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Av. Bento Gonçalves, 9500,

91509-900
e-mail: wocortes@gmail.com

Abstract

Definition 0.1. Let G be a semigroupoid. G is said to be an inverse semi-
groupoid if for each g ∈ G there exists an unique g∗ ∈ G such that gg∗g = g
and g∗gg∗ = g∗.

Definition 0.2. Let G be a groupoid. We define the universal semigroupoid
S(G) generated by [g], where s([g]) = [s(g)] and t([g]) = [t(g)] with the
following relations:

a) [g−1][g][h] = [g−1][gh] when t(g) = s(h).
b) [h][g][g−1] = [hg][g−1], when t(h) = s(g)
c) For each g ∈ G, [s(g)][g] = [g][t(g)] = [g].

Remark 0.3. Note that [g][g−1][g] = [g], for each g ∈ G. Thus we have a
suspicious that S(G) is an inverse semigroupoid.

Proposition 0.4. For every g ∈ G, we define ϵg = [g][g−1]. The following
statements hold.

a) ϵg = ϵ2g, for any g ∈ G.
b) When the product h.g exists we have that [h]ϵg = ϵgh[h].
c) ϵg and ϵh commutes when s(g) = s(h).

Proof. a) ϵ2h = [h][h−1[h][h−1] = [hh−1][h][h−1] = [s(h)][h][h−1] = [h][h−1] =
ϵh.

b) [h]ϵg = [h][g][g−1] = [hg][g−1] = [hg][g−1h−1][hg][g−1] = [hg][g−1h−1][h] =
ϵhg[h].

c) [g][g−1]ϵh = [g]ϵg−1h[g
−1] = ϵh[g][g

−1] = ϵhϵg.
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Proposition 0.5. Every element α ∈ S(G) admits a decomposition α =
ϵr1ϵr2 ...ϵrn [g], where [s(ri)] = [s(ri+1)], for each i ∈ {1, ..., n−1} and [s(rn)] =
[s(g)]. In addition we can assume that

(i) ri ̸= rj, for i ̸= j.
(ii) ri ̸= g and either ri ̸= s(ri) or ri ̸= t(ri).

Proof. Let S be the subset of S(G) consisting of those α that admits a
decomposition as above. Note that n = 0 is allowed since [g] ∈ S. We claim
that S is a right ideal. In fact, let α = ϵr1 ...ϵrn [g] and [z] ∈ S such that gz
exists. Then [g][z] = ϵg[gz]. Thus, α[z] ∈ S. Let g ∈ G. Then we have that
[s(g)][g] = [g] ∈ S and we have that S = S(G).

Now, if we have α = ϵr1 ...ϵri ....ϵrj−1
ϵriϵrj+1

...ϵrn [s], then by Proposition 0.4
ϵr1 ...ϵri ....ϵrj−1

ϵrj+1
...ϵrn [g]. Hence, the repeated ϵrj can be dropped.

Next, if ϵri = ϵf , f ∈ G0, then ϵri−1
ϵf = [ri−1][r

−1
i−1][f ][f ] = [ri−1][r

−1
i−1].

Also, if some ri = s, then ϵri = [s][s−1] and again by Proposition 0.4 we have
that α = ϵr1 ..ϵ̂ri ......ϵrn [s][s

−1][s] = ϵr1 ..ϵ̂ri ......ϵrn [s].

Definition 0.6. If α is written as α = ϵr1 ..ϵrn [g], where [s(ri)] = [s(ri+1]
and [s(rn)][s(g)], we say that α is in a standard form.

Proposition 0.7. For each α ∈ S(G), there exists γ ∈ S(G) such that
αγα = α and γαγ = γ.

Proof. Let α = ϵr1 ...ϵrn [g], where [s(ri)] = [s(ri+1)], i ∈ {1, ..., n − 1} and
[s(rn)] = [s(g)]. Then take α∗ = [g−1]ϵrn ...ϵr1 and using the Proposition
αα∗α = ϵr1 ...ϵrn [g][g

−1]ϵrn ...ϵr1ϵr1 ...ϵrn [g] = ϵr1 ...ϵrnϵrn ...ϵr1ϵrn ...ϵr1 [g][g
−1][g] =

ϵr1 ...ϵrn [g]. By similar methods we show that α∗αα∗ = α∗.

