Publications

Ordenar por: Autor [ Título  (Asc)] Tipo Ano
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations, Simões, F. J. R., Pavan J., Gaelzer R., Ziebell L. F., and Yoon P. H. , Physics of Plasmas, October, Volume 20, Number 10, (2013) AbstractWebsite

n/a

In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS, Ziebell, Luiz F., Petruzzellis Larissa T., Yoon Peter H., Gaelzer Rudi, and Pavan Joel , The Astrophysical Journal, Volume 818, Issue 61, (2016) AbstractWebsite

The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly
accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.
Key words: plasmas – radiation mechanisms: non-thermal – solar wind – Sun: radio radiation – turbulence – waves

Plasma Emission by Nonlinear Electromagnetic Processes, Ziebell, L. F., Yoon P. H., Petruzzellis L. T., Gaelzer R., and Pavan J. , The Astrophysical Journal, Volume 806, Issue 2, Number 2, p.237, (2015) AbstractWebsite

The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

Plasma Emission by Weak Turbulence Processes, Ziebell, L. F., Yoon P. H., Gaelzer R., and Pavan J. , The Astrophysical Journal Letters, Volume 795, Number 2, p.L32, (2014) AbstractWebsite

The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

Propagation and Amplification of Auroral Kilometric Radiation in Finite Width Auroral Cavities, Gaelzer, R., Ziebell L. F., and Schneider R. S. , Journal of Geophysical Research, December, Volume 97, Number A12, p.19299–19310, (1992) Abstract

n/a

We investigate amplification of the auroral kilometric radiation over the geomagnetic poles. The physical parameters needed for the calculation are obtained from a particular model that approximately reproduces the conditions in the auroral zone, taking into account density gradients perpendicular to the geomagnetic field and also the parallel magnetic field gradient. The components of the dielectric tensor are calculated in the locally homogeneous plasma approximation, and the dispersion relation is exactly solved with all harmonics and powers of the Larmor radius needed for the convergency of the solution. We also make a ray tracing study in the geometrical optics approximation, using the method of Poeverlein. The ray tracing study shows that the spatial scale of inhomogeneity, perpendicular to the magnetic field, is a very important factor in the amplification and that the distance to obtain a given amplification can be substantially reduced when the density gradient is increased.