere of constant curvature κ > 0, or Y is isometric to a
metric Lie group.
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Homogeneous manifolds Metric Lie groups

Theorem.

A simply connected homogeneous 3-manifold Y is isometric to S2(κ)× R,
where S2(κ) is a sphere of constant curvature κ > 0, or Y is isometric to a
metric Lie group.

Sketch of the Proof.

Let I (Y ) denote the isometry group of Y and let p ∈ Y be any point. Let
Ip(Y ) = {ϕ ∈ I (Y ) | ϕ(p) = p}. Then:

Ip(Y ) is isomorphic to a subgroup of the orthogonal group O(3);

There are three possible dimensions for such subgroup: 0, 1 or 3;

There are three possible dimensions for I (Y ): 3, 4 or 6.
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Homogeneous manifolds Metric Lie groups

Sketch of the Proof (cont.)

If dim(I (Y )) = 6, then Y is isometric to a space of constant
sectional curvature, S3(κ > 0), R3 or H3(κ < 0), all of which are
metric Lie groups;

If dim(I (Y )) = 4, then Y is isometric to a Riemannian bundle
E(κ, τ) over a complete, simply connected surface of constant
curvature κ ∈ R and bundle curvature τ ∈ R. Each of these spaces
has the structure of some metric Lie group except for the case of
E(κ, 0), κ > 0, which is isometric to S2(κ)× R.

If dim(I (Y )) = 3:

Let I0(Y ) be the connected component of I (Y ) through the identity
and S = {ϕ ∈ I0(Y ) | ϕ(p) = p};
Since Y is simply connected, then S is trivial and Y is diffeomorphic to
I0(Y );
Endowing Y with the Lie group structure of I0(Y ), we have that the
point p plays the role of the identity element of Y and the original
metric of Y is left invariant. �
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Question.

What are the simply connected metric Lie groups of dimension 3?

Definition.

A (connected) Lie group G is called unimodular if for every element x in
its Lie algebra g, the endomorphism adx : g→ g, adx(y) = [x , y ] has trace
zero.

Remark.

This is equivalent to the property that the left invariant Haar measure on
G is also right invariant. (In less fancy words, this means that right
translations preserve the volume)

Unimodular Lie groups;

Non-unimodular Lie groups.
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Unimodular Lie groups

Let G be a 3-dimensional unimodular Lie group. Then, for any e ∈ g

trace(X ∈ g 7→ [e,X ] ∈ g) = 0.

From this, it is possible to find a basis {E1, E2, E3} and constants
c1, c2, c3, (among which at most one is negative) and such that

[E2,E3] = c1E1, [E3,E1] = c2E2, [E1,E2] = c3E3.

Definition

The vectors {E1, E2, E3} form the cannonical basis of G and the
constants {c1, c2, c3} are the called structure constants of G .
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Simply connected unimodular metric Lie groups of dimension three

Signs of c1, c2, c3 dim I(X ) = 3 dim I(X ) = 4 dim I(X ) = 6

+, +, + SU(2) S3
Berger = E(κ > 0, τ) S3(κ)

+, +, – S̃L(2,R) E(κ < 0, τ) ∅
+, +, 0 Ẽ(2) ∅ (Ẽ(2), flat)

+, –, 0 Sol3 ∅ ∅
+, 0, 0 ∅ Nil3 = E(0, τ) ∅
0, 0, 0 ∅ ∅ R3
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Non-unimodular metric Lie groups
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Semidirect products R2 oA R:

The set

R3 = R2 × R

The group structure

Let A ∈ M2(R) be a fixed 2× 2 real matrix;

For z ∈ R, let eAz : R2 → R2 be the exponential map, written as

eAz =

(
a11(z) a12(z)
a21(z) a22(z)

)
.

Then, one can define a group operation ∗ on R3 = R2 × R:

(p1, z1) ∗ (p2, z2) = (p1 + eAz1p2, z1 + z2),

and define (the group) R2 oA R = (R2 × R, ∗).
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Semidirect products R2 oA R:

The Metric

The coordinate vectors ∂x , ∂y , ∂z are orthogonal at e = (0, 0, 0);

Extend {∂x(e), ∂y (e), ∂z(e)} to a left invariant orthogonal frame

E1 = a11(z)∂x + a21(z)∂y , E2 = a12(z)∂x + a22(z)∂y , E3 = ∂z ,

producing a left invariant metric

ds2 = Q11(z)dx2 + Q22(z)dy2 + dz2 + Q12(z)(dx ⊗ dy + dy ⊗ dx).