Definition 0.8. Let G be a groupoid, H a semigroupoid and π : G → H
a map. We say that π is a partial morphism if the following conditions are
satisfied:

a) π(G0) ⊆ H0

b) For each g, h ∈ G such that the product g.h and π(g).π(h) exists we
have that π(g−1)π(g)π(h) = π(g−1)π(gh).

c) For each g, h ∈ G such that h.g and π(h).π(g) exists we have that
π(h)π(g)π(g−1) = π(hg)π(g−1).

d) π(s(g))π(g) = π(g)π(s(g)) = π(g), for every g ∈ G.

Lemma 0.9. Let G be a groupoid, H a semigroupoid and π : G → H a
partial morphism. The following statements hold.

(i) π(g)π(g−1) and π(g−1)π(g) are idempotents.
b) For each g, h ∈ G such that s(h) = s(g) we have that π(g)π(g−1)π(h)π(h−1) =

π(h)π(h−1)π(g)π(g−1).
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c) Let g, h ∈ G be such that t(h) = s(g). Then π(h)π(g)π(g−1) =
π(hg)π((hg)−1)π(h).

Proof. The proof is similar to the proof of Proposition 0.4.

Proposition 0.10. Let G be a groupoid, H a semigroupoid and π : G → H a
partial morphism, Then there exists a unique homomorphism π̄ : S(G) → H
such that π̄ ◦ i = π..

Proof. We define π(ϵr1 ...ϵrn [g] = ϵπ(r1)...ϵπ(rn)π(g), where ϵπ(ri) = π(ri)π(r
−1
i ),

for all i ∈ {1, ..., n}. We claim that π(ϵr1 ...ϵrn [g]ϵm1 ...ϵmn [h]) = π(ϵr1 ...ϵrn [g])π(ϵm1 ...ϵmn [h])
when [t(g)] = [s(m1)]. In fact,

π(ϵr1 ...ϵrn [g])π(ϵm1 ...ϵmn [h]) = ϵπ(r1)...ϵπ(rn)π(g)ϵπ(s1)...ϵπ(sn)π(h) =
ϵπ(r1)...ϵπ(rn)ϵπ(gm1)...ϵπ(gmn)π(g)π(h) =
ϵπ(r1)...ϵπ(rn)ϵπ(gm1)...ϵπ(gmn)ϵπ(g)π(gh).(1)

Note that

π(ϵr1 ...ϵrn [g]ϵm1 ...ϵmn [h]) = π(ϵr1 ...ϵrnϵgm1 ...ϵgmnϵg[gh]) =
ϵπ(r1)...ϵπ(rn)ϵgm1 ...ϵgmnϵπ(g)π(gh). (2)

We easily see that (1) = (2). Thus, π is an homomorphism of semigroupoids.
Moreover, π̄ ◦ i(g) = π([g]) = π(g).

Remark 0.11. 1) For each groupoid G, we have the canonical partial mor-
phism i : G → S(G) is defined by i(g) = [g].

2) We clearly have that the identity map j : G → G is a partial morphism.
Then by Proposition 0.10 there exists a morphism ω : S(G) → G defined by
ω([g]) = g.

Theorem 0.12. S(G) is an inverse semigroupoid.

Proof. Let α = ϵr1 ...ϵrn [g] be an idempotent. Then ω(α) = g and we have
that g is an idempotent. Thus, g = s(g) since G is a groupoid and it follows
that α = ϵr1 ...ϵrn . So, given α, γ such that αγ and γα exists, we have, by
Proposition 0.4 that αγ = γα. Therefore, S(G) is an inverse semigroupoid.

Example 0.13. Let G = {g, g−1, s(g), t(g)} with s(g) ̸= t(g). Then we have
that G is a groupoid and the inverse semigroupoid S(G) is

S(G) = {[g], [g−1], [g][g−1], [g−1][g], [s(g)], [t(g)]}.
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Let A be a K-algebra, where K is a commutative ring. We set I(A) as
the inverse semigroup of the isomorphisms between ideals of A. We consider
(I(A), .) the restricted groupoid, see [Lawson] for more details.

Proposition 0.14. Let G be a groupoid and A a K-algebra. Then a map
θ : G → (I(A), .) is a partial morphism if and only if we have a partial action
of the groupoid G on A.

