Publications

Ordenar por: Autor [ Título  (Asc)] Tipo Ano
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
N
A New Formulation for the Dielectric Tensor for Magnetized Dusty Plasmas with Variable Charge on the Dust Particles, Ziebell, L. F., Schneider R. S., de Juli M. C., and Gaelzer R. , Brazilian Journal of Physics, September, Volume 38, Number 3A, p.297–322, (2008) AbstractWebsite

n/a

A kinetic approach to the problem of wave propagation in dusty plasmas, which takes into account the variation of the charge of the dust particles due to inelastic collisions with electrons and ions, is utilized as a starting point for the development of a new formulation, which writes the components of the dielectric tensor in terms of a finite and an infinite series, containing all effects of harmonics and Larmor radius. The formulation is quite general and valid for the whole range of frequencies above the plasma frequency of the dust particles, which were assumed motionless. The formulation is employed to the study of electrostatic waves propagating along the direction of the ambient magnetic field, in the case for which ions and electrons are described by Maxwellian distributions. The results obtained in a numerical analysis corroborate previous analysis, about the important role played by the inelastic collisions between electrons and ions and the dust particles, particularly on the imaginary part of the dispersion relation. The numerical analysis also show that additional terms in the components of the dielectric tensor, which are entirely due these inelastic collisions, play a very minor role in the case of electrostatic waves, under the conditions considered in the present analysis.

Nonlinear Development of Weak Beam-Plasma Instability, Ziebell, L. F., Gaelzer R., and Yoon P. H. , Physics of Plasmas, September, Volume 8, Number 9, p.3982–3995, (2001) AbstractWebsite

n/a

Nonlinear interactions of tenuous electron beam, background, unmagnetized plasma, and self-consistently generated Langmuir and ion-sound waves are analyzed in the framework of plasma weak turbulence kinetic theory. Full numerical solutions of the complete weak turbulence equations are obtained for the first time, which show the familiar plateau formation in the electron beam distribution and concomitant quasi-saturation of primary Langmuir waves, followed by fully nonlinear processes which include three-wave decay and induced-scattering processes. A detailed analysis reveals that the scattering off ions is an important nonlinear process which leads to prominent backscattered and long-wavelength Langmuir wave components. However, it is found that the decay process is also important, and that the nonlinear development of weak Langmuir turbulence critically depends on the initial conditions. Special attention is paid to the electron-to-ion temperature ratio, Te/Ti, and the initial perturbation level. It is found that higher values of Te/Ti promote the generation of backscattered Langmuir wave component, and that a higher initial wave intensity suppresses the backscattered component while significantly enhancing the long-wavelength Langmuir wave component.

Nonlinear Evolution of Beam-plasma Instability in Inhomogeneous Medium, Ziebell, L. F., Yoon P. H., Pavan J., and Gaelzer R. , The Astrophysical Journal, January, Volume 727, Number 1, p.16, (2011) AbstractWebsite

n/a

The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a finding may be important in the quantitative analysis of the plasma emission process with application to solar type II and/or type III radio bursts.

Nonlinear Frequency Shifts of Plasma Eigenmodes, Yoon, P. H., and Gaelzer R. , Physics of Plasmas, October, Volume 9, Number 10, p.4166–4173, (2002) AbstractWebsite

n/a

In the present article, the classic problem of nonlinear frequency shifts of electrostatic plasma eigenmodes in an unmagnetized plasma (i.e., the Langmuir and ion-acoustic waves) is revisited. In the standard literature, only the frequency shift of Langmuir waves by the finite-amplitude Langmuir waves themselves is usually treated. In the present approach, the discussion is generalized to include the ion-sound waves. The significance of the present article is that the analytical approach employed in the present discussion can be utilized to resolve certain apparently singular terms in the induced scattering coefficients of the wave kinetic equations. The detailed discussion of such a problem will be reported in a forthcoming article.