On groupoids and inverse semigroupoids actions

Wagner Cortes,
Instituto de Matemática
Universidade Federal do Rio Grande do Sul,
Porto Alegre-RS, Brazil
Av. Bento Gonçalves, 9500, 91509-900
e-mail: wocortes@gmail.com

Abstract

Definition 0.1. Let G be a semigroupoid. G is said to be an inverse semigroupoid if for each $g \in G$ there exists an unique $g^{*} \in G$ such that $g g^{*} g=g$ and $g^{*} g g^{*}=g^{*}$.

Definition 0.2. Let G be a groupoid. We define the universal semigroupoid $S(G)$ generated by $[g]$, where $s([g])=[s(g)]$ and $t([g])=[t(g)]$ with the following relations: a) $\left[g^{-1}\right][g][h]=\left[g^{-1}\right][g h]$ when $t(g)=s(h)$. b) $[h][g]\left[g^{-1}\right]=[h g]\left[g^{-1}\right]$, when $t(h)=s(g)$ c) For each $g \in G,[s(g)][g]=[g][t(g)]=[g]$.

Remark 0.3. Note that $[g]\left[g^{-1}\right][g]=[g]$, for each $g \in G$. Thus we have a suspicious that $S(G)$ is an inverse semigroupoid.

Proposition 0.4. For every $g \in G$, we define $\epsilon_{g}=[g]\left[g^{-1}\right]$. The following statements hold. a) $\epsilon_{g}=\epsilon_{g}^{2}$, for any $g \in G$. b) When the product h.g exists we have that $[h] \epsilon_{g}=\epsilon_{g h}[h]$. c) ϵ_{g} and ϵ_{h} commutes when $s(g)=s(h)$.

Proof. a) $\epsilon_{h}^{2}=[h]\left[h^{-1}[h]\left[h^{-1}\right]=\left[h h^{-1}\right][h]\left[h^{-1}\right]=[s(h)][h]\left[h^{-1}\right]=[h]\left[h^{-1}\right]=\right.$ ϵ_{h}. b) $[h] \epsilon_{g}=[h][g]\left[g^{-1}\right]=[h g]\left[g^{-1}\right]=[h g]\left[g^{-1} h^{-1}\right][h g]\left[g^{-1}\right]=[h g]\left[g^{-1} h^{-1}\right][h]=$ $\epsilon_{h g}[h]$. c) $[g]\left[g^{-1}\right] \epsilon_{h}=[g] \epsilon_{g^{-1} h}\left[g^{-1}\right]=\epsilon_{h}[g]\left[g^{-1}\right]=\epsilon_{h} \epsilon_{g}$.

Proposition 0.5. Every element $\alpha \in S(G)$ admits a decomposition $\alpha=$ $\epsilon_{r_{1}} \epsilon_{r_{2}} \ldots \epsilon_{r_{n}}[g]$, where $\left[s\left(r_{i}\right)\right]=\left[s\left(r_{i+1}\right)\right]$, for each $i \in\{1, \ldots, n-1\}$ and $\left[s\left(r_{n}\right)\right]=$ $[s(g)]$. In addition we can assume that
(i) $r_{i} \neq r_{j}$, for $i \neq j$.
(ii) $r_{i} \neq g$ and either $r_{i} \neq s\left(r_{i}\right)$ or $r_{i} \neq t\left(r_{i}\right)$.

Proof. Let S be the subset of $S(G)$ consisting of those α that admits a decomposition as above. Note that $n=0$ is allowed since $[g] \in S$. We claim that S is a right ideal. In fact, let $\alpha=\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{n}}[g]$ and $[z] \in S$ such that $g z$ exists. Then $[g][z]=\epsilon_{g}[g z]$. Thus, $\alpha[z] \in S$. Let $g \in G$. Then we have that $[s(g)][g]=[g] \in S$ and we have that $S=S(G)$.

Now, if we have $\alpha=\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{i}} \ldots \epsilon_{r_{j-1}} \epsilon_{r_{i}} \epsilon_{r_{j+1}} \ldots \epsilon_{r_{n}}[s]$, then by Proposition 0.4 $\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{i}} \ldots \epsilon_{r_{j-1}} \epsilon_{r_{j+1} \ldots \epsilon_{r_{n}}}[g]$. Hence, the repeated $\epsilon_{r_{j}}$ can be dropped.

