Publications

Ordenar por: Autor Título Tipo [ Ano  (Desc)]
2001
Nonlinear Development of Weak Beam-Plasma Instability, Ziebell, L. F., Gaelzer R., and Yoon P. H. , Physics of Plasmas, September, Volume 8, Number 9, p.3982–3995, (2001) AbstractWebsite

n/a

Nonlinear interactions of tenuous electron beam, background, unmagnetized plasma, and self-consistently generated Langmuir and ion-sound waves are analyzed in the framework of plasma weak turbulence kinetic theory. Full numerical solutions of the complete weak turbulence equations are obtained for the first time, which show the familiar plateau formation in the electron beam distribution and concomitant quasi-saturation of primary Langmuir waves, followed by fully nonlinear processes which include three-wave decay and induced-scattering processes. A detailed analysis reveals that the scattering off ions is an important nonlinear process which leads to prominent backscattered and long-wavelength Langmuir wave components. However, it is found that the decay process is also important, and that the nonlinear development of weak Langmuir turbulence critically depends on the initial conditions. Special attention is paid to the electron-to-ion temperature ratio, Te/Ti, and the initial perturbation level. It is found that higher values of Te/Ti promote the generation of backscattered Langmuir wave component, and that a higher initial wave intensity suppresses the backscattered component while significantly enhancing the long-wavelength Langmuir wave component.

1999
Dielectric Tensor for Inhomogeneous Plasmas in Inhomogeneous Magnetic Field, Gaelzer, Rudi, Ziebell Luiz F., and Silveira Omar J. G. , Physics of Plasmas, December, Volume 6, Number 12, p.4533–4541, (1999) Abstract

n/a

The derivation of explicit exprEssions for the effective dielectric tensor to be utilized in the dispersion relation for weakly inhomogeneous Plasmas is discussed. The general exprEssions obtained are useful for situations with simultaneous existence of weak inhomogeneities in density and magnetic field. The particular case of a Maxwellian distribution in velocity space for the electron population is discussed, and relatively compact exprEssions for the dielectric tensor are obtained which depend on the inhomogeneous Plasma dispersion function introduced by [Gaelzer et al., Phys. Rev. E55, 5859 (1997)] and ultimately on the well-known Fried-Conte function and its derivatives.

1998
The Effective Dielectric Tensor for Plasmas with Inhomogeneities in Density and Magnetic Field, Gaelzer, R., Schneider R. S., and Ziebell L. F. , V Encontro Brasileiro de Física dos Plasmas, November/Decembe, Águas de Lindóia - SP, p.165–168, (1998) Abstract

n/a

n/a
1997
Comment on “{O}nsager Symmetry for Inhomogeneous Magnetized Plasmas” [{P}hys. {P}lasmas \textbf{3}, 4325 (1996)], Schneider, R. S., Ziebell L. F., and Gaelzer R. , Physics of Plasmas, August, Volume 4, Number 8, p.3091–3093, (1997) AbstractWebsite

n/a

n/a
Dispersion Function for Plasmas With Loss-Cone Distributions in an Inhomogeneous Magnetic Field, Gaelzer, R., Schneider R. S., and Ziebell L. F. , Physical Review E, Volume 55, Number 5, p.5859–5873, (1997) Abstract

n/a

n/a
1996
Is the Effective Dielectric Tensor Consistent with the Geometric Optics?, Gaelzer, R., Schneider R. S., and Ziebell L. F. , IV Encontro Brasileiro de Física dos Plasmas, September, Águas de Lindóia - SP, p.282–285, (1996) Abstract

n/a

n/a
1995
Dispersion Functions for Weakly Relativistic Magnetized Plasmas in Inhomogeneous Magnetic Field, Gaelzer, R., Schneider R. S., and Ziebell L. F. , 3łho{o} Encontro Brasileiro de Física dos Plasmas, December, Águas de Lindóia - SP, p.240–243, (1995) Abstract

n/a

n/a
The Dispersion Relation and the Dielectric Tensor for Magnetized Plasmas with Inhomogeneous Magnetic Field, Gaelzer, R., Schneider R. S., and Ziebell L. F. , Physical Review E, Volume 51, Number 3, p.2407–2424, (1995) Abstract

n/a

n/a
1994
A Time-Reversal Invariant Formulation of Wave Absorption in Weakly Inhomogeneous MagnetoPlasmas, Gaelzer, R., Schneider R. S., and Ziebell L. F. , 1994 International Conference on Plasma Physics, November, Volume 2, Foz do Igua\c cu - Brasil, p.33–36, (1994) Abstract

n/a

n/a
Ray Tracing Studies on Auroral Kilometric Radiation in Finite-Width Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , Journal of Geophysical Research, May, Volume 99, Number A5, p.8905–8916, (1994) Abstract

n/a

We investigate propagation and amplification of the auroral kilometric radiation over the geomagnetic poles using a particular model for the physical parameters in the auroral zone, which takes into account density gradients perpendicular to the geomagnetic field. The propagation of the waves is investigated with the canonical set of equations of the geometrical optics, taking into account thermal effects and considering both the energetic and the background electron populations, with the components of the dielectric tensor calculated in the locally homogeneous plasma approximation. It is shown that the spatial scale of inhomogeneity perpendicular to the magnetic field is an important factor in the amplification, although less favorable than indicated by previous studies using the method of Poeverlein to obtain the trajectory of the radiation.

1993
Magnetic Field Inhomogeneity Effects in Weakly Relativistic Plasmas, Gaelzer, R., Schneider R. S., and Ziebell L. F. , 2łho{o} Encontro Brasileiro de Física dos Plasmas, October, Serra Negra - Brasil, p.226–229, (1993) Abstract

n/a

n/a
Ray Tracing Studies on Wave Propagation in the Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , 2łho{o} Encontro Brasileiro de Física dos Plasmas, October, Serra Negra - Brasil, p.317–321, (1993) Abstract

n/a

n/a
1992
Propagation and Amplification of Auroral Kilometric Radiation in Finite Width Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , Journal of Geophysical Research, December, Volume 97, Number A12, p.19299–19310, (1992) Abstract

n/a

We investigate amplification of the auroral kilometric radiation over the geomagnetic poles. The physical parameters needed for the calculation are obtained from a particular model that approximately reproduces the conditions in the auroral zone, taking into account density gradients perpendicular to the geomagnetic field and also the parallel magnetic field gradient. The components of the dielectric tensor are calculated in the locally homogeneous plasma approximation, and the dispersion relation is exactly solved with all harmonics and powers of the Larmor radius needed for the convergency of the solution. We also make a ray tracing study in the geometrical optics approximation, using the method of Poeverlein. The ray tracing study shows that the spatial scale of inhomogeneity, perpendicular to the magnetic field, is a very important factor in the amplification and that the distance to obtain a given amplification can be substantially reduced when the density gradient is increased.

1991
Two-Dimensional Ray-Tracing Studies in the Source of Auroral Kilometric Radiation, Gaelzer, R., Ziebell L. F., and Schneider R. S. , 1łho{o} Congresso Brasileiro de Física dos Plasmas, December, Santos - Brasil, p.81–85, (1991) Abstract

n/a

n/a