Proof. Note that θg−1 ◦ θg ◦ θg−1 = θg−1 and θg ◦ θg−1 ◦ θg = θg which implies
that θ∗g = θg−1 . Denote Dg = Im(θg) and Dg−1 = Im(θg−1) = dom(θg). In
this case, θg : Dg−1 → Dg. For each g, h ∈ G such that ∃g−1h−1 we have
θg−1θh−1θhθhθh−1 = θg−1h−1θhθh−1 . Since dom(θg−1)θ(θh−1) = θh(Dh−1 ∩ Dg)
and Dom(θg−1h−1θhθh−1) = Dh∩Dhg. Thus, θh(Dh−1∩Dg) = Dh∩Dhg. Now,
to prove that the third condition of partial actions of groupoids is standard.
We claim that for each e ∈ G0, dom(θe) = Im(θe) = De, θe = idDe . In fact,
for each e ∈ G0, we have that θe ◦ θe = θe. Thus, Dom(θe) = Im(θe) = De

and θe = idDe . Moreover, we have θt(g) ◦ θg−1 = θg−1 , which implies that
Dom(θt(g) ◦ θg−1) = θg(Dg−1 ∩Dt(g)) = Dg ∩Dt(g) = Dom(θg−1) = Dg and it
follows that Dg ⊆ Dt(g).

The converse is straightforward.

A global action of S(G) os a K-algebra A is a morphism of inverse semi-
groupoids θ : S(G) → (I(A), .)

Theorem 0.15. There are a bijection between the partial actions of a groupoid
G on a K-algebra A and the global actions of S(G) on A.

Proof. Let γ be a global action of S(G) on a K-algebra A. We claim that
({D[g]}g∈G, {γ[g]}g∈G) is a partial action of G on A. In fact, note that

D[g][h] = D[g][g−1][g][h] = γ[g](D[g−1][gh] ∩D[g−1]) = γ[g](γ[g−1](D[gh] ∩D[g]) =
D[gh] ∩D[g] (1)

when ∃gh. Thus, using the fact that γ[g] ◦ γ[h] = γ[g][h] and (1) we get that
γ[g](D[g−1] ∩D[h]) = D[g] ∩D[g][h]. Hence, the item (ii) is satisfied. The item
(i) and (iii) are easily satisfied. Moreover, we clearly have that D[g] ⊆ D[t(g)]

and for each e ∈ G0, γ[e] = idD[e]
.

On the other hand, if we have a partial action of α of G on A, then by
Proposition 0.14 we a partial morphism and by Proposition 0.10 we have a
morphim between S(G) on I(A), that is, we have an action of S(G) on A.

Let β an action of S(G) on A. We consider L the set of all finite formal
sums

∑
s∈S(G) asδs with usual sum and multiplication rule is (asδs)(azδz) =
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asβs(az)δsz when ∃sz and (asδs)(azδz) = 0 when sz does not exist. Let
M = ⟨aδs−aδz : s ≤ z and a ∈ Ds⟩, that is, the ideal generated by aδs−aδz.
We define the algebraic crossed product of β as A ∗β S(G) = L/M .

The following lemma can be similarly proved as in Lemma 3.6 of R. Exel
and F. Vieira

.

Lemma 0.16. Let β be an action of S(G) on A. For r1, ..., rn, g, h ∈ G we
have

(i) aδ[g][h] = aδgh], for a ∈ D[g][h] when ∃gh.
(ii) aδϵr1 ....ϵrn [g] = aδ[g], for a ∈ Dϵr1 ...ϵrn [g]

.

Theorem 0.17. Let α be a partial action of the groupoid G on a K-algebra A
and consider the action γ related to α as in the last theorem. Then A∗αG ≃
A ∗γ S(G).

Proof. First, we easily have that aδ[g][h] = aδ[gh], for a ∈ D[g][h] when ∃gh,
because of [g][h] = [g][h][h−1][h] = [gh][h−1][h] and we have that [g][h] ≤ [gh].
Define φ : A ∗α G → A ∗γ S(G) by φ(aδg) = aδ[g]. Now, we easily obtain as
in Theorem 3.7 of R. Exel and F. Vieira that φ is an homomorphism.

Define Ψ : L → A ∗α G by Ψ(aδs) = aδw(s). Note that Ψ is an homomor-
phism and Ψ(M) = 0. Hence, we can extend Ψ to η : A∗αG → A∗αS(G) by
η(aδs = aδw(s). We easily have that η and φ are inverses of each other.
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