Next, if $\epsilon_{r_{i}}=\epsilon_{f}, f \in G_{0}$, then $\epsilon_{r_{i-1}} \epsilon_{f}=\left[r_{i-1}\right]\left[r_{i-1}^{-1}\right][f][f]=\left[r_{i-1}\right]\left[r_{i-1}^{-1}\right]$. Also, if some $r_{i}=s$, then $\epsilon_{r_{i}}=[s]\left[s^{-1}\right]$ and again by Proposition 0.4 we have that $\alpha=\epsilon_{r_{1}} . . \widehat{\epsilon}_{r_{i}} \ldots \ldots . \epsilon_{r_{n}}[s]\left[s^{-1}\right][s]=\epsilon_{r_{1}} . . \widehat{\epsilon}_{r_{i}} \ldots \ldots \epsilon_{r_{n}}[s]$.
Definition 0.6. If α is written as $\alpha=\epsilon_{r_{1} . . . \epsilon_{r_{n}}}[g]$, where $\left[s\left(r_{i}\right)\right]=\left[s\left(r_{i+1}\right]\right.$ and $\left[s\left(r_{n}\right)\right][s(g)]$, we say that α is in a standard form.

Proposition 0.7. For each $\alpha \in S(G)$, there exists $\gamma \in S(G)$ such that $\alpha \gamma \alpha=\alpha$ and $\gamma \alpha \gamma=\gamma$.

Proof. Let $\alpha=\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]$, where $\left[s\left(r_{i}\right)\right]=\left[s\left(r_{i+1}\right)\right], i \in\{1, \ldots, n-1\}$ and $\left[s\left(r_{n}\right)\right]=[s(g)]$. Then take $\alpha^{*}=\left[g^{-1}\right] \epsilon_{r_{n}} \ldots \epsilon_{r_{1}}$ and using the Proposition $\alpha \alpha^{*} \alpha=\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]\left[g^{-1}\right] \epsilon_{r_{n}} \ldots \epsilon_{r_{1}} \epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]=\epsilon_{r_{1}} \ldots \epsilon_{r_{n}} \epsilon_{r_{n}} \ldots \epsilon_{r_{1}} \epsilon_{r_{n}} \ldots \epsilon_{r_{1}}[g]\left[g^{-1]}[g]=\right.$ $\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]$. By similar methods we show that $\alpha^{*} \alpha \alpha^{*}=\alpha^{*}$.

Definition 0.8. Let G be a groupoid, H a semigroupoid and $\pi: G \rightarrow H$ a map. We say that π is a partial morphism if the following conditions are satisfied:
a) $\pi\left(G_{0}\right) \subseteq H_{0}$
b) For each $g, h \in G$ such that the product $g . h$ and $\pi(g) . \pi(h)$ exists we have that $\pi\left(g^{-1}\right) \pi(g) \pi(h)=\pi\left(g^{-1}\right) \pi(g h)$.
c) For each $g, h \in G$ such that h.g and $\pi(h) . \pi(g)$ exists we have that $\pi(h) \pi(g) \pi\left(g^{-1}\right)=\pi(h g) \pi\left(g^{-1}\right)$.
d) $\pi(s(g)) \pi(g)=\pi(g) \pi(s(g))=\pi(g)$, for every $g \in G$.

Lemma 0.9. Let G be a groupoid, H a semigroupoid and $\pi: G \rightarrow H$ a partial morphism. The following statements hold.
(i) $\pi(g) \pi\left(g^{-1}\right)$ and $\pi\left(g^{-1}\right) \pi(g)$ are idempotents.
b) For each $g, h \in G$ such that $s(h)=s(g)$ we have that $\pi(g) \pi\left(g^{-1}\right) \pi(h) \pi\left(h^{-1}\right)=$ $\pi(h) \pi\left(h^{-1}\right) \pi(g) \pi\left(g^{-1}\right)$.
c) Let $g, h \in G$ be such that $t(h)=s(g)$. Then $\pi(h) \pi(g) \pi\left(g^{-1}\right)=$ $\pi(h g) \pi\left((h g)^{-1}\right) \pi(h)$.

