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The system of strongly interacting particles is discussed, with
electromagnetism, weak interactions, and gravitation considered
as perturbations. The electric current j, the weak current J,
and the gravitational tensor 8 p are all well-defined operators, with
finite matrix elements obeying dispersion relations. To the extent
that the dispersion relations for matrix elements of these operators
between the vacuum and other states are highly convergent and
dominated by contributions from intermediate one-meson states,
we have relations like the Goldberger-Treiman formula and uni-
versality principles like that of Sakurai according to which the p
meson is coupled approximately to the isotopic spin. Homogeneous
linear dispersion relations, even without subtractions, do not
suffice to fix the scale of these matrix elements; in particular, for
the nonconserved currents, the renormalization factors cannot be
calculated, and the universality of strength of the weak inter-
actions is undefined. More information than just the dispersion
relations must be supplied, for example, by field-theoretic models;
we consider, in fact, the equal-time commutation relations of the
various parts of j4 and J4. These nonlinear relations define an
algebraic system (or a group) that underlies the structure. of
baryons and mesons. It is suggested that the group is in fact
U(3) P U(3), exemplified by the symmetrical Sakata model. The
Hamiltonian density 044 is not completely invariant under the
group; the noninvariant part transforms according to a particular

representation of the group; it is possible that this information
also is given correctly by the symmetrical Sakata model. Various
exact relations among form factors follow from the algebraic struc-
ture. In addition, it may be worthwhile to consider the approxi-
mate situation in which the strangeness-changing vector currents
are conserved and the Hamiltonian is invariant under U(3l; we
refer to this limiting case as "unitary symmetry. " In the limit, the
baryons and mesons form degenerate supermultiplets, which
break up into isotopic multiplets when the symmetry-breaking
term in the Hamiltonian is "turned on."The mesons are expected
to form unitary singlets and octets; each octet breaks up into a
triplet, a singlet, and a pair of strange doublets. The known
pseudoscalar and vector mesons fiit this pattern if there exists also
an isotopic singlet pseudoscalar meson x . If we consider unitary
symmetry in the abstract rather than in connection with a field
theory, then we find, as an attractive alternative to the Sakata
model, the scheme of Ne'eman and Gell-Mann, which we call the
"eightfold way"; the baryons 3l, A, Z, and - form an octet, like
the vector and pseudoscalar meson octets, in the limit of unitary
symmetry. Although the violations of unitary symmetry must be
quite large, there is some hope of relating certain violations to
others. As an example of the methods advocated, we present a
rough calculation of the rate of E+ ~ p++p in terms of that of
~+ —+ p,++v.

I. INTRODUCTION

' 'N connection with the system of strongly interacting
~ ~ particles, there has been a great deal of discussion
of possible approximate symmetries, ' which would be
vioIated by large e6ects but still have some physical
consequences, such as approximate universality of
meson couplings, approximate degeneracy of baryon or
meson supermultiplets, and "partial conservation" of
currents for the weak interactions.

In this article we shall try to clarify the meaning of
such possible symmetries, for both strong and weak
interactions. Ke shall show that a broken symmetry,
even though it is badly violated, may give rise to cer-
tain exact relations among measurable quantities,
Furthermore, we shall suggest a particular symmetry
group as the one most likely to underlie the structure
of the system of baryons and mesons.

Ke shall treat the strong interactions without
approximation, but consider the electromagnetic, weak,
and gravitational interactions only in erst order.

The electromagnetic coupling is described by the
matrix elements of the electromagnetic current operator
ej (x). Likewise, the gravitational coupling is specified
by the matrix elements of the stress-energy-momentum

*Research supported in part by U. S. Atomic Energy Commis-
sion and Alfred P. Sloan Foundation. A report of this work was
presented at the La Jolla Conference on Strong and Weak Inter-
actions, June, 1961.' For example, see the "global symmetry" scheme of M. Gell-
Mann, Phys. Rev. 106, 1296 (1957) and J. Schwinger, Ann. Phys.
2, 407'(1957).
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J.&'& = iry. (1+ps)e+ivy (1+ps)y. (1 2)

We shall refer to J (x) as the weak current of baryons
and mesons. Its matrix elements specify completely the
weak interactions with leptons.

It is possible that the full weak interaction may be
given simply by the term

G(J.+J.«~)t(J.+J.«&)/v2, (1.3)

although this form provides no explanation of the
approximate rule

~
8 I

~

= rsin the nonleptonic decays of
strange particles. If we can 6nd no dynamical explana-
tion of the predominance of the

~
AI

~

= sr amplitude in
these decays, we may be forced to assume that in addi-
tion to (1.3) there is a weak interaction involving the
product

GL, tI../W2, (1.4)

of charge-retention currents (presumably not involving
leptons); or else we may be compelled to abandon (1.3)

2 We use A, =c=1. The Lorentz index o. takes on the values
1, 2, 3, 4. For each value of n, the Dirac matrix y is Hermitian;
so is the matrix y~.

067

tensor 8 e(x), particularly the component 844=II, the
. Hamiltonian density.

The weak interactions of baryons and mesons with
leptons are assumed to be given (ignoring possible non-
locality) by the interaction term'

GJ,tJ t'&/v2+H. c.,
where the leptonic weak current J &'& has the form
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altogether. In any case, we shall define the weak cur-
rent J by the coupling to leptons.

We shall assume microcausality and hence the va-
lidity of dispersion relations for the matrix elements of
the various currents and densities. In addition, we
shall sometimes require the special assumption of
highly convergent dispersion relations.

Our description of the symmetry group for baryons
and mesons is most conveniently given in the frame-
work of standard field theory, where the Lagrangian.
density A of the strong interactions is expressed as 3,

simple function of a certain number of local Gelds g(x),
which are supposed to correspond to the "elementary"
baryons and mesoxis. Recently this type of formalism
has come under criticism'; it is argued that perhaps
none of the strongly interacting particles is specially
distinguished as "elementary, " that the strong inter-
actions can be adequately described by the analyticity
properties of the S matrix, and that the apparatus of
field theory may he a misleading encumbrance.

Even if the criticism is justified, the field operatorsj (x), e s(x), and J (x) may still be well defined (by all
their matrix elements, including analytic continuations
thereof) and measurable in principle by interactions
with external electromagnetic or gravitational fields or
with lepton pairs. Since the Hamiltonian density II
is a component of 0 p, it can be a physically sensible
quantity.

In order to make our description of the symmetry
group independent of the possibly doubtful details of
field theory, we shall phrase it ultimately in terms of the
properties of the operators H, j,and J . In introducing
the description, however, we shall make use of field-
theoretic models. Moreover, in describing the behavior
of a particular group, we shall refer extensively to a
special example, the symmetrical Sakata model of
Ohnuki ef alt. ,

4 Yamaguchi, 5 and '6'ess. '
The order of presentation is as follows: We treat

first the hypothesis of highly convergent dispersion rela-
tions for the matrix elements of currents; and we shov
that the notion of a meson being coupled "universally"
or coupled to a particular current or density means
simply that the meson state dominates the dispersion
relations for that current or density at low momenta.
Next we discuss the universality of strength of the cur-
rents themselves; evidently it cannot be derived from
homogeneous linear dispersion relations for the matrix
elements of the currents. We show that equal-time com-
mutation relations for the currents fulfill this need (or
most of it), and that, in a wide class of model field

~ G. I". Chew, Talk at La Jolla Conference on Strong and Weak
Interactions, June, 1961 (unpublished).

4 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto} 22, 715 (1959);Y. Ohnuki, Proceedings of the 1960Annual
International Conference on High-Energy Physics at Rochester (In-
terscience Publishers, Inc. , New York, 1960).

5 Y. Yamaguchi, Progr. Theoret. Phys. (Kyoto) Suppl. No, 11,
1 (1959}.' J. Wess, Nuovo cimento 10, 15 (1960).

theories, these commutation rules are simp'Ie and re-
Qect the existence of a symmetry group, which underlies
the structure of the baryon-meson system even though
some of the symmetries are badly violated. We present
the group properties in an abstract way that does not
involve the details of field theory.

Next, it is asked what group is actually involved.
The simplest one consistent with knov n phenomena is
the one suggested. It is introduced, for clarity, in con-
nection with a particular field t.henry, the symmetrical
Sakata model, in which baryons and mesons are built

up of fundamental objects with t.he properties of n, 6,
and A. For still greater simplicity, we discuss first the
cn,se in which A. is absent.

Ke then return to the question of broken symmetry
in the strong interactions and show how some of the
symmetries in the group, if they are not too badly
violated, would reveal. themselves in approximately
degenerate supermultiplets. In particular, there should
be "octets" of mesons, each consisting of an isotopic
triplet with S=O, a pair of doublets with 5=&1, and
a singlet with S=0. In the case of pseudoscalar mesons,
we know of w, E, and K; these should be accompanied
by a singlet pseudoscalar meson y', which would decay
into 2y, m++~ +y, or 4x, depending on its mass.

In Sec. VIII, we propose, as an alternative to the
symmetrical Sakata model, another scheme with the
same group, which we call the "eightfold way. " Here
the baryons, as well as mesons, can form octets and
singlets, and the baryons 3T, A, Z, and are supposed to
constitute an approximately degenerate octet.

In Sec. IX, some topics are suggested for further
investigation, including the possibility of high energy
limits in which non-conserved quantities become con-
served, and we give, as an example of methods sug-
gested here, an approximate calculation of the rate of
E+—& p++v decay from tha. t of x+ —+ p++v decay.

II. MESONS AND CURRENTS

To introduce the connection between meson states
and currents or densities, let us review the derivation'
of the Goldberger- Treiman relation' among the charged
pion decay amplitude, the strength of the axial vector
weak interaction in the p decay of the nucleon, and the
pion-nucleon coupling constant,

The axial vector term in J with ~S=O, ~~I~ =1,
GP= —j, can be written as P& +iP2, where P is an
axial vector current that transforms like an isotopic
vector. 'We have, for nucleon p decay,

(!V~P.~,V)=nrfip F, (s)+k p(s))pz(~/2)u, , (2.1)

where u; and u~ are the initial and final spinors, k is
the four-momentum transfer, and s= —k'= —k k . At

J. Bernstein, S. Fubini, i%I. Gell-Mann, and W. Thirring,
Nuovo cimento 17, 757 (1960). See also Y. Nambu, Phys. Rev.
Letters 4, 380 (1960);and Chou Kuang-Chao, Soviet Phys. —JETP
12, 492 (1961).

