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Abstract The effects of velocity distribution functions (VDFs) that exhibit a power law dependence on
the high-energy tail have been the subject of intense research by the space plasma community. Such
functions, known as superthermal or kappa distributions, have been found to provide a better fitting to
the VDF measured by several spacecraft in the plasma environment of the solar wind. In the literature, the
general treatment for waves excited by (bi-)Maxwellian plasmas is well established. However, for kappa
distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the
limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of
obliquely propagating waves have been scarcely reported so far. In this work we introduce a mathematical
formalism that provides expressions for the dielectric tensor components and subsequent dispersion
relations for oblique propagating dispersive Alfvén waves (DAWs) resulting from a kappa VDF. We employ
an isotropic distribution, but the methods used here can be easily applied to more general anisotropic
distributions, such as the bi-kappa or product-bi-kappa. The effect of the kappa index and thermal
corrections on the dispersion relations of DAW is discussed.

1. Introduction

Great interest and effort have been dedicated in recent years on the study of the properties of plasmas com-
posed of particle species described by the so-called superthermal or kappa velocity distribution functions.
These velocity distribution functions (VDFs) distinguish themselves from the usual Maxwell-Boltzmann dis-
tribution by the existence of a tail (the high-velocity portion of the VDF) that decays according to a power
law dependence on the velocity, instead of the Gaussian profile characteristic of the Maxwellian distribution.

Several space plasma environments, such as planetary magnetospheres, the solar corona, or the solar wind,
are composed of particle species whose VDFs are much better described by kappa or by combinations of
kappa distributions, instead of any possible combination of Maxwellian distributions. As a consequence, the
physical processes that occur inside these environments are also strongly influenced by the particular profile
of the superthermal distributions and they can behave quite differently from what would be expected from
a quasi-thermal plasma, i.e., modeled by Maxwell-Boltzmann VDF.

Due to their adequacy to model space plasma environments, the number of published communications
employing kappa distributions has been growing exponentially in the last years. An assessment on the
importance and impact of the subject on the field of plasma physics has been recently made by Livadiotis
and McComas [2009, 2011, 2013].

From a conceptual point of view, the determination of the physical postulates and mechanisms responsible
for the ubiquitous nonthermal kappa distributions in space plasmas has demanded (and received) intense
theoretical work. One of the earliest theories in this regard was proposed by Scudder and Olbert [1979], who
showed that during the expansion of the solar wind inside the heliosphere the combined effects of inho-
mogeneity with the reduced Coulomb collisions is able to bifurcate the electron VDF into a combination of
thermal and superthermal populations.

More recently, other theories have been put forth, which assume that the observed VDFs are the result of
dynamical processes occurring in essentially noncollisional systems characterized by long-range correla-
tions and in quasi-equilibrium with a turbulent wave field. The scope of these formulations ranges from
revisions and extensions of fundamental postulates of statistical mechanics to sophisticated analyses of
the nonlinear and turbulent evolution of nonequilibrium plasmas. One such interpretation of the origin of
kappa VDF is based on the principle of nonadditive entropy proposed by Tsallis [1988, 2009]. According to
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this proposal, many-particle physical systems that evolve subjected to long-scale correlations and nonlin-
ear effects can reach a quasi-stationary state in which its VDF cannot be described by a Maxwell-Boltzmann
distribution, characteristic of systems governed by short-range (mostly) binary collisions. The consequences
and implications of Tsallis’ entropic principle on space plasma physics is thoroughly discussed by Livadiotis
and McComas [2009, 2011, 2013].

An alternative approach has been followed by R. Treumann and collaborators. Based on the assumption
that a turbulent system with long-scale correlations can reach a transient quasi-equilibrium state differ-
ent from a thermal collisional system, an heuristic expression for the collision integral resulting from the
Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of kinetic equations was proposed [Treumann, 1999a,
1999b; Treumann et al., 2004]. The collision integral thus obtained enabled the authors to formulate a ther-
modynamic framework for an equilibrium turbulent system, providing quantities such as the entropy,
number density, internal energy, temperature, and, in particular, a particle distribution function with the
observed characteristics of space VDFs. More recently, Treumann and Jaroschek [2008] reinterpreted the for-
mulation using Gibbsian theory and proposed a new expression for the probability distribution of physical
states assuming that any two subsystems are not statistically independent but instead correlated. The gen-
eralized expression for the Gibbs function has a Lorentzian form, with the 𝜅 index serving as an ordering
parameter. Among the consequences, the resulting entropy is again nonadditive.