Proof. The proof is similar to the proof of Proposition 0.4.

Proposition 0.10. Let G be a groupoid, H a semigroupoid and $\pi: G \rightarrow H$ a partial morphism, Then there exists a unique homomorphism $\bar{\pi}: S(G) \rightarrow H$ such that $\bar{\pi} \circ i=\pi$..

Proof. We define $\pi\left(\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{n}}[g]=\epsilon_{\pi\left(r_{1}\right)} \ldots \epsilon_{\pi\left(r_{n}\right)} \pi(g)\right.$, where $\epsilon_{\pi\left(r_{i}\right)}=\pi\left(r_{i}\right) \pi\left(r_{i}^{-1}\right)$, for all $i \in\{1, \ldots, n\}$. We claim that $\pi\left(\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g] \epsilon_{m_{1}} \ldots \epsilon_{m_{n}}[h]\right)=\pi\left(\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]\right) \pi\left(\epsilon_{m_{1}} \ldots \epsilon_{m_{n}}[h]\right)$ when $[t(g)]=\left[s\left(m_{1}\right)\right]$. In fact,

$$
\begin{aligned}
& \pi\left(\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]\right) \pi\left(\epsilon_{m_{1}} \ldots \epsilon_{m_{n}}[h]\right)=\epsilon_{\pi\left(r_{1}\right)} \ldots \epsilon_{\pi\left(r_{n}\right)} \pi(g) \epsilon_{\pi\left(s_{1}\right)} \ldots \epsilon_{\pi\left(s_{n}\right)} \pi(h)= \\
& \epsilon_{\pi\left(r_{1}\right)} \ldots \epsilon_{\pi\left(r_{n}\right)} \epsilon_{\pi\left(g m_{1}\right)} \ldots \epsilon_{\pi\left(g m_{n}\right)} \pi(g) \pi(h)= \\
& \epsilon_{\pi\left(r_{1}\right) \ldots \epsilon_{\pi\left(r_{n}\right)} \epsilon_{\pi\left(g m_{1}\right)} \ldots \epsilon_{\pi\left(g m_{n}\right)} \epsilon_{\pi(g)} \pi(g h) .(1)}
\end{aligned}
$$

Note that

$$
\begin{align*}
& \pi\left(\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{n}}[g] \epsilon_{m_{1}} \ldots \epsilon_{m_{n}}[h]\right)=\pi\left(\epsilon_{r_{1}} \ldots \epsilon_{r_{n}} \epsilon_{g m_{1}} \ldots \epsilon_{g m_{n}} \epsilon_{g}[g h]\right)= \\
& \epsilon_{\pi\left(r_{1}\right)} \ldots \epsilon_{\pi\left(r_{n}\right)} \epsilon_{g m_{1}} \ldots \epsilon_{g m_{n}} \epsilon_{\pi(g)} \pi(g h) . \tag{2}
\end{align*}
$$

We easily see that $(1)=(2)$. Thus, π is an homomorphism of semigroupoids. Moreover, $\bar{\pi} \circ i(g)=\pi([g])=\pi(g)$.

Remark 0.11. 1) For each groupoid G, we have the canonical partial morphism $i: G \rightarrow S(G)$ is defined by $i(g)=[g]$.
2) We clearly have that the identity map $j: G \rightarrow G$ is a partial morphism. Then by Proposition 0.10 there exists a morphism $\omega: S(G) \rightarrow G$ defined by $\omega([g])=g$.

Theorem 0.12. $S(G)$ is an inverse semigroupoid.
Proof. Let $\alpha=\epsilon_{r_{1} \ldots} \ldots \epsilon_{r_{n}}[g]$ be an idempotent. Then $\omega(\alpha)=g$ and we have that g is an idempotent. Thus, $g=s(g)$ since G is a groupoid and it follows that $\alpha=\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}$. So, given α, γ such that $\alpha \gamma$ and $\gamma \alpha$ exists, we have, by Proposition 0.4 that $\alpha \gamma=\gamma \alpha$. Therefore, $S(G)$ is an inverse semigroupoid.