'M, Goldberger and S. Treiman, Phys. Rev. 110, 1478 (1958).
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s=o we have just

F „(0)= —Gg/G, (2.2)

where P is the pion wave function and the constant f
(or at least its square) may be measiired by the rate
of sr+ —+ p++v.

r.= G-1ll I„-(1 /&I „'/m ') '(f'-'-''/-4x) '(64 -') '. (2.5)

It is known tha, t the matrix element (2.3) has a, pole
at s=w '- corresponding to the virtual emission of a
pion that undergoes leptonic decay. The strength of
the pole is given by the product of ei '/f and the pion-
nucleon coupling constant gy.~; . If we assume that the
expression in brackets vanishes at large s, we have an
unsubtracted dispersion relation for it consisting of the
pole term and a branch line beginning at (3m )', the
next lowest mass that can be virtually emitted:

the axial vector renormalization constant.
The axial vector current is not conserved; its di-

vergence 8 P has the same quantum numbers as the
pion (J=O, I= 1). Between n;!cleon states we have

(,V I B.P. I
A )= u~iyq(~/2)u, L2mNF -(s)+Sf(s)]. (2.3)

6'e may compare this matrix element v ith that
between the vacuum and a one-pion state

current. To calculate any g approximately, we multiply
the universal constant f, the sum of the initial and
final masses, and the renormalization factor for the
axial vector current.

Now let us turn to the case of a current that is con-
served, say the isotopic spin current Q with quantum
numbers J=1,I= 1. Acting on the vacuum, the opera-
tor ~~ does not lead to any stable one-meson state, but
it does lead to the unstable vector meson sta, te p at
around 750 Mev, which decays into 2x or 4m. For
simplicity, let us ignore the rather large widt. h (I', 100
Mev) of the p state and treat it as stable. The mathe-
matical complications resulting from the instability a,re
not severe and have been discussed elsewhere. ' "

In pla, ce of (2.4), then, we have the definition

(OI3-l~) =».'(2"~.) '0- (2.10)

of t.he constant y„where P is the wave function of the

p meson. In place of (2.1) or (2.3),we consider the
matrix element between nucleon states of the isotopic
spin cul rellt:

(V I g. l
V)= u;iy„(-./2)u;I', ~(s)-)-m i&;net ic term,

(2.11)

where j~'&v(s) is the familiar isovect;or forni factor of the
electric charge of the nucleon, since the electromagnetic
current has the form

j,=- ~&3 +isoscalar term. (2.12)
2mqF, (s)+sP(s) = (g,vv /f )m ."(m "- s) '—

If we continue to ignore the width of p, we get a dis-
persion relation like (2.6) with a pole term at m, '-:

g~x(M )~ dying (M2 —s—jg) i (2 6)
Fi"(s) = (y~ i,;,/p, )m-, '(m, ' s) '—

At s=O, we have, using (2.2), the sum rule

2m.g.( Gg/G) =g v.v.—/ f.+ o, (lP)d3P. (2. .7)

Now if t.he dispersion rela, tion (2.6) is not only con-
vergent but domina, ted a,t low s by the term with the
lowest mass, then we have the approximate Goldberger-
Treiman relation

+ o. (M')dM M'(M' —s—ie) '. (2.13)

Here y„~ ~p is the coupling constant of p to ufi~y„z&;,
just as g» is the coupling constant of 7r to ufi~p&n, .
In this ca,se, we have used an unsubtracted dispersion
relation just for convenience.

Since the current is conserved, there is no renor-
malization and we have

2»'~( —G.4/G) =gA N./f. y (2 g) Fi~(0) = 1, (2.14)

which agrees with experiment to within a few percent.
The success of the relation suggests that other matrix

elements of 8 P may also obey unsubtracted disper-
sion relations dominated at low s by the one-pion term.
For example, if we consider the matrix element be-
tween A and Z, we should arrive at the relation

(m,i+mal;)( —G i '-'/G) =gg „/f, (2.9)

if A. and &' have the same parity, or an an;~logous rel.'c-

tion if they have opposite parity.
If such a situation actually obt;t, ins, then it noway be

said that the pion is, to a good approximation, coupled
"universally" to the divergence of the axia, l vector

giving, in place of (2.7), the sum rule

1=ppvv/yp+ a, '(M')dM'. (2.15)

If the dispersion relation is dominated at low s by the

p term, then we obtain the analog of the Clolcll&erger-

Trei man formula:

Pp.'%Xi Pp. (2.16)

G. I'. Chew, Ulliversity of Califiornia, l~adi stion I, ;.&)moratory
Report No. UCR1-9289, 1960 (unpublished).

' M. Gell-Mann and I.'. Z;&chariasen, Phys. 1%ev. 124, 953
(196&).
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Now the same reasoning may be applied to the iso-
vector electric form factor of another particle, for
example the pion:

P.(s)= (y.../y, )m, '(m, '—s)-'

+ o (Ms)dM' Ms(Ms —s—ie)—' (2.1g)

1=pe.,/yp+ o. (M')dM'. (2.19)

III. EQUAL-TIME COMMUTATION RELATIONS

The dispersion relations for the matrix elements of
weak or electromagnetic currents are linear and homo-
geneous. For example, Eq. (2.6) may be thought of as
an expression for the matrix element of P between the
vacuum and a nucleon-antinucleon pair state. On the
right-hand side, the pole term contains the product of
the matrix element of P between the vacuum and a

"J.J. Sakural, Ann. Phys. Il, j. (1960).
~ R. Hofstadter and R. Herman, Phys. Rev. Letters 6, 293

(1961).See also S. Sergia, A. Stanghellini, S. Fubini, and C. Villi,
Phys. Rev. Letters 6, 367 (196I).

If this dispersion relation, too, is dominated by the p
pole at low s, then we 6nd

(2.20)

To the extent that the p pole gives most of the sum
rule in each case, we have p coupled universal/y to the
isotopic spins of nucleon, pion, etc. , with coupling
parameter 2p, . Such universality was postulated by
Sakurai, "within the framework of a special theory, in
which p is treated as an elementary vector meson de-
scribed by a Yang-Mills Geld. It can be seen that
whether or not such a field description is correct, the
effective universality (p, =y,z&=p,«, etc.) is an
approximate rule the validity of which depends on the
domination of (2.15), (2.19), etc. , by the p term.

The various coupling parameters y, , y,~~, etc., can
be determined from the contribution of the p "pole" to
various scattering processes, for example x+.V -+ x+K
But the factors y, /y„y, ~~/y„etc. , can also be
measured, using electromagnetic interactions. "

An approximate determination of y, ~~/y, was made
by Hofstadter and Herman" as follows The masses M'
in the integral in Eq. (2.13) are taken to be effectively
vary large, so that (2.13) becomes approximately

Ftv(s) = (y~~„/j, )rl, s (m, ' s) '—
+1—('y v~/'y ) (2 21)

Fitting the experimental data on I'tv(s) with such a
formula and using m, =750 Mev, we obtain y, sr~/y,
=1.4. (Hofstadter and Herman, with a smaller value
of mp, found 1.2.)

I;=—s g;4(PX, (3.2)

and the conservation law

8$; =0
tells us that

(3 3)

I;= 8 Q;g'x=0, (3.4)

at all times.
Now the commutator of ~~;4(x,t) and ~~;4(x',f) must

vanish for xAx', in accorance with microcausality.
(Note we have taken the times equal. ) If the com-
mutator is not more singular than a delta function,
then (3.1) and (3.2) give us the relation

LQ;4 (x,t),Q;4 (x', f)1= —se;;a3'~4(x, t) 8 (x—x'), (3.5)

which can also be obtained in any simple 6eld theory by
explicit commutation. "

In discussing the various parts of the weak current 7,
we shall ha,ve to deal with currents like P that are not

"M. Gell-Mann, ProceeChngs of the 1960 Annlal International
Conference on High-I'. nergy Physics at Rochester (Interscience
Publishers, Inc. , New York, 1960).

'4 In some cases explicit commutation may be ambiguous and
misleading. For example, a superficial consideration of Lj;(x,t),
j4(x', t)g for i= 1, 2, 3 may lead to the conclusion that the expres-
sion vanishes. Yet the vacuum expectation value of the com-
mutator can be shown to be a nonzero quantity times 8;b(x—x'),
and that result is confirmed by more careful calculation. See
J. Schwinger, Phys. Rev. Letters 3, 296 (1959).

one-pion state multiplied by the transition amplitude
for the transition from m to EX by means of the strong
interactions. The weight function o.,„(M ) is just the
sum of such products over many intermediate states
(such as 3s, 5x, etc.) with total mass M.

Now such linear, homogeneous equations may deter-
mine the dependence of the current matrix elements on
variables such as s, but they cannot fix the scale of
these matrix elements; constants like —G~/G cannot
be calculated without further information. A held theory
of the strong interactions, with explicit expressions for
the currents, somehow contains more than these dis-
persion relations. In what follows, we shall extract some
of this additional information in the form of equal-time
commutation relations between components of the
currents. Since these are nonlinear relations, they can
help to 6x. the scale of each matrix element. Moreover,
these relations may be the same for the lepton system
and for the baryon-meson system, so that universality
of strength of the weak interactions, for example, be-
comes meaningful. "

Let us begin our discussion of equal-time commuta-
tion relations with a familiar case—that of the isotopic
spin I. Its components I, obey the well-known com-
mutation relations

)I,,I;g=ie,;sIs. (3.1)

In terms of the components 3', of the isotopic spin
current, we have



SYM METRIES OF BAR YONS AN 0 MESON S

conserved. " Here, too, we may define a quantity
analogous to I:

D;= —i P;4d'x, (3 6)

but D, is szot independent of time:

D;= 8 P; d'x&0. (3 7)

For the moment, let us restrict our attention to the
currents 3 and P and the operators I and D(t).
Since 0 is an isovector, we have the relations

[I;,D,] [D„I,]——ze,,&,D&„ (3.8)

but what is the commutator of two components of D?
Since P„ is a physical quantity, so is D and the question
is one with direct physical meaning. %e shall give both
a general and a specific answer.

In general, we may take the commutators of D's
(divided by i), the components of I and D, the com-
mutators of all of these with one another (divided by i),
etc. , until we obtain a system of Hermitian operators
that is closed under commutation. Any of these opera-
tors can be written as a linear combination of .7 linearly
independent Hermitian operators R,(t), where .V might
be infinite, and where the commutator of any two R;
is a linear combination of the R;:

[R,(t),R;(t)7= ic;;~R,(t), (3.9)

with c;;& real. Such a system is called an algebra by the
mathematicians. If we consider the set of infinitesimal
unitary operators 1+ieR;(i) and all possible products
of these, we obtain an Ã-parameter continuous-group of
unitary transformations. We can refer to (3.9) as the
algebra of the group. It is a physically meaningful
statement to specify what group or what algebra is
generated in this way by the currents Q and P . Since
a commutation relation like (3.9) is left invariant by a
unitary transformation such as exp( —itJ H(Px), the
numbers c;,I, are independent of time.