Q11(z) = e−2ztrace(A)
[
a21(z)2 + a22(z)2

]
,

Q22(z) = e−2ztrace(A)
[
a11(z)2 + a12(z)2

]
,

Q12(z) = −e−2ztrace(A) [a11(z)a21(z) + a12(z)a22(z)] .

We denote R2 oA R = (R3, ∗, ds2) and say that ds2 is the
cannonical left invariant metric of R2 oA R.
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Examples

A

(
0 0
0 0

) (
1 0
0 1

) (
1 0
0 0

)
R2 oA R R3

(abelian, flat)
H3

(const curv -1)
H2 × R

A

(
−1 0
0 1

) (
0 1
0 0

)
. . .

R2 oA R Sol3
(solvable)

Nil3
(nilpotent)

. . .
(others)
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Examples

A

(
0 0
0 0

) (
1 0
0 1

) (
1 0
0 0

)
R2 oA R R3

(abelian, flat)
H3

(const curv -1)
H2 × R
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(
−1 0
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) (
0 1
0 0
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(solvable)

Nil3
(nilpotent)
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(others)

Theorem.

Every simply connected Lie group of dimension three is isomorphic to
SU(2) (topology of S3), S̃L(2,R) or to a semidirect product R2 oA R for
some A ∈ M2(R).
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Homogeneous manifolds Simply connected metric Lie groups of dimension 3

Classification theorem.

Let Y be a simply connected homogeneous manifold of dimension three.
Then one of the following happens:

Y is isometric to the Riemannian product S2(κ)× R for some κ > 0;

Y is isometric to a metric Lie group. In this case, the possibilities are:

Y is unimodular. Then either

Y is isometric to SU(2) endowed with a left invariant metric;

Y is isometric to S̃L(2,R) endowed with a left invariant metric;
Y is isometric to R2 oA R, with trace(A) = 0.

Y is nonunimodular. Then Y is isometric to R2 oA R, with
trace(A) 6= 0. Moreover, after an homothety and an isometry, one may

assume that A =

(
1 + a −(1− a)b

(1 + a)b 1− a

)
for a, b ≥ 0.
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Homogeneous manifolds The left invariant Gauss map

The left invariant Gauss map

Definition.

Given an oriented immersed surface f : Σ→ X with unit normal vector
field N : Σ→ TX , we define the left invariant Gauss map of the immersed
surface to be the map G : Σ→ S2 ⊂ TeX given by

G (p) = d(lp−1)p(Np).
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Homogeneous manifolds The left invariant Gauss map

How to obtain a CMC surface from its Gauss map?

Important case: R3.

We have the Weierstrass representation: From a Riemann surface Σ, a
meromorphic function g on Σ and a holomorphic one-form φ on Σ, one
can obtain a minimal (branched) conformal immersion of Σ in R3 such
that (in some sense) g is its Gauss map.

Our case

If X is a simply connected metric Lie group of dimension 3 and Σ is a
simply connected immersed H-surface in X with Gauss map G , one may
consider the stereographic projection of G to C = C ∪ {∞}, g : Σ→ C.

Key fact.

Endowing Σ with a conformal coordinate z , then g satisfies an elliptic
partial differential equation.
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Homogeneous manifolds The Representation Theorem

How to obtain a CMC surface from its Gauss map?

Let X be a three-dimensional simply connected metric Lie group.

Definition

If X is nonunimodular (and assume it is R2 oA R with its canonical metric,

where A =

(
1 + a −(1− a)b

(1 + a)b 1− a

)
). Given H ∈ R, we define the

H-potential of X to be the map R : C→ C given by

R(q) = H
(
1 + |q|2

)2− (1−|q|4)− a
(
q2 − q2

)
− ib

(
2|q|2 − a

(
q2 + q2

))
.

Álvaro Krüger Ramos (UFRGS) 30o Colóquio Brasileiro de Matemática IMPA - Agosto de 2017 21 / 30



Homogeneous manifolds The Representation Theorem

How to obtain a CMC surface from its Gauss map?