A detail that is common to the formulations cited above is that the value of the 𝜅 (or q) index is a given quan-
tity to be determined either from observational data or from a specific physical mechanism. An example of
the latter is the work by Hasegawa et al. [1985], where the particle distribution function is determined from
a Fokker-Planck equation that models a plasma in a thermal bath with a turbulent, superthermal Coulomb
field of longitudinal waves. The equilibrium solution provided both a kappa-like VDF and the value of 𝜅 in
terms of the longitudinal dielectric constant.

A more recent theory has been proposed [see Yoon et al., 2012; Yoon, 2014, and references therein], which
employs the Klimontovich-Dupree version of the weak turbulence theory in order to predict the 𝜅-electron
VDF as a consequence of the self-consistent turbulent equilibrium between particles and the electrostatic
Langmuir field. According to the theory, a kappa-like VDF arises as one of the possible asymptotic, steady
state (𝜕∕𝜕t → 0) solutions of the particle and wave kinetic equations when in the latter only the sponta-
neous and induced emission processes are retained. As a bonus, the superthermal spectral intensity of
Langmuir waves is also obtained. Then, by balancing the spontaneous and induced scattering terms in the
wave kinetic equation, the value of the 𝜅 index is determined. Finally, Yoon [2014] discusses the total spec-
tral intensity of Langmuir waves, including the contribution of the nonresonant quasi-thermal oscillations as
well as from the eigenmode.

Notwithstanding the mentioned nonthermal equilibrium formalisms for space plasmas, their observed
VDF is almost never found in a true state of quasi-equilibrium. The observed distributions display an abun-
dance of nonthermal features such as beams, temperature anisotropies (relative to the ambient magnetic
field), and loss cones, and the effects of these sources of free energy must be somehow accounted for by a
statistical framework of turbulent systems.

One important example is the temperature anisotropy displayed by solar wind protons and electrons on the
vicinity of the Earth’s foreshock [Marsch, 2006]. The proton VDF show nonthermal features such as a very
anisotropic core, an extended high-energy tail, and a beam population, aligned to the local magnetic field
and separated from the core by speeds on the order of the Alfvén speed. The existence of these nonthermal
characteristics implies that the VDF contains a large amount of free energy that can be used to excite the
Alfvén waves present in the solar wind. Conversely, the wave-particle interaction is important to determine
the shape of the VDF, as in the case of obliquely propagating dispersive Alfvén waves (DAWs), which are
relevant for the particle acceleration processes in the Earth’s magnetosphere.

In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well established.
However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied
mostly for the limiting cases of purely parallel or perpendicular propagation. For an account about the state
of the art on the subject, as well as for a comprehensive list of publications, the reader may refer to Lazar
and Poedts [2014], Lazar et al. [2012], and Pierrard and Lazar [2010].
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Contributions for the general case of obliquely propagating waves have been scarcely reported so far. A
general formalism was proposed by Summers et al. [1994] for a particular model of kappa VDF. In their work,
however, the results presented were mostly obtained by numerical integration. A similar approach was more
recently adopted by Basu [2009] and Liu et al. [2014] in order to obtain the dispersion relations of dispersive
Alfvén waves. As we shall verify in the following sections, these authors obtained their results from power
series expansions that do not consider all possible mathematical properties of the integrals involved in the
derivation of the dielectric tensor components for a superthermal VDF.

A general treatment for electrostatic waves in a superthermal plasma was also obtained by Mace [2003]
by means of a Gordeyev integral technique. However, applications of this formalism for nonparallel
propagation have been restricted to the perpendicular direction [see Nsengiyumva et al., 2013, and
references therein].

The absence of a general treatment prevents a complete analysis of the wave-particle interaction in
superthermal plasmas, since some instabilities, such as the firehose instability, can operate simultaneously
both in the parallel and oblique directions. In this work, we obtain expressions for the dielectric tensor com-
ponents and subsequent dispersion relations for oblique DAW resulting from a kappa VDF. We employ an
isotropic distribution, but the methods used here can be easily applied to more general anisotropic distribu-
tions, such as the bi-kappa or product-bi-kappa. The effect of the kappa index and thermal corrections on
the dispersion relations of the obliquely propagating DAW is discussed.

The plan of the paper is as follows. In section 2 the model velocity distribution function employed in the
present work is introduced and its relation to some commonly used VDFs is established. Section 3 presents
some important mathematical properties of the special functions that appear in the derivation of the dielec-
tric tensor for a superthermal plasma. These properties are then employed in section 4 where the dispersion
equation and dispersion relations of dispersive Alfvén waves propagating in kappa plasmas are obtained. In
section 5 some numerical results are presented and commented upon, and finally, in section 6 we make our
final observations.