Example 0.13. Let $G=\left\{g, g^{-1}, s(g), t(g)\right\}$ with $s(g) \neq t(g)$. Then we have that G is a groupoid and the inverse semigroupoid $S(G)$ is

$$
S(G)=\left\{[g],\left[g^{-1}\right],[g]\left[g^{-1}\right],\left[g^{-1}\right][g],[s(g)],[t(g)]\right\} .
$$

Let A be a K-algebra, where K is a commutative ring. We set $I(A)$ as the inverse semigroup of the isomorphisms between ideals of A. We consider $(I(A),$.$) the restricted groupoid, see [Lawson] for more details.$

Proposition 0.14. Let G be a groupoid and A a K-algebra. Then a map $\theta: G \rightarrow(I(A),$.$) is a partial morphism if and only if we have a partial action$ of the groupoid G on A.

Proof. Note that $\theta_{g^{-1}} \circ \theta_{g} \circ \theta_{g^{-1}}=\theta_{g^{-1}}$ and $\theta_{g} \circ \theta_{g^{-1}} \circ \theta_{g}=\theta_{g}$ which implies that $\theta_{g}^{*}=\theta_{g^{-1}}$. Denote $D_{g}=\operatorname{Im}\left(\theta_{g}\right)$ and $D_{g^{-1}}=\operatorname{Im}\left(\theta_{g^{-1}}\right)=\operatorname{dom}\left(\theta_{g}\right)$. In this case, $\theta_{g}: D_{g^{-1}} \rightarrow D_{g}$. For each $g, h \in G$ such that $\exists g^{-1} h^{-1}$ we have $\theta_{g^{-1}} \theta_{h^{-1}} \theta_{h} \theta_{h} \theta_{h^{-1}}=\theta_{g^{-1} h^{-1}} \theta_{h} \theta_{h^{-1}}$. Since $\operatorname{dom}\left(\theta_{g^{-1}}\right) \theta\left(\theta_{h^{-1}}\right)=\theta_{h}\left(D_{h^{-1}} \cap D_{g}\right)$ and $\operatorname{Dom}\left(\theta_{g^{-1} h^{-1}} \theta_{h} \theta_{h^{-1}}\right)=D_{h} \cap D_{h g}$. Thus, $\theta_{h}\left(D_{h^{-1}} \cap D_{g}\right)=D_{h} \cap D_{h g}$. Now, to prove that the third condition of partial actions of groupoids is standard. We claim that for each $e \in G_{0}, \operatorname{dom}\left(\theta_{e}\right)=\operatorname{Im}\left(\theta_{e}\right)=D_{e}, \theta_{e}=i d_{D_{e}}$. In fact, for each $e \in G_{0}$, we have that $\theta_{e} \circ \theta_{e}=\theta_{e}$. Thus, $\operatorname{Dom}\left(\theta_{e}\right)=\operatorname{Im}\left(\theta_{e}\right)=D_{e}$ and $\theta_{e}=i d_{D_{e}}$. Moreover, we have $\theta_{t(g)} \circ \theta_{g^{-1}}=\theta_{g^{-1}}$, which implies that $\operatorname{Dom}\left(\theta_{t(g)} \circ \theta_{g^{-1}}\right)=\theta_{g}\left(D_{g^{-1}} \cap D_{t(g)}\right)=D_{g} \cap D_{t(g)}=\operatorname{Dom}\left(\theta_{g^{-1}}\right)=D_{g}$ and it follows that $D_{g} \subseteq D_{t(g)}$.

The converse is straightforward.
A global action of $S(G)$ os a K-algebra A is a morphism of inverse semigroupoids $\theta: S(G) \rightarrow(I(A),$.

Theorem 0.15. There are a bijection between the partial actions of a groupoid G on a K-algebra A and the global actions of $S(G)$ on A.

