Core Chemistry 3 (CHEM3012) - Inorganic Reaction Mechanisms

You are expected to have attempted these questions before the workshop

Substitution in Square Planar complexes.

(a) Using either $\left[\mathrm{PtCl}_{4}\right]^{2-}$ or $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ as metal containing starting materials, outline the synthesis of cis and trans isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right) \mathrm{Cl}_{2}\right]^{-}$, given that the substituent trans effects are in the order $\mathrm{NO}_{2}{ }^{-}>\mathrm{Cl}^{-}>\mathrm{NH}_{3}$.
(b) Why do phosphine ligands show such a high trans effect? (Hint: recall the molecular orbital basis for the trans effect, and consider the orbital interactions when a phosphine bonds to a metal centre.) What are the products of the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with
(i) two moles of $\mathrm{R}_{3} \mathrm{P}$, and
(ii) two moles of $\mathrm{R}_{3} \mathrm{~N}$?
(c) Predict the products of the reaction of each of the following metal complexes with
(i) one mole, and
(ii) two moles of the nucleophile listed:
(I) $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}\right]^{2+}$ with Br^{-},
(II) $\left[\mathrm{PtBr}_{4}\right]^{2-}$ with PPh_{3},
(III) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ with Cl^{-}.
(d) Using the reagents $\mathrm{PPh}_{3}, \mathrm{NH}_{3}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$, propose efficient routes to all the possible isomers of $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$. (Shriver, Atkins and Langford, $1^{\text {st }}$ edition, p474)
(e) For the reaction below, the second-order rate constants, in $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, for $\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}$ are 33, 0.58 and 6.7×10^{-6}, respectively. Explain.

$$
\text { trans- }\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}\right]+\text { pyridine } \rightarrow \text { trans }-\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)(\text { pyridine })\right]^{+}+\mathrm{Cl}^{-}
$$

General Substitution reactions of Octahedral complexes.

(f) Put the following complexes in order of rate of substitution by $\mathrm{H}_{2} \mathrm{O}$:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, (ii) $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, (iii) $\left[\operatorname{Ir}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, (iv) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, (v) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.
(g) For the reactions: $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{H}_{2}{ }^{17} \mathrm{O} \rightarrow\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{H}_{2}{ }^{17} \mathrm{O}\right)\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$, the volumes of activation $\left(\Delta \mathrm{V}^{\ddagger}\right.$ in $\left.\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$ are found to be

$$
\mathrm{V}^{2+}-10.1, \mathrm{Mn}^{2+}-4.1, \mathrm{Fe}^{2+}+3.8, \mathrm{Co}^{2+}+6.1, \text { and } \mathrm{Ni}^{2+}+7.2
$$

Discuss these data in terms of the mechanism of these reactions.
(h) Why does $\left[\mathrm{Ga}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ exchange coordinated water molecules faster than $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$? How would $\left[\mathrm{Tl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ compare? What about $\left[\mathrm{Tl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}\right]^{+}$?

Substitution reaction in Octahedral Co (III) and Rh (III) complexes.

(i) The reaction of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$with $\mathrm{H}_{2} \mathrm{O}$ is 10^{3} times faster than the reaction of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$. By considering how the charge on a complex affects bond strengths, discuss briefly whether this data is consistent with a I_{d} or I_{a} mechanism.
(j) Why is the hydrolysis of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ in the presence of base much faster than that of $\left[\mathrm{Co}(\mathrm{py})_{5} \mathrm{Cl}\right]^{2+}$?
(k) The reactions of $\mathrm{Rh}(\mathrm{III})$ complexes proceed via I_{d} mechanisms. State the effect of the following on the rate of such reactions:
(i) an increase in the positive charge on the complex;
(ii) changing the leaving group from NO_{3}^{-}to Cl^{-};
(iii) changing the entering group from Cl^{-}to Γ^{-};
(iv) changing the cis ligands from NH_{3} to $\mathrm{H}_{2} \mathrm{O}$.
(1) Explain the trends in the rate constants given in the table below for the following reaction:

$$
\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~L}+* \mathrm{CO} \rightarrow \mathrm{Cr}(\mathrm{CO})_{4}(* \mathrm{CO}) \mathrm{L}+\mathrm{CO}
$$

