Publications

Ordenar por: Autor [ Título  (Asc)] Tipo Ano
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Simulation of asymmetric solar wind electron distributions, Ryu, C. - M., Ahn H. - C., Rhee T., Yoon P. H., Ziebell L. F., Gaelzer R., and Vinas A. F. , Physics of Plasmas, June, Volume 16, Number 6, p.062902, (2009) AbstractWebsite

n/a

The electron distributions detected in the solar wind feature varying degrees of anisotropic high-energy tail. In a recent work the present authors numerically solved the one-dimensional electrostatic weak turbulence equations by assuming that the solar wind electrons are initially composed of thermal core plus field-aligned counterstreaming beams, and demonstrated that a wide variety of asymmetric energetic tail distribution may result. In the present paper, the essential findings in this work are tested by means of full particle-in-cell simulation technique. It is found that the previous results are largely confirmed, thus providing evidence that the paradigm of local electron acceleration to high-energy tail by self-consistently excited Langmuir turbulence may be relevant to the solar wind environment under certain circumstances. However, some discrepancies are found such that the nearly one-sided energetic tail reported in the numerical solution of the weak turbulence kinetic equation is not shown.

Solar Wind Electron Acceleration via Langmuir Turbulence, Yoon, Peter H., Ziebell L. F., Gaelzer R., Wang Linghua, and Lin Robert P. , Terrestrial, Atmospheric and Oceanic Sciences, April, Volume 24, Number 2, p.175–182, (2013) AbstractWebsite

n/a

The solar wind electrons observed at 1 AU are characterized by velocity distribution functions (VDF) that deviate from the Maxwellian form in a high energy regime. Such a feature is often modeled by a kappa distribution. In the present paper a self-consistent theory of quiet-time solar wind electrons that contain a power-law tail component, f ∝ v-α is discussed. These electrons are assumed to be in dynamic equilibrium with enhanced electrostatic fluctuations with peak frequency near the plasma frequency (i.e., the Langmuir turbulence). In order to verify the theoretical prediction, the solar wind electrons in the high-energy range known as the super-halo distribution detected by WIND and STEREO spacecraft are compared against the theoretical model where it was found that the theoretical power-law index is intermittent with regard to the observed range of indices, thus indicating that the turbulent equilibrium model of suprathermal solar wind electrons may be valid.

Solar Wind Strahl Broadening by Self-generated Plasma Waves, Pavan, J., Viñas A. F., Yoon P. H., Ziebell L. F., and Gaelzer R. , The Astrophysical Journal Letters, June, Volume 769, Number 2, p.L30, (2013) AbstractWebsite

n/a

This Letter reports on the results of numerical simulations which may provide a possible explanation for the strahl broadening during quiet solar conditions. The relevant processes involved in the broadening are due to kinetic quasi-linear wave-particle interaction. Making use of static analytical electron distribution in an inhomogeneous field, it is found that self-generated electrostatic waves at the plasma frequency, i.e., Langmuir waves, are capable of scattering the strahl component, resulting in energy and pitch-angle diffusion that broadens its velocity distribution significantly. The present theoretical results provide an alternative or complementary explanation to the usual whistler diffusion scenario, suggesting that self-induced electrostatic waves at the plasma frequency might play a key role in broadening the solar wind strahl during quiet solar conditions.

Spontaneous emission of electromagnetic radiation in turbulent plasmas, Ziebell, L. F., Yoon P. H., Simões F. J. R., Gaelzer R., and Pavan J. , Physics of Plasmas, January, Volume 21, Number 1, (2014) AbstractWebsite

Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.