Proof. Let γ be a global action of $S(G)$ on a K-algebra A. We claim that $\left(\left\{D_{[g]}\right\}_{g \in G},\left\{\gamma_{[g]}\right\}_{g \in G}\right)$ is a partial action of G on A. In fact, note that

$$
\begin{gathered}
D_{[g][h]}=D_{[g]\left[g^{-1}\right][g][h]}=\gamma_{[g]}\left(D_{\left[g^{-1}\right][g h]} \cap D_{\left[g^{-1}\right]}\right)=\gamma_{[g]}\left(\gamma_{\left[g^{-1}\right]}\left(D_{[g h]} \cap D_{[g]}\right)=\right. \\
D_{[g h]} \cap D_{[g]}(1)
\end{gathered}
$$

when $\exists g h$. Thus, using the fact that $\gamma_{[g]} \circ \gamma_{[h]}=\gamma_{[g[h]}$ and (1) we get that $\gamma_{[g]}\left(D_{\left[g^{-1}\right]} \cap D_{[h]}\right)=D_{[g]} \cap D_{[g][h]}$. Hence, the item (ii) is satisfied. The item (i) and (iii) are easily satisfied. Moreover, we clearly have that $D_{[g]} \subseteq D_{[t(g)]}$ and for each $e \in G_{0}, \gamma_{[e]}=i d_{D_{[e]}}$.

On the other hand, if we have a partial action of α of G on A, then by Proposition 0.14 we a partial morphism and by Proposition 0.10 we have a morphim between $S(G)$ on $I(A)$, that is, we have an action of $S(G)$ on A.

Let β an action of $S(G)$ on A. We consider L the set of all finite formal sums $\sum_{s \in S(G)} a_{s} \delta_{s}$ with usual sum and multiplication rule is $\left(a_{s} \delta_{s}\right)\left(a_{z} \delta_{z}\right)=$
$a_{s} \beta_{s}\left(a_{z}\right) \delta_{s z}$ when $\exists s z$ and $\left(a_{s} \delta_{s}\right)\left(a_{z} \delta_{z}\right)=0$ when $s z$ does not exist. Let $M=\left\langle a \delta_{s}-a \delta_{z}: s \leq z\right.$ and $\left.a \in D_{s}\right\rangle$, that is, the ideal generated by $a \delta_{s}-a \delta_{z}$. We define the algebraic crossed product of β as $A *_{\beta} S(G)=L / M$.

The following lemma can be similarly proved as in Lemma 3.6 of R. Exel and F. Vieira

Lemma 0.16. Let β be an action of $S(G)$ on A. For $r_{1}, \ldots, r_{n}, g, h \in G$ we have
(i) $\overline{a \delta_{[g][h]}}=\overline{a \delta_{g h]}}$, for $a \in D_{[g][h]}$ when $\exists g h$.
(ii) $\overline{a \delta_{\epsilon_{r_{1}} \ldots \epsilon_{r n}}[g]}=\overline{a \delta_{[g]}}$, for $a \in D_{\epsilon_{r_{1}} \ldots \epsilon_{r_{n}}[g]}$.

Theorem 0.17. Let α be a partial action of the groupoid G on a K-algebra A and consider the action γ related to α as in the last theorem. Then $A *{ }_{\alpha} G \simeq$ $A *_{\gamma} S(G)$.

Proof. First, we easily have that $\overline{a \delta_{[g][h]}}=\overline{a \delta_{[g h]}}$, for $a \in D_{[g][h]}$ when $\exists g h$, because of $[g][h]=[g][h]\left[h^{-1}\right][h]=[g h]\left[h^{-1}\right][h]$ and we have that $[g][h] \leq[g h]$. Define $\varphi: A *_{\alpha} G \rightarrow A *_{\gamma} S(G)$ by $\varphi\left(a \delta_{g}\right)=\overline{a \delta_{[g]}}$. Now, we easily obtain as in Theorem 3.7 of R. Exel and F. Vieira that φ is an homomorphism.

Define $\Psi: L \rightarrow A *_{\alpha} G$ by $\Psi\left(a \delta_{s}\right)=a \delta_{w(s)}$. Note that Ψ is an homomorphism and $\Psi(M)=0$. Hence, we can extend Ψ to $\eta: A *_{\alpha} G \rightarrow A *_{\alpha} S(G)$ by $\eta \overline{a \delta_{s}}=a \delta_{w(s)}$. We easily have that η and φ are inverses of each other.