2. The Distribution Function

We will adopt the following model for an isotropic superthermal (or kappa) velocity distribution
function (VDF),

fw,𝛼 (v) =
1

(𝜋𝜅w2)3∕2

Γ(𝜎)
Γ (𝜎 − 3∕2)

(
1 + v2

𝜅w2

)−𝜎

. (1)

In (1), the vector v is the particle’s velocity, 𝜎 = 𝜅 + 𝛼 (𝜎 > 3∕2), where 𝜅 is the kappa index, 𝛼 is a free
parameter, and w = w(𝜅) is another parameter with the same physical dimension and meaning as the
particle’s thermal velocity. This parameter can depend on the 𝜅 index, with the proviso that it reduces to
the Maxwellian thermal velocity on the limit 𝜅 → ∞, as we explain below. Also, Γ(z) is the gamma function
[Askey and Roy, 2010].

Using Stirling’s formula [Askey and Roy, 2010] and the exponential limit

lim
𝜅→∞

(
1 +

y2

𝜅

)−𝜅

= e−y2
, (2)

the reader can easily demonstrate that on the limit 𝜅→∞ the function fw,𝛼 (v) reduces to the well-known
Maxwell-Boltzmann distribution of velocities, i.e.,

lim
𝜅→∞

fw,𝛼 (v) = fM (v) = e−v2∕v2
T

𝜋3∕2v3
T

, (3)

where v2
T = 2T∕m and m are the particle’s thermal velocity and its mass, respectively, and T is the classical

thermodynamic temperature, defined in the Boltzmann-Gibbs (BG) statistical mechanics. This limiting pro-
cess will be referred to in this work as the Maxwellian limit. The above result also implies that the parameter
w should be such that w → vT on the Maxwellian limit.
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Another important parameter frequently considered on discussions about kappa plasmas is the second
moment

⟨
v2
⟩

of the distribution, which is a measure of the velocity dispersion of the particles and can be
used to define the kinetic temperature TK as

TK = 1
3

m
⟨

v2
⟩
= 1

3
m∫ d3v v2fw,𝛼 (v) .

Using the distribution (1), we find that TK is given by

TK = 𝜅

𝜎 − 5∕2

(1
2

mw2
)
,

(
𝜎 >

5
2

)
, (4)

which reduces to the usual result

TK = 1
2

mv2
T = T

on the Maxwellian limit. One should notice the more restrictive condition applied to 𝜎, needed so that the
measure of kinetic temperature is meaningful.

The particular form of the VDF given by (1) was chosen in order to reproduce most of the models employed
recently. One only needs to set adequate values and expressions for the parameters 𝛼 and w.

For instance, the by far most frequently adopted model was defined by Summers and Thorne [1991],
hereafter called the ST91 model. The distribution (1) reduces to the ST91 model by choosing

𝛼 = 1 and w2 =
𝜅 − 3∕2

𝜅
v2
𝜅
,where v2

𝜅
=

2T𝜅
m

and where T𝜅 is called the physical temperature. Notice that for this model, 𝜅 > 3∕2. The ST91 model is a
development of the original power law VDF proposed by Vasyliunas [1968] in order to model the low-energy
electrons observed in the magnetosphere.

One interesting result that is obtained with the ST91 model is given by the definition (4) for TK . In this case,
TK = T𝜅 , i.e., the kinetic temperature is the same as the parameter T𝜅 . This is one of the arguments that have
been put forth recently [Livadiotis and McComas, 2009, 2011, 2013] proposing the ST91 model as the correct
one to describe the distribution of velocities for superthermal plasmas.

Another model adopted on the literature was proposed by Leubner [2002] and will be called the Le02 model.
It is reproduced by (1) after choosing

𝛼 = 0 and w2 = v2
T = 2T

m
.

For the Le02 model, the kinetic temperature, given by (4), becomes

TK = 𝜅

𝜅 − 5∕2
T ,

(
𝜅 >

5
2

)
,

and thus, it does not equal the physical temperature, which in this model is precisely the BG definition. The
reader is referred to Leubner [2002, 2004] for a discussion on the physical differences between the ST91 and
Le02 models.

Recently, a debate ensued on the correct form for the VDF from the statistical mechanics point of view
[Hellberg et al., 2009; Hau et al., 2009; Livadiotis and McComas, 2009, 2011]. In this work, we will not con-
tribute for this debate, since the focus here is on the proposal for a mathematical formulation destined to
describe the propagation and the linear wave-particle interactions in superthermal plasmas. We will only
point out here that if the Le02 model is modified by choosing 𝛼 = 5∕2 in (1), in which case 𝜅 > 0, then it
would also predict TK = T , that is, the kinetic temperature would equal the physical temperature.