A second mathematical statement is also in order,
i.e., the specification of the transformation properties
of the Hamiltonian density H(x, t) under the group or
the algebra. Those R, for which [R;(t),H(x, t)]=0 are
independent of time, but some of them, like D;, do not
commute with II. If all of the R; commuted with H,
then H would belong to the trivial one-dimensional
representation of the group. In fact, B behaves in a
more complicated way. By commuting all of the R;(z)
with H(x, t), we obtain a linear set of operators, con-
taining II, that form a representation of the group; it
may be broken up into"'the direct sum of irreducible
representations. We want to know, then, what group is
generated by I and D and to what. irreducible repre-

'"' Ke assume that the vector weak current with 68=0 is just
a component of the isotopic spin current Q„and thus conseryedz

I())= —i 3 (&)der D(i&= —z P (&)der (3 11)

Now in this leptonic case we can easily compute the
commutation rules of I "& and D(":

[I.(l) I ({)]=z.~. ~I (l)

[I.()) D (t&]

[D (l) D (i)] ze, .&I&(l)

(3.12)

Another way to phrase these commutation rules is to
put

I(i) —I (()+I (&)

D{() I (&) —L(&)
(3.13)

and to notice thai. I~ "& and L(" are two commuting an-
gular momenta [essentially ~ (1+hz)/4 and ~ (1—pz)/4].
The weak current ivy (1+hz)e is just a component of
the current of I+(').

We now suggest that the algebraic structure of I and
D is exactly the same in the case of baryons and mesons.
To (3.1) and (3.8), we add the rule""

[D;,D;]=ie,;iI&„ (3.14)

which closes the system and makes I+= (I+D)/2 and
I = (I—D)/2 two commuting angular momenta. Again,
we make the weak current a component of the current
of I+. Evidently the statement that (I+D)/2 is an
angular momentum and not some factor times an
angular momentum, fixes the scale of the weak current.
It makes universality of strength between baryons and
leptons meaningful, and it specifies, together with the
dispersion relations, the value of such constants as
—G~/G.

The simplest way to realize the algebraic structure
under discussion in a field-theory model of baryons and
mesons is to construct the currents Q and P out of

p and zz fields just as 3 "' and P ('& are made out of v

and e fields:

g„=z5r.&„V/2, P.=z5.r.~.~,V/2, (3.15)

16 I'. Gursey, Nuovo cimento 16, 230 (1960)."M. Gell-Mann and M. Levy, Nuovo cnnento 16, 705 (1960).

sentations of this group H belongs. Suggested are
specific answers to both questions.

Let us look at the vector and axial vector weak cur-
rents for the leptons. For the time being, we shall con-
sider only v and e, ignoring the muon. (In the same way,
we shall, in this section, ignore strange particles, and
consider only baryons and mesons with 5=0.) The
vector weak current iud e and the axial current ify y~e
can be regarded formally as components of two "iso-
topic vector" currents for the leptons:

Q ("=i&~y &/2, P ("=ikey yzP/2, (3.10)

where g stands for (v, e). We can also form the mathe-
matical analogs of I and D:
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H =H(0,0)—up, (3.18)

where H(0, 0) transforms according to (i~,i )=(0,0)
and the noninvariant term No is just —trtoNN. To what
representation does it belong?

It is easy to see that the field Bo belongs to (0,0),
while Ez,= (1+ps)E/2 belo—ngs to (-'„0) and Ett

' E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949); E.
Teller, Proceedings of the Sixth Annnal Rochester Conference on
IIigh-Erlergy lVNclear Physics, 1956 (Interscience Publishers, Inc. ,
New York, 1956).

' Conceivably a massive 8 meson can be described by (3.17)
even with no ——0. (J:Schwinger, lectures at Stanford University,
summer, 1961 (unpublishedl). In that case the noninvariant term
in (3.17) is just equal to 8 and the traceless part of 8„p commutes
with the group elements at equal times. In any case, whether p0
is zero or not, the off-diagonal terms in 8 p commute with the
group.

where N means (p,rt). We then obtain not only the com-
mutation rules (3.1), (3.8), and (3.14), but the stronger
rule (3.5) and its analogs:

LQ;4(x, t),P;4(x',g)3= —ie;toEo4(x t)8(x—x')

LP;4(x,t),P;4(x', t)3=—ie;;ogs4(x, t)b(x —x').

Next we want to use a 6eld-theory model to suggest
an answer to the second question —how H behaves
under the group or, what is the same thing, under the
algebra consisting of I and 9 or of I+ and I . Since I+
and I are two commuting angular momenta, any ir-
reducible representation of the algebra is specified by
a pair of total angular momentum quantum numbers:
i+ for I and i for I . The total isotopic spin quantum
number I is associated with I++I = I.

Now we want the vector weak current ~~ to be the
isotopic spin current and to be conserved. Thus II must
commute with I; it transforms as an isoscalar, with
I=O. In order to couple to zero, i+ and i must be
equal. So H can consist of terms with (i~,i )= (0,0),
(-', P), (1,1), (-'„-,'), etc. Which of these are in fact
present?

The simplest model in which the total isotopic cur-
rent is given by just (3.15) is the Fermi-Yang" model,
in which the pion is a composite of nucleon and anti-
nucleon. To write an explicit Lagrangian, it must be
decided what form the binding interaction takes. Since
a direct four-fermion coupling leads to unpleasant
singularities, we whall use a massive neutral vector
meson field 8' coupled to the nucleon current, as pro-
posed by TellerI8 and SakuraiII. the exchange of 3 go

gives attraction between nucleon and antinucleon, per-
mitting binding, and it also gives repulsion between
nucleons, contributing to the "hard core." The model
Lagrangian is then"

I.= Ny 8 N (ct—Btt cttsB )—'/4—
ttosBaB /2 shoBaNp N moN1V. (3.1f)

If the mass term for the nucleon were absent, then
both 3 and P would be conserved; I and D would
both commute with L and with H. Thus,

—= (1—ys)X/2 belongs to (O, sr). One can thus verify
that all terms of (3.17) except the last belong to (0,0),
since Ny N or Ny ci N couples Nr, to NI, and Nit to
Nit. But the Dirac matrix p, unlike py, anticommutes
with ys, so that the last term —rloNN couples Nl, to
Ãtt and Nto to Nl, Thus Np belongs to (s,s). We have
H= H(0,0)+H(-'„-',).

There are four components to the representation
(s,—',) to which Np ———H(s, s) belongs. By commuting 9
with uo, we generate the other three easily and see that
they are proportional to iN—v&sÃ In .fact 9 acts like
vys/2, I like v/2, Np like P, and the other three com-
ponents like iP—yean D.enoting the three new com-
ponents by v;, we have

Ll;,N,3=o,
C
D,,«3= —sv..

$I;,v, 3=ie;,eve, LD;,v;3=is,,atp.
(3.19)

ci.P = —iLD,H3=iLD, No3= v,

and, of course,
a.3.= —sPI,H3=0.

(3.21)

(3.22)

It is precisely the operator v, then, that we used in a
dispersion relation in order to obtain the Goldberger-
Treiman relation in Sec. II. Acting on the vacuum, it
leads mostly to the one-pion state, so that the pion is
electively coupled universally to the divergence of the
axial vector current. Thus v is a sort of effective pion
field operator for the Fermi-Yang theory, which has
no explicit pion 6eM.

If we insist on a model in which there is a field vari-
able oo(cc,t) then we must complicate the discussion. The
total isotopic spin current is no longer given by just
(3.15); there is a pion isotopic current term as well.
In order to preserve the same algebraic structure of I
and 9, one must then modify P„as well. Such a theory
was described by Gell-Mann and Levy, "who called it
the "0.-model". ' Along with the field m, we must intro-
duce a scalar, isoscalar field 0' in such a way that ~, o-'

transform under the grouP like v, ttp. Then, just as Q„
has an additional term quadratic in m, P requires an
additional term bilinear in + and 0-'.

As we shall see in the next section, the introduction of

'"In the 0 model, explicit commutation of N0 and v at equal
times gives zero, while in the Fermi-Yang model this is not so;
if we take these results seriously, they give us defInite physical
distinctions among models.

In the model, there are the even stronger relations for
the densities

Pg;4(x, t),stp(x', t)3=0, t P,4(x,t),tcp(x', t) 3
= —iv;(x, t)5 (x—x'), etc. (3.20)

The noninvariant term N, D is what prevents the axial
vector current from being conserved. Thus one can
express the divergence cl P of the current in terms of
the commutator of D with ttp. The conditions for this
relation to hold are treated in the appendix and are
applicable to all models we discuss. We find simply
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strange part, icles makes the group much larger. The
term Nt) is then a member of a much larger representa-
t;ion, with eighteen components. Thus if a pion Geld is
introduced, fifteen more components are needed as
well. Such a theory is too complicated to be attractive;
we shall therefore ignore it and concentrate on the
simplest generalization of the Fermi-Yang model to
st:range particles, namely the symmetrical Sakata model.

I.= py P ny r) n —Xy r) A—s(it Bt—t ittzB )'— —
,'tip'B. B ihp(py —p+—ny rt+X—y A)B

mpN (nrt+ pp) —mpsXA—(4.1)

According to this picture, the baryons present a

"S.Salcata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956).

IV. SYMMETRICAL SAKATA MODEL AND
UNITARY SYMMETRY

In the previous section, we proceeded inductively.
AVe showed that starting from physical currents like

and P we may construct a group and its algebra
and that it is physically meaningful to specify the group
and a1so the transformation properties of FX under the
group. AVe chose the algebraic structure by analogy
with the case of leptons and we saw that the simplest
Geld theory model embodying the structure is just the
Fermi-Yang model, in which p and n fields are treated
just like the v and e fields for the leptons, except that
they are given a mass and a strong "gluon" coupling.
The transformation properties of JI were taken from
the model; FI consists, then, of an invariant part Ho 0

plus a term (—ttp), where ttp and a pseudoscalar iso-
vector quantity v belong to the representation (—'„-', ) of
the group. We then have the commutation rules (3.1),
(3.8), (3.14), and (3.19). Microcausality with the as-
sumption of commutators that are not too singular, or
else direct inspection of the model, gives the stronger
commutation rules (3.5), (3.16), and (3.20) for the
densities. The model also gives speciGc equal-time
commutation rules for no and v, which we did not list.
All of these properties can be abstracted from the model
and considered on their own merits as proposed rela-
tions among the currents and the Hamiltonian density.

