Core Chemistry 3 (CHEM3012) - Inorganic Reaction Mechanisms

You are expected to have attempted these questions before the workshop

Substitution in Square Planar complexes.

- (a) Using either $[PtCl_4]^{2-}$ or $[Pt(NH_3)_4]^{2+}$ as metal containing starting materials, outline the synthesis of *cis* and *trans* isomers of $[Pt(NH_3)(NO_2)Cl_2]^-$, given that the substituent *trans* effects are in the order $NO_2^- > CI^- > NH_3$.
- (b) Why do phosphine ligands show such a high *trans* effect? (Hint: recall the molecular orbital basis for the *trans* effect, and consider the orbital interactions when a phosphine bonds to a metal centre.) What are the products of the reaction of K₂PtCl₄ with
 - (i) two moles of R₃P, and
 - (ii) two moles of R₃N?
- (c) Predict the products of the reaction of each of the following metal complexes with
 - (i) one mole, and
 - (ii) two moles of the nucleophile listed:
 - (I) $[Pt(PPh_3)_4]^{2+}$ with Br⁻, (II) $[PtBr_4]^{2-}$ with PPh₃,
 - (II) $[Pt(NH_3)_4]^{2+}$ with Cl⁻.
- (d) Using the reagents PPh₃, NH₃ and [PtCl₄]²⁻, propose efficient routes to all the possible isomers of [PtCl₂(NH₃)(PPh₃)]. (Shriver, Atkins and Langford, 1st edition, p474)
- (e) For the reaction below, the second-order rate constants, in dm³ mol⁻¹s⁻¹, for M = Ni, Pd, Pt are 33, 0.58 and 6.7 x 10⁻⁶, respectively. Explain. *trans*-[Pt(PEt₃)₂(C₆H₅)Cl] + pyridine \rightarrow *trans*-[Pt(PEt₃)₂(C₆H₅)(pyridine)]⁺ + Cl⁻

General Substitution reactions of Octahedral complexes.

(f) Put the following complexes in order of rate of substitution by H₂O:
(i) [Co(NH₃)₆]³⁺, (ii) [Rh(NH₃)₆]³⁺, (iii) [Ir(NH₃)₆]³⁺, (iv) [Mn(H₂O)₆]²⁺, (v) [Ni(H₂O)₆]²⁺.

(g) For the reactions: $[M(H_2O)_6]^{2^+} + H_2^{17}O \rightarrow [M(H_2O)_5(H_2^{17}O)]^{2^+} + H_2O$, the volumes of activation (ΔV^{\ddagger} in cm³ mol⁻¹) are found to be V^{2^+} -10.1, Mn^{2^+} -4.1, Fe²⁺ +3.8, Co²⁺ +6.1, and Ni²⁺ +7.2. Discuss these data in terms of the mechanism of these reactions.

(h) Why does $[Ga(H_2O)_6]^{3+}$ exchange coordinated water molecules faster than $[Al(H_2O)]^{3+}$? How would $[Tl(H_2O)_6]^{3+}$ compare? What about $[Tl(H_2O)_n]^+$?

Substitution reaction in Octahedral Co(III) and Rh(III) complexes.

- (i) The reaction of $[Co(NH_3)_4Cl_2]^+$ with H_2O is 10^3 times faster than the reaction of $[Co(NH_3)_5Cl]^{2+}$. By considering how the charge on a complex affects bond strengths, discuss briefly whether this data is consistent with a I_d or I_a mechanism.
- (j) Why is the hydrolysis of $[Co(NH_3)_5Cl]^{2+}$ in the presence of base much faster than that of $[Co(py)_5Cl]^{2+}$?
- (k) The reactions of Rh(III) complexes proceed via I_d mechanisms. State the effect of the following on the rate of such reactions:

- (i) an increase in the positive charge on the complex;
- (ii) changing the leaving group from NO_3^- to Cl^- ;
- (iii) changing the entering group from Cl^- to I^- ;
- (iv) changing the *cis* ligands from NH_3 to H_2O .
- (1) Explain the trends in the rate constants given in the table below for the following reaction: $Cr(CO)_5L + *CO \rightarrow Cr(CO)_4(*CO)L + CO$

Ligand substitution, insertion, and oxidative addition in Organometallics

(m)Indicate whether the following complexes would undergo substitution by PPh₃ by associative or dissociative pathways:

 $Mo(CO)_6$, $Fe(\eta-C_5H_5)(CO)(NO)$, $V(CO)_6$, $PtCl_4^{2-}$, $Co(\eta^5-indenyl)(CO)_2$.

- (n) The complex $Fe(\eta-C_5H_5)(CO)_2(CH_3)$ reacts with PMe₃ to give $Fe(\eta C_5H_5)(CO)(COCH_3)(PMe_3)$, in a reaction that is first order in both starting materials. Explain.
- (o) The complex $[cis-Pt(PEt_3)_2H(solv)]^+$ (solv = methanol or acetone) isomerises 1-hexene to a mixture of 2-hexene and 3-hexene. Suggest a mechanism for this process.
- (p) Account for the stereochemistry of the following reaction:

(q) The reaction of $V(CO)_5(NO)$ with PMe₃ to give $V(CO)_4(NO)(PMe_3)$ obeys the rate law:

$$\frac{-d[V(CO)_5(NO)]}{dt} = k_1[V(CO)_5(NO)] + k_2[PMe_3][V(CO)_5(NO)]$$

Suggest a mechanism for this reaction consistent with the rate law and the 18-electron rule.

Electron transfer reactions

- (r) In the reaction of $[Co(NCS)(NH_3)_5]^{2+}$ with $[Fe(H_2O)_6]^{2+}$ in water as solvent, it is possible to identify $[Fe(NCS)(H_2O)_5]^{2+}$ as an intermediate. Explain. What are the final products of this reaction?
- (s) The rate constants for the exchange reaction:

 $[Cr(H_2O)_5X]^{2+} + [*Cr(H_2O)_6]^{2+} \rightarrow [*Cr(H_2O)_5X]^{2+} + [Cr(H_2O)_6]^{2+}$ where *Cr is ⁵¹Cr, a radioactive nuclide and X is a mono-anionic ligand, are given in the table. Outline the likely mechanism and explain the difference in the rate constants.

X
 F
 Cl⁻
 Br

$$N_3^-$$

 k (mol⁻¹ dm³ s⁻¹)
 1.2 x 10⁻³
 11
 60
 >1.2

(t) Account for the relative rates of the following two reactions:

$$[Fe(CN)_6]^{3-} + [*Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{4-} + [*Fe(CN)_6]^{3-} \qquad 10^5 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \\ [Co(NH_3)_6]^{3+} + [*Co(NH_3)_6]^{2+} \rightarrow [Co(NH_3)_6]^{2+} + [*Co(NH_3)_6]^{3+} \qquad 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$