Finally, a third model was recently employed by Benson et al. [2013] in order to study the VDF of electrons in
the low-latitude region of the magnetotail. Their model is reproduced by (1) by setting 𝛼 = 1 and w = vT ,
that is, by using the BG temperature in order to measure the thermal spread of velocities. Accordingly, the
electronic kinetic temperature evaluated by the authors is TK = 𝜅T∕ (𝜅 − 3∕2).
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3. Special Functions for Kappa Plasmas

In this section, we will define and present some mathematical properties and discussion about two special
functions that appear on the study of wave propagation in superthermal plasmas. The first function to be
considered is the kappa generalization of the plasma gyroradius function, which appears for nonparallel
propagation of waves in thermal plasmas, when Larmor radius effects are important. The second function is
a generalization of the modified plasma dispersion function proposed by Summers and Thorne [1991] and
Mace and Hellberg [1995], which reduces to the well-known plasma dispersion function (or Fried and Conte
function) on the Maxwellian limit.

3.1. The Kappa Gyroradius Function
When considering electrostatic and/or electromagnetic waves propagating in thermal plasmas, one invari-
ably needs to evaluate the components of the dielectric or susceptibility tensor in order to describe the
waves’ propagation characteristics and their interaction with the plasma particles. When the propagation
direction is nonparallel, finite gyroradius effects need to be included in the description of the dielectric
tensor components.

Using the fw,𝛼 (v) distribution, we found that the gyroradius effects can be described by the following
special function:

(𝛼,𝛽)
n,𝜅 (z) = 2

𝜅−𝛽−3∕2Γ(𝜆)
Γ (𝜎 − 3∕2) ∫

∞

0
dx

xJ2
n(zx)

(1 + x2∕𝜅)𝜆
, (5)

where 𝜅 is the usual 𝜅 index, 𝜎 = 𝜅 + 𝛼 as in (1), 𝜆 = 𝜎 + 𝛽 , with 𝛽 being a free parameter, and Jn(y) is
the Bessel function of the first kind and of order n [Olver and Maximon, 2010]. Here n = 0,±1,±2,… is the
harmonic number.

Using Stirling’s formula and identity (2), we obtain the Maxwellian limit

lim
𝜅→∞

(𝛼,𝛽)
n,𝜅 (z) = 2∫

∞

0
dx xJ2

n(zx)e−x2 = ℋn(𝜇), (6)

where 𝜇 = z2∕2 and ℋn(y) = e−yIn(y), with In(y) being the modified Bessel function of the first kind [Olver
and Maximon, 2010]. This is a well-known result for thermal waves in Maxwellian plasmas, and the reader
can refer to Brambilla [1998] for a detailed derivation.

The parameter z in (5) is proportional to the particle’s gyroradius, and when this is small, one would nat-
urally wish to expand the Bessel function in a power series, in order to compute the small Larmor radius
contributions to wave propagation.

This task can be accomplished using the identity [Olver and Maximon, 2010]

J2
n(y) =

( y
2

)2|n| ∞∑
k=0

(−)k (2|n| + k + 1)k (y∕2)2k

k! [Γ (|n| + k + 1)]2

≃ 1

(|n|!)2

( y
2

)2|n|
,

where the last result is the lowest-order term of the series. Inserting this expression into (5), one readily
obtains, to lowest order,

(𝛼,𝛽)
n,𝜅 (z) ≃ 𝜅−𝛽−3∕2𝜅|n|+1Γ (𝜆 − |n| − 1)

Γ (𝜎 − 3∕2) |n|! ( z
2

)2n
.

Higher-order terms could be included from the series above, with the outcome that the term of order m > 0
will be proportional to Γ (𝜆 − |n| − m − 1).

Even though such procedure could be thought justifiable for the case of very small Larmor radius, the
obtained result would be incorrect for the following reasons:

1. The integral containing the lowest-order term only exists if 𝜆 > |n| + 1. Higher-order terms will impose
an even more restrictive condition on the minimal value of the 𝜅 index, and this condition ties 𝜅min to the
harmonic number. This is an undesirable restriction on the allowable values of the 𝜅 index, since it has
been measured to be as low as 𝜅 ≃ 2 both in the solar wind and in the magnetosphere [Maksimovic et al.,
1997; Štverák et al., 2009; Benson et al., 2013].
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2. The result implies that (𝛼,𝛽)
n,𝜅 (z) could always be represented by a power series, which is not true. As we

shall see below, for certain values of the 𝜆 index the function has a logarithmic behavior.
3. Even when (𝛼,𝛽)

n,𝜅 (z) is expressible as a power series, the lowest-order terms contain a contribution pro-
portional to a power that is not an integer, in general; these terms will also be lacking from the simplifying
approach described above.

On the other hand, the asymptotic behavior of the Bessel functions for large argument is given by [Olver and
Maximon, 2010].