L	CO	$\mathrm{PMe}_{2} \mathrm{Ph}$	PPh_{3}	Br^{-}	Cl^{-}
$\mathrm{k}\left(\mathrm{s}^{-1}, 30^{\circ} \mathrm{C}\right)$	1.0×10^{-12}	1.5×10^{-10}	3.0×10^{-10}	2.0×10^{-5}	1.5×10^{-4}

Ligand substitution, insertion, and oxidative addition in Organometallics

(m)Indicate whether the following complexes would undergo substitution by PPh_{3} by associative or dissociative pathways:
$\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})(\mathrm{NO}), \mathrm{V}(\mathrm{CO})_{6}, \mathrm{PtCl}_{4}{ }^{2-}, \mathrm{Co}\left(\eta^{5} \text {-indenyl)(CO) }\right)_{2}$.
(n) The complex $\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{CH}_{3}\right)$ reacts with PMe_{3} to give $\mathrm{Fe}\left(\eta \mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{COCH}_{3}\right)\left(\mathrm{PMe}_{3}\right)$, in a reaction that is first order in both starting materials. Explain.
(o) The complex $\left[\text { cis }-\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{H}(\text { solv })\right]^{+}$(solv $=$methanol or acetone) isomerises 1 -hexene to a mixture of 2-hexene and 3-hexene. Suggest a mechanism for this process.
(p) Account for the stereochemistry of the following reaction:

(q) The reaction of $\mathrm{V}(\mathrm{CO})_{5}(\mathrm{NO})$ with PMe_{3} to give $\mathrm{V}(\mathrm{CO})_{4}(\mathrm{NO})\left(\mathrm{PMe}_{3}\right)$ obeys the rate law:

$$
\frac{-d\left[\mathrm{~V}(\mathrm{CO})_{5}(\mathrm{NO})\right]}{d t}=k_{1}\left[\mathrm{~V}(\mathrm{CO})_{5}(\mathrm{NO})\right]+k_{2}\left[\mathrm{PMe}_{3}\right]\left[\mathrm{V}(\mathrm{CO})_{5}(\mathrm{NO})\right]
$$

Suggest a mechanism for this reaction consistent with the rate law and the 18 -electron rule.

Electron transfer reactions

(r) In the reaction of $\left[\mathrm{Co}(\mathrm{NCS})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ with $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ in water as solvent, it is possible to identify $\left[\mathrm{Fe}(\mathrm{NCS})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ as an intermediate. Explain. What are the final products of this reaction?
(s) The rate constants for the exchange reaction:

$$
\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{X}\right]^{2+}+\left[{ }^{*} \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow\left[{ }^{*} \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{X}\right]^{2+}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
$$

where ${ }^{*} \mathrm{Cr}$ is ${ }^{51} \mathrm{Cr}$, a radioactive nuclide and X is a mono-anionic ligand, are given in the table.
Outline the likely mechanism and explain the difference in the rate constants.

$$
\begin{array}{lllll}
\mathrm{X} & \mathrm{~F}^{-} & \mathrm{Cl}^{-} & \mathrm{Br}^{-} & \mathrm{N}_{3}^{-} \\
\mathrm{k}\left(\mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}\right) & 1.2 \times 10^{-3} & 11 & 60 & >1.2
\end{array}
$$

(t) Account for the relative rates of the following two reactions:

$$
\begin{array}{lll}
{\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\left[* \mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+\left[* \mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}} & 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \\
{\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left[* \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\left[{ }^{3+} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}} & 10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{array}
$$