Now, to argue deductively, we want to include the
strange particles and all parts of the weak current J
and the electromagnetic current j . Vte generalize the
Fermi- Yang description to obtain the symmetrical
Sakata model and abstract from it as many physically
meaningful relations as possible.

It has long been recognized that the qualitative
properties of baryons and mesons could be understood
in terms of the Sakata model, " in which all strongly
interacting part. icles are made out of E, A, X, and A.

(or at least out of basic fields with the same quantum
numbers as these particles).

Ke write the Lagrangian density for the Sakata
model as a generalization of (3.17):

striking parallel with the leptnns, "- fox wIiich we write
the Lagrangian density

Lt= —vy- v —ey.it e —py it tz —0 (rv+ee) —m„tztz, (4.2)

if we turn oG the electromagnetic and weak couplings,
al.ong with the v-e mass diGerence. Here it is assumed
there is only one kind of neutrino.

The only real difference between baryons and leptons
in (4.1) and (4.2), respectively, is tha, t the baryons are
coupled, through the baryon current, to the field 0. It
is tempting to suppose that the weak current of the
strongly interacting particles is just the expression.

tfv-(1+&.-)»+sf~&-(1+vs)A, (4 3)

analogous to Eq. (1.2) for the leptonic weak current
J "'. Now (4.3) is certainly a reasonable expression,
qualitatively, for weak currents of baryons and mesons.
As Okun has emphasized, " the following properties of
the weak interactions, often introduced as postulates,
are derivable from (1.1), (1.2), (4.1), and (4.3):

(a) The conserved vector current re In the model
under discussion, as in that of Fermi and Yang, ipse m is
a component of the total isotopic spin current.

(b) The rules jhSj =1, t15/t), Q=+1, and jhIj =-,'
for the leptonic decays of strange particles. "

(c) The invariance under GP of the t)5=0 weak.

current. "
(d) The rules jhSj=1, jhIj =s or —', in the non-

leptonic decays of strange particles; along with
j t)zSj

=1, we have the absence of a large Ki"-E2' mass
diGer ence.

The quantitative facts that; the effective coupling
constants for

j
i) S

j
——-1 leptonic decays are smaller than

those for jhSj =0 leptonic decays and that in non-
leptonic decays of strange particles the AI

j

=-', ampli-
tude greatly predominates over the

j
AI = ps amplitude

are not explained in any fundamental way. "
"A. Gamba, R. E. Marshak, and S. Okubo, Proc. Natl. Acad.

Sci. U. S. 45, 881 (1959)."L.Okun, Ann. Rev. Nuclear Sci. 9, 61 (1959).
~4R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(1958). See also S. S. Gershtein and J. B. Zeldovich, Soviet
Phys. —JETP 2, 576 (1957).

"M. Gell-Mann, Proceedilgs of the Sixth Azzrzzza/ Rochester
Conference orz High Energy N-Nctear Physics, lti$6 (Interscience
Publishers, Inc. , New York, 1956). These rules were in fact sug-
gested on the basis of the idea that S and A are fundamental.
Should the rules prove too restrictive (for example should 65/hg
=+1 be violated), then we would try a larger group; in the
language of the field-theoretic model, we would assume more
fundamental fields. For a discussion of possible larger groups, see
M. Gell-Mann and S. Glashow, Ann. Phys, 15, 437 (1961) and
S. Coleman and S. Glashow (to be published).

26 S. steinberg, Phys. Rev. 112, 1375 (1958)."A possible dynamical explanation of the predominance of
j rQj = z is being investigated by ¹ishijima (private communica-
tion). For example, consider the decay h. —+ X++. A dispersion
relation without subtractions is written for the matrix element ofJ ~J„between the vacuum and a state containing X+X+71-.The
parity-violating part leads to intermediate pseudoscalar states
with S=+1 and with jnij = —', or —,'. In the case of jnlj =-,', there
is an intermediate E particIe, which may give a large contribution,
swamping the term with j nij =-', , which has no one-meson state.
For the same argument to apply to the parity-conserving part,
we need the E' meson of Table III.
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group SU(2) in two dimensions). In mathematical
language, we can factor U(2) into U(1)XSU(2).

Each transformation of the erst kind can be written
as a matrix 1 expitt, where 1 is the unit 2X2 matrix.
The infinitesimal transformation is 1+i18$, and so the
unit matrix is the infinitesimal generator of these
transformations. Those of the second kind are generated
in the same way by the three independent traceless
2)&2 matrices, which may be taken to be the Pauli
isotopic spin matrices ~I, 7-., and 7-3. Ke thus have

L=L+L'+I.", (4.6)

where L stands for everything except the baryon mass
terms, while L' and L" are given by the expressions

L'= (2mp~+mpp) (NN+XA)/3, 47L"= (mp~ mph) (—NN 2111t.)/—3

If we now consider the Lagrangian with the mass-
splitting term L" omitted, we have a theory that is
completely symmetrical in p, e, and A. We may per-
form any unitary linear transformation (with constant
coeflicients) on these three fields and leave I+L' in-
variant. Thus in the absence of the mass-splitting term
L" the theory is invariant under the three-dimensional
unitary group U(3); we shall refer to this situation as
"unitary symmetry, "

If we now turn on the mass-splitting, the symmetry is
reduced. The only allowed unitary transformations are
those involving r4 and p alone or A. alone. The group be-
comes U(2) XU(1), which corresponds, as we shall see,
to the conservation if isotopic spin, strangeness, and
baryon number.

For simplicity, let us return briefly to the simpler
case in which there is no A. The symmetry group is
then just U(2), the set of unitary transformations on
I and p. We can factor each unitary transformation
uniquely into one which multiplies both 6elds by the
same phase factor and one (with determinant unity)
v hich leaves invariant the product of the phase factors
of p and r4. Invariance under the first kind of trans-
formation corresponds to conservation of nucleons e
and p; it may be considered sepa, rately from invariance
under the class of transformations of the second kind
)called by mathematicians the unitary unimodular

The electromagnetic properties of baryons and leptons
are not exactly parallel in the Sakata model. The elec-
tric current (divided by e), which are denoted by j,
is given by

(4 4)

for the baryons and mesons and by

i (eV.e+pV—.I4) (4 5)
for the leptons.

Now, we return to the Lagrangian (4.1) and separate
it into three parts:

(1+iP Se, ,/2)N,
k=1

(4 g)

[r;,r,7=2ze,;pry,

f,r;,r; }=28~)1.

(4.9)

The invariance under the group SU(2) of isotopic
spin rotations corresponds to conservation of the iso-
topic spin current

~~ =iN~y 1V/2,

while the invariance under transformations of the 6rst
kind corresponds to conservation of the nucleon currenti'.lV/2= n..

Defining the total isotopic spin I as in (3.2), we
obtain for I; the commutation rules (3.1), which are the
same as those for r;/2. Likewise the nucleon number is
defined as —i J'r44d'x and commutes with I.

We now generalize the idea of isotopic spin by includ-
ing the third 6eld h.. Again we factor the unitary trans-
formations on baryons into those which are generated
by the 3X3 unit matrix 1 (and which correspond to
baryon conservation) and those which are generated
by the eight independent traceless 3X3 matrices Land
which form the unitary unimodular group SU(3) in
three dimensions7. We may construct a typical set of
eight such matrices by analogy with the 2)&2 matrices
of Pauli. We call then XI . Xs and list them in Table I.
They are Hermitian and have the properties

Trh, ;X;=25;;,

(X;,X;}=2dgpkp+-48;;1,

(4.10)

where f;;p is real and totally antisymrnetric like the

as the general infinitesimal t.ransformation of the second
kind. Symmetry under all the transformations of the
second kind is the same as symmetry under isotopic
spin rotations. The whole formalism of isotopic spin
theory can then be constructed by considering the
transformation properties of the doublet or spinor (p, ii)
and of more complicated objects that transform like
combinations of two or more such nucleons (or
antinucleons).

The Pauli matrices v k are Hermitian and obey the
rules

Trv.;r; =28;;,
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TABLE II. Nonzero elements of f,;4 and d;;4. The f,;4 are odd under
permutations of any two indices while the d;;& are even.

at any time and at equal times the commutation rules
for F; follow those for )1,/2

ijk jjk $F;,F;)=if,, i,Fi, (4.16)
123
147
156
246
257
345
367
458
678

~ ~ ~

1
1/2—1/2
1/2
1/2
1/2—1/2

w.'4/2
i&3/2

118
146
157
228
247
256
338
344
35/
366
)J P

448

668
i 78
888

1/VS
1/2
1/2
1/V3'

—1/2
1/2
1/vZ
1/2
1/2

-1/2
-1/2—1/(2@3')
—1/(2')—1/(243)—1/(2VS)—1/v3

Kronecker symbol e,,& of Eq. (4.9), while d,;i, is real and
totally symmetric. These properties follow from the
equations

Tr)iiP, ,),J=4if,,g,

Tr)ip f)i;,X;)=4d;, i,
(4.11)

derived from (4.10).
The nonzero elements of f,,i, and d;;i, are given in

Table II for our choice of 'A;. Even and odd permuta-
tions of the listed indices correspond to multiplication
of f;,& by +1, respectively, and of d,,& by +1.

The general in6nitesimal transformation of the second
kind on the three basic baryons b is, of course,

b —+ (1+iQ ho;)i;/2)b, (4.12)

iby„b=iny, n+iIIy p+iXy /1, (4.13)

while invariance under the second class of transforma-
tions would give us conservation of the eight-component
"unitary spin" current

by analogy with (4.8). Together with conservation of
baryons, invariance under these transformations corre-
sponds to complete "unitary symmetry" of the three
baryons. We have factored U(3) into U(1))&SU(3).

The invariance under transformations of the first
kind gives us conservation of the baryon current

The baryon number, of course, commutes with all
components F;.

It will be noticed that ) ~, X2, and ) 3 agree with v ~, 7-2,

and r p for p and is and have no matrix elements for h. .
Thus the first three components of the unitary spin are
just. the components of the isotopic spin. The matrix ) 8

is diagonal in our representation and has one eigenvalue
for the nucleon and another for the A. Thus Fs is just a
linear combination of strangeness and baryon number.
It commutes v ith the isotopic spin.