J2
n(y) ∼

2
𝜋y

cos2
(

y − 1
2

n𝜋 − 1
4
𝜋

)
⩽ 2

𝜋y
.

In this limit, the behavior of (𝛼,𝛽)
n,𝜅 (z) would be obtained from (5) as

(𝛼,𝛽)
n,𝜅 (z) ∼ 4

𝜅−𝛽−3∕2Γ(𝜆)
Γ (𝜎 − 3∕2)𝜋z ∫

∞ dx

(1 + x2∕𝜅)𝜆
= 2

𝜅−𝛽−1Γ (𝜆 − 1∕2)
Γ (𝜎 − 3∕2)

√
𝜋z

,

which is only subjected to the condition 𝜆 > 1∕2, independent of n.

Hence, although, in general, the integral in (5) will not converge if one employs a power series expansion
for the Bessel function, when its closed form is considered, the integral always exists for the physically rele-
vant values of the 𝜆 index. Therefore, in order to obtain the correct contribution due to the particle’s finite
gyroradius, one must first evaluate the integral in (5) in closed form and then subsequently perform a small
Larmor radius approximation.

First of all, we observe that for z = 0 it is possible to perform the integration in (5), in which case we obtain

(𝛼,𝛽)
n,𝜅 (0) =

Γ (𝜆 − 1) 𝛿n0

𝜅𝛽+1∕2Γ (𝜎 − 3∕2)
. (7)

Now for z ≠ 0, (𝛼,𝛽)
n,𝜅 (z) can be represented in closed form in terms of the Meijer G function, discussed in

section A2. First, after using the identity (A13), expression (5) can be written as

(𝛼,𝛽)
n,𝜅 (z) = Γ(𝜆)𝜅𝜆−𝛽−3∕2√

𝜋Γ (𝜎 − 3∕2) ∫
∞

0
dy (𝜅 + y)−𝜆 G1,1

1,3

[
z2y

|||| 1∕2
n,−n, 0

]
.

Then, using the identities (A12) and (A10), we obtain the representation

(𝛼,𝛽)
n,𝜅 (z) = 1√

𝜋

𝜅−𝛽−1∕2

Γ (𝜎 − 3∕2)
G2,1

1,3

[
𝜅z2

|||| 1∕2
𝜆 − 1, n,−n

]
, (8)

which is valid for 𝜆 > 1∕2 and 𝜎 > 3∕2.

As discussed in section A2, the Meijer G function displays two main types of behavior. When 𝜆 ≠ 1, 2,… , the
function (𝛼,𝛽)

n,𝜅 (z) belongs to the hypergeometric regime, in which case the identity (A9) shows that

(𝛼,𝛽)
n,𝜅 (z) =

√
𝜋𝜅−𝛽−1∕2

(
𝜅z2

)−1∕2

sin [(𝜆 − n)𝜋] Γ (𝜎 − 3∕2)

[
Γ (𝜆 − 1∕2)

(
𝜅z2

)𝜆−1∕2

Γ (𝜆 − n) Γ (𝜆 + n) 1F2

(
𝜆 − 1∕2

𝜆 − n, 𝜆 + n
; 𝜅z2

)

−
Γ (n + 1∕2)

(
𝜅z2

)n+1∕2

Γ (n + 2 − 𝜆) Γ (2n + 1) 1F2

(
n + 1∕2

n + 2 − 𝜆, 2n + 1
; 𝜅z2

)]
, (9)

where 1F2(· · ·) is the hypergeometric series defined by (A2).

From the representation (9) and (A2), one obtains the following power series expansion for (𝛼,𝛽)
n,𝜅 (z),

(𝛼,𝛽)
n,𝜅 (z) = 1√

𝜋

𝜅−𝛽−1∕2

Γ (𝜎 − 3∕2)

[(
𝜅z2

)n 1

(
𝜅z2

)
+
(
𝜅z2

)𝜆−1 2

(
𝜅z2

)]
, (10)

1(z) =
∞∑

k=0

Γ (𝜆 − n − 1) Γ (n + 1∕2 + k)
(n + 2 − 𝜆)k Γ (2n + 1 + k)

zk

k!

2(z) =
∞∑

k=0

Γ (n + 1 − 𝜆) Γ (𝜆 − 1∕2 + k)
Γ (𝜆 + n + k) (𝜆 − n)k

zk

k!
.
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Expression (10) shows that the expansion for (𝛼,𝛽)
n,𝜅 (z) is given by the combination of two power series, one

of which
(2

)
is proportional to

(
𝜅z2

)(𝜆−1)
, hence a noninteger power term, in general, and which can be of

the same order as the other one when 𝜆 ≃ n + 1.