Let X be a three-dimensional simply connected metric Lie group.

Definition

If X is a unimodular metric Lie group with structure constants c1, c2, c3,
given H ∈ R, we define the H-potential of X as the map R : C→ C given
by

R(q) = H
(
1 + |q|2

)2 − i

2

(
µ2|1 + q2|2 + µ1|1− q2|2 + 4µ3|q|2

)
,

where
µ1 = 1

2 (−c1 + c2 + c3), µ2 = 1
2 (c1 − c2 + c3), µ3 = 1

2 (c1 + c2 − c3).
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Homogeneous manifolds The Representation Theorem

How to obtain a CMC surface from its Gauss map?

Representation Theorem.

Suppose Σ is a simply connected Riemann surface with conformal
parameter z , X is a metric Lie group, and H ∈ R.
Let g : Σ→ C be a solution of the complex elliptic PDE

gzz =
Rq

R
(g) gzgz +

(
Rq

R
− Rq

R

)
(g) |gz |2,

such that gz 6= 0 everywhere, and such that the H-potential R of X does
not vanish on g(Σ). Then, there exists an immersed H-surface f : Σ→ X ,
unique up to left translations, whose Gauss map is g .

Conversely, if g : Σ→ C is the Gauss map of an immersed H-surface
f : Σ→ X in a metric Lie group X , and the H-potential R of X does not
vanish on g(Σ), then g satisfies the equation above, and moreover gz 6= 0
holds everywhere.
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Homogeneous manifolds The Representation Theorem

R(q) = H
(
1 + |q|2

)2− (1−|q|4)− a
(
q2 − q2

)
− ib

(
2|q|2 − a

(
q2 + q2

))
.

R(q) = H
(
1 + |q|2

)2 − i

2

(
µ2|1 + q2|2 + µ1|1− q2|2 + 4µ3|q|2

)
,

Non-zero H-potential Lemma

Let X be a metric Lie group and H ∈ R. Then, the H-potential for X is
everywhere nonzero if and only if:

X is isomorphic to SU(2), or

X is not isomorphic to SU(2), is unimodular and H 6= 0, or

X is nonunimodular with D-invariant D ≤ 1 and |H| > 1, or

X is nonunimodular with D-invariant D > 1 and |H| 6= 1.

Proposition

Assume that there exists a compact H-surface Σ in X . Then, the
H-potential of X is everywhere nonzero.
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The Hopf Problem on Homogeneous 3-manifolds

Questions about H-surfaces.

Given any ambient space M:

Are there compact minimal surfaces in M?

What are the possible topologies for such surfaces?

If there are more than one, how are they related?

What are the values of H ∈ R for which there exist a compact
H-surface in M?

...
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The Hopf Problem on Homogeneous 3-manifolds

Answers in R3.

There are no compact minimal surfaces in R3:
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The Hopf Problem on Homogeneous 3-manifolds

The Hopf problem.

In a given ambient space M, what are the immersed H-spheres in M?

Results

(Hopf, 1971) If M = R3, H3 or S3, H-spheres are geodesic spheres.

(Abresch-Rosenberg, 2004) If M is simply connected and

dim(I(M)) = 4 (e.g. H2 × R, S2 × R, S̃L(2,R),S3
Berger), then

H-spheres are rotationally invariant and unique, up to ambient
isometries.

(Daniel-Mira, Meeks, 2013) If M is Sol3 with its most symmetric left
invariant metric, then H-spheres are invariant under (some)
symmetries and are unique, up to ambient isometries.
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The Hopf Problem on Homogeneous 3-manifolds

The Hopf problem.

In a given ambient space M, what are the immersed H-spheres in M?

Theorem, Meeks-Mira-Pérez-Ros, 2017

Let M be a homogeneous 3-manifold. Then, any two spheres in M of the
same absolute constant mean curvature differ, as sets, by an isometry of
M. Moreover, if X is the universal covering space of M, it holds:

If X is not diffeomorphic to R3, then, for every H ∈ R, there exists a
sphere of constant mean curvature H in M.

If X is diffeomorphic to R3, then the values H ∈ R for which there
exists a sphere of constant mean curvature H in M are exactly those
with |H| > Ch(X )/2 = H(X ).
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