The matrices ) 4, X~, ) 6, and ) 7 connect the nucleon
and A. We see that the components F4, F&, F6, and F7
of the unitary spin change strangeness by one unit and
isotopic spin by a half unit. When the mass-splitting
term L" is "turned on, " it is these components that are
no longer conserved, while the conservation of F~, F2,
F~, Fs, and baryon number remains valid.

).p
——(-,')'1,

so that the eire matrices X; obey the rules

(5.1)

P, ,)i;1=2if,,&) i
{)i;,X,}= 2d,,i)14

Tr);),= 28;,.

(i=0, , 8),
(i=O, , 8),
(i=O, , 8).

(5.2)

Here, J",;I, is dehned as before, except that it vanishes
when any index is zero; d;,, is also de6ned as before,
except that it has additional nonzero matrix element. s
equal to (-', )*' whenever any index is zero and the other
two indices are equal. The baryon current is now (z) 'Pp„.

The definitions (4.15) and the equal-time coinmuta-
tion relations (4.16) now hold for i=0, 8. More-
over, there are the equal-time commutation relations

t F;4(x,t),P,4(x',t))= if;, i,Gp4(x, t)—b(x x') (5.3)—
for the densities.

The electric current j is then

V. VECTOR AND AXIAL VECTOR CURRENTS

AVe may unify the mathematical treatment of the
baryon current and the unitary spin current if we define
a ninth 3)&3 matrix

P;„=ib)i,y b/2 (i=1, , 8). (4 14)
j.= (~25'p.+&s.+~3rp.)/2v3,

while the vector weak current is

(5 4)

F,= —i $,4d'x, (4.15)

Now in fact L" is not zero and so not all the com-
ponents of 5; are actually conserved. This does not
prevent us from defining P; as in (4.14), nor does it
acct the commutation rules of the unitary spin density.
The total unitary spin F; is defined by the relation

&r +i&s +&4 +i&p . (5.5)

%e now wish to set up the same formalism for the
axial vector currents. Ke recall that the presence of the
symmetry-breaking term L" did not prevent us from
defining the F; and obtaining the commutation rules
(5.3) characteristic of the unitary symmetry group U(3).

In the same way, we now remark that if both L"
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and L' are "turned off," we have invariance under the
infinitesimal unitary transformations

to each other by the parity operation P:
PF;+P I=Ii;+. (5.15)

as well as the infinitesimal transformations

b -+ (1+iP bH,);/2) b

(5.6)

(5.7)

Now that we have constructed the mathematical
apparatus of the group U(3)XU(3) and its algebra, we
may inquire how the Hamiltonian density H behaves
under the group, i.e. , under commutation with the
algebra.

In the model, there is, corresponding to (4.6), the
formula

(5.16)
we have used before."Thus the axial vector currents

F, '=i',~sb/2 (5.8)'

would be conserved if both L' and L" were absent.
Even in the presence of these terms, we have the com-
mutation rules

EF;4'(x,t),P,4(x', t))= —if;,sPi4s(x, i)h(x —x') (5.9)
and

Np= L' ~ Qpb. (5.17)

Ke can easily see that by commutation of ep with F;
and F (i=0, , 8) at equal times we obtain a set of
eighteen quantities:

where H is the Hamiltonian density derived from the
Lagrangian density I and is completely invariant under
the group. Instead of defining Ip as in Sec. III, let us put

EF;,'(x,i),$,4s(x', t)$= —if;;qFs4(x, t)5(x—x') (5.10)

at equal times, Ke may use the definition

I;~ bP;b,

~l; ~ —iQ, ,ynb.
(5.18)

(5.11)

In fact F; acts like );/2, F;s like )t,ys/2, u; like pg;, and
v; like iPysX;—Thus w. e have at equal times'

along with (4.15).
Just as we put I= I++L and D= I+—I in the dis-

cussion following Eq. (3.16), so we now write

EF;,u; j=if;;oui„
EF;,v;j=if;, &vt„

EFrs, u; )= —id;, i,vt„
(5.19)

F;(&)=F,+(t)+P,-(i),
F,'(t) =F;+(&)-F;-(t),

EPP&vj)= zd,jkup, ',
and the stronger relations

5.12

EF;+,P,+j=ifgsFi+,

while they commute with each other:

(5.13)

and it is seen that I";+and Ii; separately obey the com-
mutation rules

p 4(x,l),uj(x, t)j= f iud;(x, i)6(x—x'), etc. (5.20)

for the densities. All indices run from 0 to 8.
Note that we can now express not only L' (which is

defined to be us) but L" as well, since by (4.7) it is
proportional to N8. We have, then,

EF;+P;+3=o (5.14) II=H = s~p —cu8, (5.21)

Thus we are now dealing with the group U(3) taken
twice: U(3)XU(3). Factoring each U(3) into U(1)
XSU(3), we have ' U(1)XU(1)XSU(3)XSU(3).Thus
we have defined a left- and a right-handed~+baryon
number and a left- and right-handed unitary spin.

The situation is just as in Sec. III, where we defined a
left- and a right-handed isotopic spin and we could
have defined a left- and a right-handed. nucleon number.

The left- and right-handed quantities are connected

' Actually the Lagrangian (4.1) without the nucleon mass
terms is invariant under a larger continuous group of transforma-
tions than the one LU{3)XU(3)j that we treat here. For example,
there are in6nitesimal transformations in which the baryon fields
b acquire small terms in b. Invariance under these is associated
with the conservation of currents carrying baryon number 2. The
author wishes to thank Professor W. Thirring for a discussion of
these additional symmetries and of conformal transformations,
which give still more symmetry.

9 The groups U(1), SU(3), and SU(2) cannot be further fac-
tored in this fashion. They are called simple.

where c is of the order (mon —mow)/mo~ in the model.
We may now make a series of abstractions from the

model. First, we suppose that currents 5; and F; ' are
defined, with commutation rules (5.3), (5.9), and (5.10),
and with the weak current given by the analog of
(5 5)".
J = Sr +Pi s+iSs+ips ''

+P4 +5'4 s+iPs +iSs ', (5.22)
'0 Note that even if we use just P; and Ii for i=1, , 8, or

SU(3)&(SU(3) only, we still generate all eighteen u's and v's.
Lln the two-dimensional case described in Sec. III the situation is
different. Using SU(2))&SU(2), we generate from n0 only itself
and v1, v2, v3, if we then bring in P0 as well, we obtain three more
u's and one more v.j This remark is interesting because the group
that gives currents known to be physically interesting is just
U(1)/SU(3)XSU(3); there is no known physical coupling to
F0, the axial vector baryon current.

31 Note that the total weak current, whether for baryons and
mesons or for leptons, is just a component of the current of an
angular momentum. See reference 13.



S YM M ETRI ES OF BAR YON S AN 0 M ESONS 1077

while the electric current is given by (5.4). Next, ive

may take the Hamiltonian density to be of the form
(5.21), with H invariant and I; and v; transforming as
in (5.20). Then, if the theory is of the type described in
Appendix A, we can calculate the divergences of the
currents in terms of the equal-time commutators

8~5~~=z[F~,zzp j+zc)F(|zzpj,
8 7; '=i)FP,zzpf+icLFP, zzpj,

or, explicitly,

8 5; =0, (i=0, 1, 2, 3, 8)

8 Pg =(-', )'zzp, etc. ,

~-&p-'= (p)'~p+ (p)'~~.,

B.Fi.'= I (-;)'+ (-,')lcjei, etc. ,

8 54 =f(p) —(i'~)lcgz'4, etc. ,

~-~p-'= L(p)' (p)—'~1~p+(p)'i»

(5.23)

(5.24)

Finally, if we taken the model really seriously, we

may abstract the equal-time commutation relations of
the I; and v, as obtained by explicit commutation in the
model.

The relations of Sec. III are all included in those of
this section, except that what was called N, o there is
now called zzp+czzp and what was called z, is now called
L(-', )&+(-',)&c)z; for i= 1, 2, 3.

All of the relations used here are supposed to be exact
and are not affected by the symmetry-breaking char-
acter of the non-invariant term in the Hamiltonian.
In the next section, we discuss what happens if c can be
regarded as small in any sense. We may then expect to
see some trace of the symmetry under U(3) that would
obtain if c were 0 and L" disappeared. In this limit, X
and A are degenerate, and all the components Ii; of the
unitary spin are conserved. The higher symmetry would
show up particularly through the existence of degen-
erate baryon and meson supermultiplets, which break
up into ordinary isotopic multiplets when L" is turned
on. These supermultiplets have been discussed previ-
ously for baryons and pseudoscalar mesons' ' and then
for vector mesons. " '4

Ke shall not discuss the case in which both L' and
L" are turned off; that is the situation, still more re-
mote from reality, in which all the axial vector currents
are conserved as well as the vector ones.

VI. BROKEN SYMMETRY—MESON
SUPERMULTIPLETS

%e know that because of isotopic spin conservation
the baryons and mesons form degenerate isotopic
multiplets, each corresponding to an irreducible repre-
sentation of the isotopic spin algebra (3.1). Each mul-

tiplet has 2I+1 components, where the quantum num-

3' M. Gell-Mann, California Institute of Technology Synchro-
tron Laboratory Report No. CTSL—20, 1961 (unpublished).

33 Y. Ne'eman, Nuclear Phys. 26, 222 (1961).
34 A. Salam and J. C. Ward, Nuovo cimento 20, 419 (1961),

ber I distinguishes one represent, ation from another anal

gives us the eigenvalue I(I+1)of the operator g; i' I z,

which commutes with all the elements of the isotopic
spin group. The operators I; are represented, within the
multiplet, by Hermitian (2I+1))& (2I+1) matrices
having the commutation rules (3.1) of the algebra.

If we start from the doublet representation, we can
build up all the others by considering combinations of
particles that transform like the original doublet. Just
as (P,n) form a doublet representation for which the I;
are represented by ~;/2, the antiparticles (n, —p) also
form a doublet representation that is equivalent. (Notice
the minus sign on the antiproton state or field. ) Now,
if we put together a nucleon and an a,ntinucleon, we
can form the combination

5(Xi—iXz)b/2= np,
bhzb/%2 = (pP —nn)/v2,
b(X,+'X,)b/2 =Pn,

5P„—a,)b/2 =AP,

b (Xp—zAz) b/2 =An,

bP 4+Ap)b/2= pA,

bg p+a„)b/Z=nA,

bX,b/v2 = (I-P+ nn ZAA)/g6, —

I=1,5=0

I=-'„8=+1 (6.2)

S

I=O, S=O,

IzTE= pp+nn,

which transforms like an isotopic singlet, or the com-
binations ¹;S,(i=1, 2, 3)

which form an isotopic triplet. The direct product of
nucleon and antinucleon doublets gives us a singlet
and a triplet. Any meson that can dissociate virt. ually
into nucleon and antinucleon must be either a singlet
or a triplet. For the singlet state, the components I; are
all zero, while for the three triplet states the three 3&3
matrices, l;&~ of the components I;, are given by

(6.1)

Now let us generalize these familiar results to the
unitary spin and the three basic baryons b (comprising
n, P, and A). These three fields or particles form a three-
dimensional irreducible representation of the unitary
spin. algebra (4.16) from which all the other representa-
tions may be constructed.