Now if 𝜆 = 1, 2,… , expression (9) no longer can be trivially employed. However, it can be shown that the
singularity that arises from sin [(𝜆 − n)𝜋] is canceled out by the summation of the 1F2(· · ·) functions. Instead
of presenting here the laborious algebra involved in the demonstration, we will instead return to (8) and
initially consider the case when 𝜆 = 1 and identify from (A14) the representation

(𝛼,𝛽)
n,𝜅 (z) = 2𝜅−𝛽−1∕2

Γ (𝜎 − 3∕2)
In

(√
𝜅z

)
Kn

(√
𝜅z

)
,

where 𝜅 + 𝛼 + 𝛽 = 1 and Kn(y) is the modified Bessel function of the second kind.

Using now formula (A11), one can easily verify that for 𝜆 = 1, 2,… ,

(𝛼,𝛽)
n,𝜅 (z) =

2 (−)𝜆−1 (𝜅z2
)𝜆−1

𝜅𝛽+1∕2Γ (𝜎 − 3∕2)
d𝜆−1

dy𝜆−1

[
In

(√
y
)

Kn

(√
y
)]||||y=𝜅z2

.

A closed-form expression for the multiple derivatives will be presented in a future publication.

Since [Olver and Maximon, 2010]

Kn(y) ∝ (−)n+1 In(y) ln
( y

2

)
,

we observe that when 𝜆 is integer, the function (𝛼,𝛽)
n,𝜅 enters the logarithmic regime, as previously

mentioned, and can no longer be expressed as a simple power series.

Figure 1 shows some plots of the function (0,0)
n,𝜅 (z) given by the representation (8) versus z for some val-

ues of the harmonic number n and 𝜅 index. The dashed curves are plots of ℋn(𝜇) for the respective values
of n. We observe that the function (𝛼,𝛽)

n,𝜅 (z) indeed converges to ℋn(𝜇) as 𝜅 grows and that for small val-
ues of 𝜅 the (𝛼,𝛽)

n,𝜅 (z) function is substantially different from the Maxwellian limit. The difference is, in fact,
proportionally larger for small values of z, i.e., for small gyroradius. Consequently, one can expect that the
gyroradius effect on wave propagation in superthermal plasmas will be quite different from the effect it has
on Maxwellian plasmas.

Figure 2 shows the function (0,0)
n,𝜅 (z) versus the 𝜅 index for some values of n and z. These plots intend to

show that although (𝛼,𝛽)
n,𝜅 (z) can be either in the logarithmic or in the hypergeometric regimes, depending

on whether 𝜆 is integer or not, there are no singularities involved in the transition between regimes. The
function is continuous throughout the regions 𝜆 > 3∕2 and z ⩾ 0.

3.2. The Kappa Plasma Dispersion Function
The other special function involved in the derivation of the dielectric tensor of a thermal plasma depends on
an integral which takes into account the wave-particle resonance condition and whose evaluation depends
on the ratio of the phase velocity of the wave and the thermal velocities of the particles. This function is
usually called the plasma dispersion function (PDF). For a detailed derivation of the dielectric tensor for
a thermal Maxwellian plasma and for some mathematical properties of the ensuing plasma dispersion
function, the reader is again referred to Brambilla [1998].

For a superthermal plasma, the correspondent PDF depends on the particular profile adopted by the dis-
tribution function and on the wave polarization. In this work, we can unify the treatment for any wave
polarization and VDF model given by (1) with the following modified plasma dispersion function, hereafter
called the 𝜅PDF:

Z(𝛼,𝛽)
𝜅

(𝜁 ) = 𝜅−𝛽−1∕2√
𝜋

Γ (𝜆 − 1)
Γ (𝜎 − 3∕2) ∫

∞

−∞
ds

(
1 + s2∕𝜅

)−(𝜆−1)

s − 𝜁
, (11)

where 𝜅 is the usual 𝜅 index, 𝜎 = 𝜅 + 𝛼 as in (1), 𝜆 = 𝜎 + 𝛽 , with 𝛽 being a free parameter, and where 𝜁 is the
argument usually given by the ratio of the phase and thermal velocities. The definition (11) is valid for 𝜆 >1
and 𝜁i > 0, where we have written 𝜁 = 𝜁r + i𝜁i . The PDF defined by (11) must be analytically continued to the
region 𝜁i ≤ 0 according to the Landau prescription [Brambilla, 1998]. It is also important to mention that
the function

(
1 + s2∕𝜅

)−(𝜆−1)
has two branch points at s = ±i

√
𝜅, whenever 𝜆 is not integer.
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Figure 1. Plots of (0,0)
n,𝜅 (z) given by (8) versus z for n = 0 and n = 1 and for several values of the 𝜅 index. The dashed

curves (𝜅 → ∞) are the plots of ℋn(𝜇).

