On groupoids and inverse semigroupoids actions

Wagner Cortes,

Instituto de Matematica
Universidade Federal do Rio Grande do Sul,
Porto Alegre-RS, Brazil
Av. Bento Gongcalves, 9500,
91509-900

e-mail: wocortes@gmail.com

Abstract

Definition 0.1. Let G be a semigroupoid. G is said to be an inverse semi-
groupoid if for each g € G there exists an unique g* € G such that gg*g = g

and g*99* = g*.
Definition 0.2. Let G be a groupoid. We define the universal semigroupoid
S(G) generated by [g], where s([g]) = [s(g)] and t([g]) = [t(g)] with the

following relations:

a) [g~'][gllh] = [~ ]lgh] when t(g) = s(h).
b) [M]lgllg™"] = [hgllg™"], when t(h) = s(g)
c) For each g € G, [s(g)l[g] = [g][t(g)] = [g]-

Remark 0.3. Note that [g][g7][g] = [g], for each g € G. Thus we have a
suspicious that S(G) is an inverse semigroupoid.

Proposition 0.4. For every g € G, we define ¢, = [g][g™']. The following
statements hold.

a) eg =€, for any g € G.

b) When the product h.g exists we have that [hle; = €gp[h].

c) €, and €, commutes when s(g) = s(h).

Proof. a) €, = [h][h'[h][A~"] = [hh~M][A][R 7]
€n-
[]Z]) [hleg = [Mlgllg~"] = [hgllg™"] = [hgllg~ ' h ] [hgllg™"] = [hgllg~ R~ ][h] =
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Proposition 0.5. Every element a € S(G) admits a decomposition o =
€ry Ery---Er, [g], where [s(r;)] = [s(rip1)], for eachi € {1,....,n—1} and [s(r,)] =
[s(g)]. In addition we can assume that

(i) ri # 1y, for i # .

(ii) r; # g and either r; # s(r;) or r; # t(r;).

Proof. Let S be the subset of S(G) consisting of those « that admits a
decomposition as above. Note that n = 0 is allowed since [g] € S. We claim
that S is a right ideal. In fact, let a = €,,...€,, [g] and [2] € S such that gz
exists. Then [g][z] = ¢,[gz]. Thus, a[z] € S. Let g € G. Then we have that
[s(9)]lg] = [g] € S and we have that S = S(G).

Now, if we have o = €,,...€,....€,,_ €, 6, ...€x, [5], then by Proposition 0.4
€rporCryonnnbr,_ €1 o€, [g]. Hence, the repeated €., can be dropped.

Next, if e, = ¢, f € Go, then e, ep = [ria][rZ][f][f] = [ri-allriy).

Also, if some r; = s, then ¢,, = [s][s™!] and again by Proposition 0.4 we have
that o = €,,..6r, .6, [8][$TH[S] = €y e iCryoeen€r, [S]- O
Definition 0.6. If « is written as o = €,,..€,,[g], where [s(r;)] = [s(rii1]

and [s(ry)][s(g9)], we say that « is in a standard form.

Proposition 0.7. For each a € S(G), there exists v € S(G) such that
aya = « and yay = .

Proof. Let a = €,,...€,,[g], where [s(r;)] = [s(riz1)], © € {1,...,n — 1} and
[s(rn)] = [s(g9)]. Then take o* = [¢ !¢, ...6,, and using the Proposition

acta = €6 (9[0T er, ooy €rr o [9] = €4y iy, €660y (][0T 9] =
€ry---€r, [g]. By similar methods we show that a*aa* = o*. O

Definition 0.8. Let G' be a groupoid, H a semigroupoid and 7 : G — H
a map. We say that 7 is a partial morphism if the following conditions are
satisfied:

a) m(Go) C Hy

b) For each g,h € G such that the product g.h and w(g).7w(h) exists we
have that w(g~ ) (g)m(h) = (g~ )m(gh).

c¢) For each g,h € G such that h.g and w(h).w(g) exists we have that
m(h)m(g)m(g~) = m(hg)m(g™).

d) m(s(g))m(g) = m(g9)m(s(g)) = w(g), for every g € G.

Lemma 0.9. Let G be a groupoid, H a semigroupoid and w7 : G — H a
partial morphism. The following statements hold.

(i) 7(g)m(g™") and w(g~ V)7 (g) are idempotents.

b) For each g, h € G such that s(h) = s(g) we have that w(g)7 (g ')w(h)r(h™!) =
w(h)r(h () ).



c) Let g,h € G be such that t(h) = s(g). Then w(h)m(g)m(g~) =
w(hg)w((hg)~")m(h).

Proof. The proof is similar to the proof of Proposition 0.4.
O

Proposition 0.10. Let G be a groupoid, H a semigroupoid and 7w : G — H a
partial morphism, Then there exists a unique homomorphism 7 : S(G) — H
such that mo1 = ..

Proof. We define 7 (€, ...€,, [g] = €x(ry)---€x(r)T(g), Where € = m(r;)m(r; "),

foralli € {1,...,n}. We claim that 7(e,,...€. [g]€m, .--€m, [h]) = T(€r, .60, [g]) T (€, --

when [t(g)] = [s(my)]. In fact,

T(€ry o€, [9])W(Em1---6mn [h]) = €x(r1)--Cn(rn)T (9)6 1)--En(s )W(h> =
€n(r1) - Ex(rn) En(gmi) -+ -En(gmn) W(Q)ﬂ-( ) =
Ex(r1)-+En(ra) En(gma)--Ex(gmn) En(g) T(gh).(1)

Note that

T(€ry o€y [l€my - Em, [R]) = T(€ry oo € €gmy - Egmn€glgR]) =
Ex(r1)--En(rn)Egmn - Egmn Ex()T(gh). (2)

We easily see that (1) = (2). Thus, 7 is an homomorphism of semigroupoids.
Moreover, 7 oi(g) = 7([g]) = 7(g). O

Remark 0.11. 1) For each groupoid G, we have the canonical partial mor-
phism i : G — S(G) is defined by i(g) = [g].