For example, consider a meson that can dissociate
into b and b. It must transform either like

bb= pp+nn+AA,

a unitary singlet, or else like

Q.,b, (i=1, , 8)
a unitary octet.

The unitary singlet is evidently neutral, with strange-
ness S=O, and forms an isotopic singlet. But how does
the unitary octet behave with respect to isotopic spin?
We form the combinations
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and we see immediately that the unitary octet com-
prises an isotopic triplet with S=O, a pair of isotopic
doublets with S=at, and an isotopic singlet with
S=O. All these are degenerate only in the limit of
unitary symmetry (I."=0); when the mass-splitting
term is turned on, the singlet, the triplet, and the pair
of doublets should have three somewhat diferent
masses.

The known pseudoscalar mesons (~, K, and Z) 6t
very well into this picture, provided there is an eighth
pseudoscalar meson to 611 out the octet. I.et us call the
hypothetical isotopic singlet pseudoscalar meson y'.
Since it is pseudoscalar, it cannot dissociate (virtually or
really) into 2~. It has the value +1 for the quantum
number 6, so that it cannot dissociate into an odd
number of pions either. Thus in order to decay by means
of the strong interactions, it must have enough energy
to yield 4x. It would then appear as a 4x resonance. The
decay into 4z is, however, severely hampered by cen-
trifugal barriers.

If the mass of p'is too low to permit it to decay readily
into 4n. , then it will decay electromagnetically. If there
is sufficient energy, the decay mode x'~ir++ir +p
is most favorable; otherwise'4' it will decay into 2p
like m.a

I et us now turn to the vector mesons. The best
known vector meson is the I= 1, J= 1 resonance of
2x, which we shall call p. It has a mass of about 750
Mev. According to our scheme, it should belong, like
the pion, to a unitary octet. Since it occupies the same
position as the m (I=1,$=0), we denote it by the
succeeding letter of the Greek alphabet.

The vector analog of yo we shall call ro' (skipping the
Greek letter tt ). It must have I=0, L= 1, and G= —1
and so it is capable of dissociation into m++7r +pro.
Presumably it is the 3m resonance found experimentally"
at about 790 Mev.

In order to complete the octet, we need a pair of
strange doublets analogous to E and E. In the vector
case, we shall call them M and M (skipping the letter
I.). Now there is a known K7r resonance with I=sr at
about 884 Mev. If it is a p-wave resonance, then it fits
the description of M perfectly.

In the limit of unitary symmetry, we can have, be-
sides the unitary octet of vector mesons, a unitary
singlet. The hypothetical 8' that we discussed in Sec.
III would have such a character. If 8' exists, then the
turning-on of the mass-splitting term L" mixes the
states 8' and ro', which are both isotopic singlets.

Other mesons may exist besides those discussed, for
example, scalar and axial vector mesons. All those that
can associate into 5+5 should form unitary octets or

"~No&e addedin proof. H. P. Duerr and W. Heisenberg (pre-
print) have pointed out the importance of the decay mode g0 —+ 3x
induced by electromagnetism. For certain x masses, it may be a
prominent mode.

3~ B. C. Magli5, L. W. Alvarez, A. H. Rosenfeld, and M, L.
Stevenson, Phys. Rev. Letters 7, 178 (1961).

TAaLE III. Possible meson octets and singlets.

Unitary
spin

Isotopic Strange- Pseudo-
spin ness scalar Vector Scalar

Axial
vector

Octet

Singlet

1
1/2
1/2
0
0

0
+1—1

0
0

E'
g'
x'
A'

P
AP
M'

f31

singlets or both, with each octet splitting into isotopic
multiplets because of the symmetry-breaking term L".

A list of some possible meson states is given in Table
III, along with suggested names for the mesons.

It is interesting that we can predict not only the de-
generacy of an octet in the limit L"—+ 0 but also a sum
rule" that holds in first order in L":

(mrr+mg)/2 = (3m,+m.)/4,

(m,ir+msr)/2 = (3m„+m„)/4.
(6.3)

If 3f is at about 884 Mev and p at about 750 Mev,
then co should lie at about 930 Mev according to the
sum rule; since it is actually at 790 Mev, the sum rule
does not seem to give a good description of the splitting.
Perhaps an important effect is the repulsion between
the coo and 8' levels, pushing oP down and 8 up. For
what it is worth, (6.3) gives a yo mass of around 610
Mev.

In the limit of unitary symmetry, not only are the
supermultiplets degenerate but their effective couplings
are symmetrical. For example, the e6ective coupling
of the unitary pseudoscalar octet to Ã and A. takes th~
form

~gIbIIygb. (6.5)

AVe may now write, in a trivial way, other eftective
couplings in the limit of unitary symmetry. %'e define
a traceless 3+3 matrix 8' containing the "6elds" for
the vector meson octet just as II* contains those for
the pseudoscalar octet. AVe then have the invariant

igif g~ysA. or+NY&K+XysWK
+3-'+~Px —2X3-~X~~x), (6.4)

in terms of renormalized "fields. "Now, as the term L"
is turned on, the various coupling constants become
unequal; instead of calling them all g&, we refer to them
as g», g~zz, g»~, and gz&„, respectively, each of
these constants being the measurable renormalized
coupling parameter at the relevant pole.

We have written the effective coupling (6.4) as if
there were renormalized 6elds for all the particles in-
volved, but that is only a matter of notation; the mesons
can perfectly well be composite. We may simplify the
notation still further by constructing a traceless 3X3
matrix II containing the pseudoscalar "fields" in such
a way that (6.4) becomes
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VII. BROKEN SYMMETRY—BARYON
8UPERMULTIPLETS

What has been done in the previous section may be
described mathematically as follows. We considered a
three-dimensional representation of the unitary spin
algebra (4.16) or of the group SU(3) that is generated
by the algebra. It is the representation to which b

belongs (that is, e, p, and A) and we may denote it by
the symbol 3.

The antiparticles b belong to the conjugate repre-
sentation 3*, which is inequivalent" to 3. We have then
taken the direct product 3X3* and found it to be
given by the rule

3X3*=8+1, (7.1)

where S is the octet representation and 1 the singlet
representation of unitary spin. Each of these is its own

conjugate; that is a situation that occurs only when the
dimension is the cube of an integer.

There are, of course, more complicated representa-
tions to which mesons might belong that are incapable
(in the limit of unitary symmetry) of dissociation into
5+5 but capable of dissociation into 2b+25 or higher
configurations. But we might guess that at least the
mesons of lowest mass would correspond to the lowest
configurations.

Now we want to examine the simplest configurations

"In other words, no unitary transform can convert the repre-
sentations 3 and 3~ into each other. That is easy to see, since the
eigenvalues of X& are opposite iri sign for the two representations,
and changing the signs changes the set of eigenvalues. In the case
of the group SU(2) of isotopic spin transformations, the basic
spinor representation I=-, is equivalent to the corresponding anti-
particle representation,

e6ective coupling

iyi TrW (IIB II—8 IIII)/2 (6.6)

in the symmetric limit. When the asymmetry is turned
on, the single coupling parameter p& is replaced by the
set of different parameters yp
RIll +~~X.

In the same way, we have another effective coupling

ih, Trll(8. Wp—BpW.) (B,Wt, apW, )e—.p, i (6.7)

in the symmetric limit; in the actual asymmetric case,
we define the distinct constants h„„h ~~ hy hxpp,

h, ~~, h~~„and h~~„. All of these constants can be
measured, in principle, in "pole" experiments, except
that for the broad resonances like p the poles are well off
the physical sheet.

We have generalized the definitions of constants like
g~N„and p, , as used in Sec. II, to other particles.
The constants y, and f of Sec. II also have analogs, of
course, and we define y„, fx, etc. , in the obvious way.
In the limit of unitary symmetry, of course, we would
have f =fx f„and y——,=y„=y~. Likewise, the con-
stant —Gg/G for nucleon P decay would equal the
corresponding quantity —Gz~~/G for the P decay of A.

for baryops, apart from just b. Evidently the next
simplest is 2b+5, which poses the problem of reducing
the direct product 3X3X3*;the result is the following:

3X3X3"=3X1+3XS=3+3+6+15 (7 2)

The six-dimensional representation 6 is composed of an
isotopic triplet with S= —1, a doublet with S=0, and a
singlet with 5=+1; the fifteen-dimensional repre-
sentation 15 is composed of a doublet with S= —2, a
singlet and a triplet with 5= —1, a doublet and a
quartet with S=O, and a triplet with S=+1.

According to the scheme, then, should belong to 15.
Where are the other members of the supermultipletP
For S=—1 and S=O, there are many known reso-
nances, some of which might easily have the same spin
and parity as ". For S=+1, l=1, however, no reso-
nance has been found so far (in E+ pscatte-ring, for
example).

The hyperon Z should also be placed in a super-
multiplet, which may or may not be the same one to
which belongs; we do not know if the spin and parity
of Z and are the same, with E taken to be pseudo-
scalar. If Z belongs to 6 in the limit of unitary symmetry,
then there should be a,EX resonance in the I=0 state.

It is difIicult to say at the present time if the baryon
states can be reconciled with the model. Further
knowledge of the baryon resonances is required.

One curious possibility is that the fundamental ob-
jects b are hidden and that the physical .V and A,
instead of belonging to 3, belong, along with Z and
to the representation 15 in the limit of unitary sym-
metry. That would require the spins and parities of
&7, A, Z, and to be equal, and it would require a m-.V
resonance in the p;, I= 2 state as well as a E&V reso-
nance in the p~, I= 1 state to 611 out the supermultiplet.