As expected, the function Z(𝛼,𝛽)
𝜅 (𝜁 ) reduces to the usual plasma dispersion (or Fried and Conte) function on

the Maxwellian limit,

lim
𝜅→∞

Z(𝛼,𝛽)
𝜅

(𝜁 ) = Z(𝜁 ) = 1√
𝜋 ∫

∞

−∞

e−s2
ds

s − 𝜁
, (12)

if one employs the exponential limit (2).

The function (11) is a variation of the modified PDF defined in Gaelzer et al. [2010] and can reproduce most
of the superthermal PDFs found in the literature. For instance, by choosing 𝛼 = 𝛽 = 1 one obtains the
modified PDF studied by Summers and Thorne [1991] and Mace and Hellberg [1995]. This function usually
occurs when one is considering longitudinal waves that propagate parallel to the ambient magnetic field.

On the other hand, if we set 𝛼 = 1 and 𝛽 = 0, we obtain the Z𝜅M(𝜉) function proposed by Hellberg and
Mace [2002] for electromagnetic waves propagating in a kappa-Maxwellian plasma or the Z0

𝜅
(g) obtained by

Lazar and Poedts [2009] when studying the propagation of circularly polarized waves and the temperature
anisotropy-driven instabilities that result from a bi-kappa VDF.

The 𝜅PDF given by (11) can be represented in terms of the Gauss hypergeometric function, discussed on
section A. The derivation can be carried out using either the residue theorem, as was originally performed by
Mace and Hellberg [1995], or by changing the integration variable and then identifying the resulting integral
as one of the representations of the Gauss function, as was done by Gaelzer et al. [2010].

Employing again the latter method, we obtain

Z(𝛼,𝛽)
𝜅

(𝜁 ) =
𝜅−𝛽−1Γ (𝜆 − 1∕2) 𝜁
(𝜆 − 1) Γ (𝜎 − 3∕2)

F

(
1, 𝜆 − 1∕2

𝜆
; 1 + 𝜁2

𝜅

)
. (13)
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Figure 2. Plots of (0,0)
n,𝜅 (z) versus 𝜅 for n = 0 and n = 1 and some values of z. The dashed lines correspond to the

respective values of ℋn(𝜇).

Due to the branch cut of the Gauss function, this representation is only valid for 𝜁i ≠ 0. The branch line is
crossed on the limit 𝜁i → 0, and in this case the above representation needs to be analytically continued.
This task can be accomplished by using the continuation formula for the Gauss function.

Alternatively, a different representation is obtained from one of the several transformation formulae for the
F(z) function. By using the quadratic transformation (A4) one obtains

Z(𝛼,𝛽)
𝜅

(𝜁 ) = i
𝜅−𝛽−1∕2Γ (𝜆 − 1∕2)
(𝜆 − 1) Γ (𝜎 − 3∕2)

F

[
1, 2 (𝜆 − 1)

𝜆
; 1

2

(
1 + i𝜁√

𝜅

)]
, (14)

which reduces to the result first obtained by Mace and Hellberg [1995]. The advantage of this representation
is that the branch cut has moved to the strip −i

√
𝜅 ≤ 𝜁 < −i∞, making it ideal for most of the applica-

tions in plasma physics. It is important to point out here that the transformation described above must be
performed in such a way as to be consistent with the Landau prescription. Hence, one must always take the
root given by

√
−𝜁2 = −i𝜁 .

In spite of the advantages of this representation, it is still not the best suited for the derivation of power
series and asymptotic expansions, which are needed for the applications we have in mind. Therefore, we
return to (13) and apply the transformation (A5), resulting in

Z(𝛼,𝛽)
𝜅

(𝜁 ) = −
2Γ (𝜆 − 1∕2) 𝜁
𝜅𝛽+1Γ (𝜎 − 3∕2)

F

(
1, 𝜆 − 1∕2

3∕2
; − 𝜁2

𝜅

)
+

i
√
𝜋Γ (𝜆 − 1)

𝜅𝛽+1∕2Γ (𝜎 − 3∕2)

(
1 + 𝜁2

𝜅

)−(𝜆−1)

, (15)
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where we have also used (A7). The representation (15) is the generalization of a result first derived by Mace
and Hellberg [1995] and has the same analytical properties of (14). The advantage of (15) is that by means of
definition (A3), one obtains the power series expansion

Z(𝛼,𝛽)
𝜅

(𝜁 ) = −
√
𝜋𝜅−𝛽−1𝜁

Γ (𝜎 − 3∕2)

∞∑
k=0

Γ (𝜆 + k − 1∕2)
Γ (k + 3∕2)

(
− 𝜁2

𝜅

)k

+
i
√
𝜋Γ (𝜆 − 1)

𝜅𝛽+1∕2Γ (𝜎 − 3∕2)

(
1 + 𝜁2

𝜅

)−(𝜆−1)

, (16)

which converges for ||𝜁2∕𝜅|| < 1.