2) We clearly have that the identity map j : G — G is a partial morphism.
Then by Proposition 0.10 there exists a morphism w : S(G) — G defined by

w(lgl) = 9.

Theorem 0.12. S(G) is an inverse semigroupoid.

Proof. Let a = €,,...€. [g] be an idempotent. Then w(a) = g and we have
that ¢ is an idempotent. Thus, g = s(g) since G is a groupoid and it follows
that a = €,,...€,,,. So, given «, 7 such that ay and ya exists, we have, by

Proposition 0.4 that ay = ya. Therefore, S(G) is an inverse semigroupoid.
O

Example 0.13. Let G = {g,97",s(g),t(g)} with s(g) # t(g). Then we have
that G is a groupoid and the inverse semigroupoid S(G) is

S(G) =A{lgl, g7 l9llg™"]. [97"Ilg], [s(9)]; [(9)]}-

€m,, [h])



Let A be a K-algebra, where K is a commutative ring. We set I(A) as
the inverse semigroup of the isomorphisms between ideals of A. We consider
(I(A),.) the restricted groupoid, see [Lawson] for more details.

Proposition 0.14. Let G be a groupoid and A a K-algebra. Then a map
0:G — (I(A),.) is a partial morphism if and only if we have a partial action
of the groupoid G on A.

Proof. Note that 6,1 00,00,1 = 0,1 and 0,0 0,1 0 0, = 0, which implies
that 65 = 0,-1. Denote D, = Im(6;) and Dy-1 = Im(0,-1) = dom(f,). In
this case, 0, : Dyj-1 — D,. For each g,h € G such that 3g~'h~! we have
99—19h—19h9h9h—1 = eg—1h—19h9h—1. Since d0m((9g—1)(9((9h—1) = Oh(Dh_1 N Dg)
and Dom(0y-1,-10,0,-1) = DN Dyg. Thus, 04(Dyp-1NDy) = DN Dyy. Now,
to prove that the third condition of partial actions of groupoids is standard.
We claim that for each e € Gy, dom(0.) = Im(0.) = D.,0. = idp,. In fact,
for each e € Gy, we have that . o 0, = .. Thus, Dom(0.) = Im(6.) = D,
and 0, = idp,. Moreover, we have 0y, o 0,1+ = 0,1, which implies that
Dom(ﬁt(g) o (99—1) = Hg(Dg_l N Dt(g)) = Dg N Dt(g) = Dom(ﬁg_l) = Dg and it
follows that Dy C Dyg).

The converse is straightforward. O]

A global action of S(G) os a K-algebra A is a morphism of inverse semi-
groupoids 0 : S(G) — (I(A),.)

Theorem 0.15. There are a bijection between the partial actions of a groupoid
G on a K-algebra A and the global actions of S(G) on A.

Proof. Let v be a global action of S(G) on a K-algebra A. We claim that
({Dyg }geas {Ng }gec) s a partial action of G on A. In fact, note that

Digin) = Digitg-11191n1 = Vgl (Pig-111901 N Dig-11) = Y19 (Vg1 (Dygn) N Dig)) =
D[gh} N D[gl (1)

when Jgh. Thus, using the fact that vy o ) = Yjgp and (1) we get that
Yig)(Dig—1) N Dy) = Dig N Digp)- Hence, the item (ii) is satisfied. The item
(i) and (iii) are easily satisfied. Moreover, we clearly have that Dj; C Dy
and for each e € Gy, Y = idD[el.

On the other hand, if we have a partial action of a of G on A, then by
Proposition 0.14 we a partial morphism and by Proposition 0.10 we have a
morphim between S(G) on I(A), that is, we have an action of S(G) on A.

0

Let 5 an action of S(G) on A. We consider L the set of all finite formal
sums Zses(G) as0s with usual sum and multiplication rule is (a4ds)(a,d,) =
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asfs(a,)ds, when Jsz and (asds)(a,d,) = 0 when sz does not exist. Let
M = (ads—ad, : s < z and a € Dy), that is, the ideal generated by ads — ad,.
We define the algebraic crossed product of § as A x5 S(G) = L/M.

The following lemma can be similarly proved as in Lemma 3.6 of R. Exel
and F. Vieira

Lemma 0.16. Let 8 be an action of S(G) on A. Forry,...,Tn,g,h € G we
have

(Z) aé[g][h] = aégh], fO?" a < D[g][h] when th.

(i1) abe,, ...cp,[g) = AOlg), fOT @ € Do, e, (q]-

€rq -

Theorem 0.17. Let « be a partial action of the groupoid G on a K-algebra A
and consider the action v related to o as in the last theorem. Then Ax, G ~
Ax, S(G).

Proof. First, we easily have that ady = adyn), for a € Dy when dgh,
because of [g][h] = [g][R][h][R] = [gh][h~"][h] and we have that [g][h] < [gh].
Define ¢ : Ax, G — Ax, S(G) by p(ad,) = adl,. Now, we easily obtain as
in Theorem 3.7 of R. Exel and F. Vieira that ¢ is an homomorphism.
Define W : L — A x, G by ¥(ads) = adys). Note that ¥ is an homomor-
phism and W(M) = 0. Hence, we can extend ¥ to n: Ax, G — A%, S(G) by
n(ads = ady(s)- We easily have that 7 and ¢ are inverses of each other. [