VIII. THE "EIGHTFOLD %AY"

Unitary symmetry may be applied to the baryons in
a more appealing way if we abandon the connection
with the symmetrical Sakata model and treat unitary
symmetry in the abstract. (An abstract approach is, of
course, required if there are no "elementary" baryons
and mesons. ) Of all the groups that could be generated
by the vector weak currents, SU(3) is still the smallest
and the one that most naturally gives rise to the rules

I»l =-: -d»/~q=O, +1
There is no longer any reason for the baryons to

belong to the 3 representation or the other spinor repre-
sentations of the group SU(3); the various irreducible
spinor representations are those obtained. by reducing
direct products like 3X3X3*,3X3X3X3*X3*,etc.

Instead, the baryons may belong, like the mesons, to
representations such as 8 or 1 obtained by reducing the
direct. products of equal numbers of 3's and 3*'s. It, is
then natural to assign the stable and metastable
baryons N, A, Z, and to an octet, degenerate in the
limit. of unitary symmetry. We thus obtain the scheme
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which agrees surprisingly well with observations, the
two sides differing by less than 20 Mev.

To form mesons that transform like combinations of
these baryons and their antiparticles, we reduce the
direct product SXS (remembering that 8=8*) and
obtain

8X8=1yS+8+10+10*F27, (8.2)

where 1 and 8 are the singlet and octet representations
already discussed; 10 consists of an isotopic triplet
with Y=O, a doublet with Y= —I, a quartet with
I'=+1, and a singlet with Y= —2; 10* has the oppo-
site behavior with respect to I'; and 27 consists of an
isotopic singlet, triplet, and quintet with V=0, a pair. of
doublets with V= a j., a pair of quartets with I'= ~1,
and a pair of triplets with Y= ~2. Evidently the known
mesons are to be assigned to octets and perhaps singlet@,
as in Sec. VI. The meson-nucleon scattering resonances
must then also be assigned representations among those
in (8.2); the absence so far of any observed structure in
E cV scattering -makes it difficult to place the I=3/2,
1=3/2, ~-.V resonance in a supermultiplet.

The fact tha, t 8 occurs twice in Eq. (8.2) means that
there are two possible forms of symmetrical Vukawa
coupling of a meson octet to the baryon octet in the
limit of unitary symmetry. As in Sec. VI for the mesons,
we form a 3)&3 traceless matrix out of the formal
"fields" of the baryon octet; call it S. The effective
symmetrical coupling of pseudoscalar mesons may then
be written as

igin Tr (SvrygS+m Sy5$)/2
+ig, (1 n) Tr (—Tl~~,e—~~, e)/2. (8.3)

The two types of coupling differ in their behavior under
the operation E. that exchanges .V and, E and X,
M and M, etc. ; the first term is symmetric while the
second is antisymmetric under R. The parameter o. just
speci6es how much of each effective coupling is pre-
sented in the limit of unitary symmetry. When we take
into account violations of the symmetry, we must
define separate coupling constants g~N, gg~g, etc.,
in a suitable way.

Likewise the vector mesons have the general sym-
metrical coupling

iyij3Tr (SW y S+W Sy 8)
+iyi(1 —P) Tr (SJF y S—IF Sy S), (8.4)

of Gell-Mann32 and Ne'eman" that we call the "eight. -
fold way. " The component F8 of the unitary spin is
now (K3/2)Y, where F is the hypercharge (equal to
strangeness plus baryon number).

The baryons of the octet must have the same spin
and parity (treating E as pseudoscalar). To first order
in the violation of unitary symmetry, the masses should
obey the sum rule analogous to (6.3):

(m~+m-. )/2= (3mg+mg)/4, (8.1)

where we ignore Pauli moment terms for simplicity.
To the extent that the vector meson octet 8' dominates
the dispersion relations for the unitary spin current 5;,
then the mesons of 8' are coupled effectively to the
components of F;, and we have P=O in (8.5). Then p
is effectively coupled to the isotopic spin current. , co to
the hypercharge current, arid M to the strangeness-
changing vector current. The first two of these currents
are conserved, and so we have the approximate uni-
versality of p and ~ couplings proposed by Sakurai" and
discussed. in Sec. II. In the limit of unitary symmetry,
under the assumptions just mentioned, p is effectively
coupled to the current of 2y&I and co to the current of
2yiF8 v/3yi Y-—.

The electromagnetic current is now given by the
formula

.j.= +3.+3 '*&8

instead of (5.4), while the weak vector current is still
described by Eq. (5.5). If we are to treat the vector and
axial vector currents by means of SU(3) XSU(3), as we
did earlier, then the entire weak current is given by
(5.22) and we have the commutation rules (5.3), (5.9),
and (5.10) for the various components of the currents.
The question of the behavior of IX under the group
SU(3)XSP (3) should, however, be re-examined for the
eightfold way; we shall not go into that question here.
Hut let us consider how the baryon octet transforms in
the limit. of conserved vector arsd axial vector currents
Linvariance under SU(3)XSU(3)7. In the Sakatamodel,
the left-handed baryons transformed under (F;+,F; )
like (3, 1), while the right-handed baryons transformed
according to (1, 3). For the eightfold way, there are two
simple possibilities for these transformation properties.
Either we have (8, 1) and (1, 8) or else we adjoin a
ninth neutral baryon (which need not be degenerate
with the other eight in the limit of conserved vector
currents and which need not have the same parity)
and use the transformation properties (3, 3*) and
(3*,3). In the first case, the baryons transform like the
quantities 5; and P,,' (i=1 8) and in the second
case they transform like u, and v; (i=0, , 8) of
Sec. V.

IX. REMARKS AND SUGGESTIONS

Our approach to the problem of baryon and meson
couplings leads to a number of suggestions for new in-
vestigations, both theoretical and experimental.

First, the equal-time commutation relations for cur-
rents and densities lead to exact sum rules for the weak
and electromagnetic matrix elements. As an example,
take the commutation rules (3.5) for the isotopic spin
current. These do not, of course, depend on any higher
symmetry, but they can be used to illustrate the re-
sults that can be obtained from the more general rela-
tions like (5.3).

Consider the electromagnetic form factor F (s) of
the charged pion, which is just the form factor of the
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isotopic spin current between one-pion states. Let P
and p be the initial and final pion four-momenta, with
s= —(P—P')'. Let E be any four-momentum with
E'= —m '. Then, taking the matrix element of (3.5)
between one-pion states, we obtain the result

2(Po+Po')&&-( (P——P')')
= (Po+&o) (Po'+&o)~-( (P——&)')~-(—(P' —&)')

—(Po—&o) (Po' —&o)~-(—(P+%')~-(—(P'+I(')')
+inelastic terms, (9.1)

where the inelastic terms come from summing over bi-
linear forms in the inelastic matrix elements of the
current. We see that if there is no inelasticity the form
factor is unity. Thus the departure from unity of F (s)
is related to the amount of inelasticity.

A similar relation is familiar in nonrelativistic quan-
tum mechanics:

((,((y-y') *)0&—p„(c'(y—) *)o„(c'( —y') *) (9 2)

If we apply relations like (9.1) to the matrix elements
of non-conserved currents like P, along with the linear
homogeneous dispersion relations for these matrix ele-
ments, we can in principle determine constants like
—Gg/G.

A second line of theoretical investigation is sug-
gested by the vanishing at high momentum transfer of
matrix elements of divergences of non-conserved cur-
rents, like 8 P . We should try to find limits involving
high energies and high momentum transfers in which we
can show that the conservation of helicity, unitary spin,
etc., becomes valid. A preliminary effort in this direc-
tion has been made by Gell-Mann and Zachariasen. "

A third topic of study is the testing of broken sym-
metry at low energy. Do the mesons fall into unitary
octets and singletsP An experimental search for x' is
required and also a determination of the spin of K~ at
884 Mev to see if it really is our M meson.

I.et us discuss briefly the properties of z'. An I=O
state of 4x can have two types of symmetry: either
totally symmetric (partition f4)) in both space and
isotopic spin or else the symmetry of the partition
[2+2) in space and in isotopic spin. For a pseudoscalar
state, the first type of wave function in momentum space
is very complicated. If p, q, and r are the three mo-
mentum differences, it must look like

p (IX r(E&—EQ) (E2 E3) (Ey—E4)
X (Eg E3) (Eg E4) (Ep—E4),

times a symmetric function of the energies E1 E2 E3 E4
of the four pions. On the basis of any reasonable dy-
namical picture of x, such a wave function should have
a very small amplitude. In particular, dispersion theory
suggests that the wave function of x should have large
contributions from virtual dissociation into 2p, which
gives a wave function with L2+2) symmetry.

» M. Gell-Mann and F. Zachariasen, Phys. Rev. 123, 1065
(I96&).

If L2+2) predominates, then the charge ratio in de-
cay is 2:1 in favor of 27ry+s++m over 2~++2~, with
4x absent. If virtual dissociation into 2p actually pre-
dominates, then the matrix element of the 47r configura, -
tion is easi1y written down and the spectrum of the
decay y'~ 4+ can be calculated.

If x' is lighter than 4~, it will, of course, decay electro-
magnetically. Even if it is above threshold for 4z,
however, the matrix element for decay contains so
many powers of pion momenta that e1ectromagnetic
decay shouM be appreciable over a, large range of
masses. The branching ratio (n.++7r +y)/(4') is ap-
proximately calculable by dispersion methods. In both
cases y first dissociates into 2p. Then either both virtual
p mesons decay into 2m, or else (in the case where both
are neutral) one may decay into w++s. , while the other
turns directly into p. If we draw a diagram for such a
process, then the constant y„ is inserted whenever we
have a parer vertex and the constant em, '/2y, at a, p-y
junction. "

If the meson spectrum is consistent with broken
unitary symmetry, we should examine the baryons, and
see whether the various baryon states fit into the repre-
sensations 3, 6, and 15 (or the representations 1, 8,
10, 10*, and 27 that arise in the alternative form of
unitary symmetry).

If some states are lacking in a given supermultiplet,
it does not necessarily prove that the broken symmetry
is wrong, but only that it is badly violated. We assume
that baryon isobars like the mV-,', -,'resonance are
dynamical in nature; there may be some attractive and
some repulsive forces in this channel, and the attractive
ones have won out, . producing the resonance. In the
EE channel with I=1, for example, it is conceivable
that the repulsive ones are stronger (because of sym-
metry violation), and the analogous P, resonance dis-
appears. In such a situation, the concept of broken sym-
metry at low energies is evidently of little value.

Suppose, however, that the idea of broken unitary
symmetry is confirmed for both mesons and baryons,
say according to the Sakata picture, in which Ã and 4
belong to the representation 3 in the limit of unitary
symmetry. There are, nevertheless, gross violations of
unitary symmetry, and the elucidation of these, both
theoretical and experimental, is a fourth interesting
subject.

If unitary symmetry were exact, then not only would
yyyz/yN equal unity, instead of about 3.5, but fjr'/f '
would be 1 instead of about 6, and 3G~'+G~' for the P
decay of A would be equal to 3G&'+ G&' for the nucleon
instead of being 1/15 as large. All these huge departures
from unity represent very serious violations of unitary
symmetry.

Yet the relatively small mass difference of X and A
compared to their masses would seem to indicate, if our
model is right, that the constant c in Eq. (5.21) is con-
siderably smaller than unity. It is conceivable that the
large mass ratio of E to x comes about because the total
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mass of the system is so small. It is possible that even
with a fairly small c (say ——,'0) we might explain the
gross violations of unitary symmetry. M~t. might try to
interpret the large values of g~N '/g~xz', fx'/f ', etc. ,
in terms of the large value of mx'/m '.

An example of such a calculation, and one that
illustrates the various methods suggested in this article,
is the following. We try to calculate fan@/f

' in terms
of mx'/m. '.

Consider the following vacuum expectation value,
written in parametric representation:

&[5g.'('x),BeSge'('x')))0 i/——(2 x)' d4E e'x &

XE e(E) dM2/M2$(E2+M2)p(M2) (9 3)

Xe(E) dM' 0(E'+M2)p(M') (9 4)

Now the contribution of the one-pion intermediate
state is easily obtained in terms of the constant f '.

p(M') =5(M' —m~2)m~4/4f~'+higher terms. (9.5)

If J'p(M')dM'/M2 converges and if the one-pion term
dominates, we have

p (M2)dM2/M2 ~ 2/4f 2 (9.6)

But from (9.3) we can extract the expectation value of
the equal-time commutator of the fourth component of
5& ~ with creF~e', making use of (5.20) and (5.24), we

can express the result in terms of (uo) and (us). Thus
we 6nd

p (M') dM'/M'= [(2/3) &+(1/3) &c)

X[(2/3) &uo)o+(1/3)'(us)0), (9.7)

assuming convergence.
Now we can do exactly the same thing for 54 ' and

the E meson, obtaining, in place of the formula

-'/4f-'=[(-:)'+(l)'* )L(-:)'& o)o+(l)'& ) ), (98)

the analogous result

~+/4f+=[(l)' —(—'.)'c)[(l)'&u &
—(')'&u )o) (9 9)

If c is really small, presumably &ue)o is also small

compared to (uo)0. Then we can, roughly, set (9.8)
equal to (9.9), obtaining

fx /f '=mx'/m„'. (9.10)

Here x and x' are arbitrary space-time points. In terms
of (9.3), we have

&[8 Pg '(x),BeFge'(x'))) = 1/(2x)' d4E e'x &*—~'~

The left-hand side is about 6 and the right-hand side
about 10.Thus we can, in a crude approximation, calcu-
late the rate of E+~ p++v in terms of that for m.+ —+

+++ v and explain one large violation of symmetry in
terms of another.

The Goldberger-Treiman formula relating f, g~~,
and (—Gg/G) can also be used for the E particle to
give a relation among frc, g~qx, and (—G~/G) for the
P decay of A. Of course, the E-particle pole is much
closer to the branch line beginning at (mx+2nz )' than
the pion pole is to the branch line beginning at 9m
thus the Goldberger-Treiman formula may be quite
bad for the E meson. Still, we may try to use it to dis-
cuss the coupling of X and A. to E and to leptons. %e
have

(m~+m~) ( G~ /—G) =g~j,x/fx, (9.11)

by analogy with (2.8). Comparing the two formulas,
we have

(—G„~~/G)'( —G„/G)—'
=g~zz'gN~ '(2m~ f )'[(my+ m~) frc) ' (9.—12.)

The ratio of g' factors is thought to be 0.1 from photo-
production of E, while the remaining factor on the right
is also 0.1, so that the Goldberger-Treiman relation
leads us to expect a very small axial vector P-decay
rate for the A, much smaller than the observed one. The
observed P decay would be nearly all vector; this pre-
diction of the Goldberger-Treiman formula can easily
be checked by observing the electron-neutrino angular
correlation in the P decay of A, using bubble chambers.

We should, of course, try to predict the value of
g~qz g~~~ ' in terms of sex'/nz ' just as we did above
for frc'/f '; however, it is a much harder problem.

When we know more about the coupling constants
of the vector mesons (strong coupling constants such
as y„~~, h„„etc., and coupling strengths of currents
such as y„, yu, etc.) we will be able to make a survey
of the pattern of coupling constants as well as the
pattern of masses and see whether the higher symmetry
has any relevance. Also it should become clear how well
the approximation of dominant low-mass states works,
in terms of universality of meson couplings and Gold-
berger-Treiman relations. "

In summary, then, we suggest the use of the equal-
time commutators to predict sum rules, attempts to
derive high-energy conservati. on laws and to check them

38An interesting relation of the Goldberger-Treiman type is
one that holds if the trace 8 of the stress-energy-momentum
tensor has matrix elements obeying highly convergent dispersion
relations. Because of the vanishing of the self-stress, the expecta-
tion value of 8 in the state of a particle at rest gives the mass of
the particle. Rewriting the matrix element as one between the
vacuum and a one-pair state, we see that the dispersion relation
involves intermediate states with I=0, J=0+, 6=+1.0 there is
a resonance or quasi-resonance in this channel (like the p' meson
of Table III) and if that resonance dominates the dispersion rela-
tion at low momentum transfers, then the coupling of the resonant
state to different particles is roughly proportional to their masses.
That is just the situation discussed by Schwinger in reference i
and by Gell-Mann and I evy in reference 17 for the "a meson. "
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experimentally, the search for broken symmetry at low
energies, attempts to calculate some violations in terms
of others, and efforts to check the highly convergent
dispersion relations dominated by low-mass states.

Nowhere does our work confiict with the program of
Chew et al. of dynamical calculation of the S matrix for
strong interactions, using dispersion relations. If some-
thing like the Sakata model is correct, then most of the
mesons are dynamical bound states or resonances, and
their properties are calculable according to the program.
Those particles for which there are fundamental 6eMs
(like e, p, A. , and 8' in the specific field-theoretic model)
would presumably occur as CDD poles or resonances in
the dispersion relations. "

If there are no fundamental 6elds and no CDD poles,
all baryons and mesons being bound or resonant states
of one another, models like that of Sakata will fail; the
symmetry properties that we have abstracted can still
be correct, however. This situation would presumably
di8er in two ways" from the one mentioned above.
First, all the masses and coupling constants could be
calculated from coupled dispersion relations. Second,
certain scattering amplitudes at high energies would
show different behavior, corresponding to different
kinds of subtractions in the dispersion relations. The
second point should be investigated further, as it could
lead to experimental tests of the "fundamental" char-
acter of various particles. ' "
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APPENDIX

The 6eM theories of the Fermi-Yang and Sakata
models, given by Eqs. (3.17) and (4.1), respectively,
belong to a general class of theories, which we now
describe.

The Lagrangian density I. is given as a function of a
number of fields P~ and their gradients. The kinetic
part of the Lagrangian (consisting of those terms con-
taining gradients) is invariant under a set of infinitesi-
mal unitary transformations generated by .V inde-
pendent Hermitian operators R;, which may depend on
the time. Under the transformations, the various fields

fz undergo linear. recombinations:

pg (x,t) —+ pg (x,t) —iA;LR, (t),it g (x,t))
=P~(x,t)+iA, Qii M" Pii(x, t), (A1)

"L.Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (i956).

0 S. C. Frantschi, M. Gell-Mann, and F. Zachariasen (to be
published).

where h.; is the infinitesimal gauge constant associated
with the ith transformation. The equal-time commuta-
tion rules of the R; are the same as those of the matrices
3f;. Moreover, the set of R, and linear combinations of
R, is algebraically complete under commutation; in
other words, we have an algebra. The matrices M; are
the basis of a representation of the algebra (in general,
a reducible representation). It is convenient to take the
matrices of the basis to be orthonormal,

TrM;M;= (const)b, ;;, (A2)

redefining the R; accordingly. The structure constants
c;;I, in the commutation rules

fM;,M;) =ic,;sMs,

L~'(t) ~ (t)1=ic'td4(t),
(A3)

L +L(x,t) —8 A, (—x,t)R, (x,t) —A, (x,t)B„E; (x,t). (A5)

We define R; to be the current of R;. It can be shown
that R; is in fact given by the relation

R;= —z R;4d'x. (A6)

Now if, for constant A;, the whole Lagrangian is in-
variant under R;, then the term in h.; in (A4) must
vanish; we have 8 R; =0. In other words, if there is
exact symmetry under R;, the current R; is conserved.

H there is a noninvariant part of I with respect to
the symmetry operation R,, then the current will not
be conserved. By hypothesis, the noninvariant term
(call it st) contains no gradients. Therefore, the effect

OE. Cartan, Sssr le 5trlctgre des groupes de truesformations
frnis et continns, these (Paris, 1894; 2nd ed. , 1938).

are now real and totally antisymmetric in i, j, and k.
We may still perform real rotations in the V-dimen-
sional space of the R; or the M, . Suppose, after per-
forming such a rotation, that we can split the R; into
two sets that commute with each other. Then our alge-
bra is the direct sum of two commuting algebras. We
continue this process until no further splitting is
possible, even after performing rotations. The algebra
has then been expressed as the direct sum of simple
algebras. All the simple algebras have been listed by
Cartan. ' Besides the trivial one-dimensional algebra of
U(1) (which is not included. by the mathematicians),
there are the three-dimensional algebra of SU(2), the
eight-dimensional algebra of SU(3), and so forth.

Now let us construct the currents of the operators R;.
Vfe consider the gauge transformation of the second kind

P~ ~Pg(x, t) —iA.;(x,t)LR, (t),P~(x„t)j, (A4)

and ask what change it induces in the Lagrange density
I.. There will be a term in 4; and a term in 8 A, , so
adjusted" that the total change is just the divergence
of a four-vector:



MURRAY GELL —MANN

By considering the transformation properties of H
under commutation with the algebra, we generate the
divergences of all the currents. The formula obtained
by integrating (A6) over space is, of course, very
familiar:

Since I contains no gradients, it is not only the non-

invariant term in the Lagrangian density, but also the
negative of the noninvariant term in the Hamiltonian
density. The invariant part of H evidently commutes

R;= 8 E; d'x= —i E,, Hd'x .

of the transformation (A3) for constant A; will be simply with R;. Thus we have
to add a term —iA, [R,,Nj to the Lagrangian density.
We have, then, using (A4), the result