Alternatively, if one applies transformation (A6) on (15), the following asymptotic expansion results:

Z(𝛼,𝛽)
𝜅

(𝜁 ) = −
Γ (𝜆 − 3∕2)

𝜅𝛽Γ (𝜎 − 3∕2)
1
𝜁

∞∑
k=0

(1∕2)k

(5∕2 − 𝜆)k

(
− 𝜅

𝜁2

)k

+ 𝜋1∕2Γ (𝜆 − 1)
𝜅𝛽+1∕2Γ (𝜎 − 3∕2)

[i − tan (𝜆𝜋)]
(

1 + 𝜁2

𝜅

)−(𝜆−1)

. (17)

Notice that (17) is not valid when 𝜆 is half integer. In this case, one must employ a special transformation
which effectively removes the singularity. Details on this procedure can be found in Daalhuis [2010] and
will not be presented here. Suffice it to say that in this case the asymptotic representation of the 𝜅PDF is no
longer a simple power series but contains a logarithmic term too. In this respect the asymptotic representa-
tion for Z(𝛼,𝛽)

𝜅 (𝜁 ) possesses the same duality of hypergeometric/logarithmic regimes as the function (𝛼,𝛽)
n,𝜅 (z),

discussed in the previous section.

Finally, after deriving (11) and integrating by parts, we obtain the expression for the derivative of the 𝜅PDF
given by

d
d𝜁

Z(𝛼,𝛽)
𝜅

(𝜁 ) = −2
[

Γ (𝜆 − 1∕2)
𝜅𝛽+1Γ (𝜎 − 3∕2)

+ 𝜁Z(𝛼,𝛽+1)
𝜅

(𝜁 )
]
. (18)

One can easily verify the known Maxwellian limit Z′(𝜁 ) = −2 (1 + 𝜁Z).

We have also obtained expressions for the recurrence relation of the n-order derivative of Z(𝛼,𝛽)
𝜅 (𝜁 ) as well as

explicit expressions in terms of the Gauss function. These results will be shown in a future publication.

4. The Dispersion Relations for DAW

Dispersive Alfvén waves (DAWs) consist in a modification of the usual shear Alfvén waves in the case
of near-perpendicular propagation, through the coupling with the magnetoacoustic mode in the case
when the perpendicular component of the wave number is much greater than the parallel component
[Cramer, 2001].

In the very low frequency regime, where the usual MHD treatment predicts that the shear Alfvén waves
are essentially nondispersive, a kinetic description shows that the inclusion of finite gyroradius effects in a
small-beta plasma has the outcome of inducing a highly dispersive behavior on the shear mode. Moreover,
the effects of the electrons on the dielectric tensor have the consequence of forking the dispersive surface
of the mode in two distinct branches, namely, the kinetic Alfvén waves (KAWs), that occur when the electron
beta parameter is moderately low

(
me∕mi ≪ 𝛽e < 1

)
, in which case the dispersion is affected by the thermal

pressure of the electrons, and the inertial Alfvén waves (IAWs), when 𝛽e ≪ me∕mi and where the dispersion
is essentially determined by the electron’s finite mass. One important difference between both dispersive
modes is that they have opposing perpendicular components of the group velocity. Hence, the refractive
characteristics are quite different for each wave.

Both kinetic and inertial waves can be observed in the same general environment, but usually in different
regions of the same environment, depending on the variation of the physical parameters. For instance,
along a given auroral field line, the IAWs are thought to exist in the region just above the ionosphere,
whereas the KAW should be present at higher altitudes. In either case, the relatively large parallel
component of the wave’s electric field should play an important role on particle acceleration
[Lysak and Lotko, 1996].
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In this section, we will discuss the modification induced by the superthermal tail of the distribution function
on the usual dispersion relations of both KAW and IAW, as well as on the general dispersion equation. The
modifications of the dispersive characteristics of parallel-propagating waves due to non-Maxwellian velocity
spread have been discussed at length in the literature for quite some time already [Thorne and Summers,
1991; Mace and Hellberg, 1995; Hellberg et al., 2005; Lazar et al., 2008; Mace and Hellberg, 2009; Mace and
Sydora, 2010; Lazar and Poedts, 2009; Lazar et al., 2011a, 2011b, 2012; Lazar and Poedts, 2014].

On the other hand, for nonparallel propagation, studies of wave propagation in superthermal plasmas have
been usually restricted to perpendicular propagation for isotropic 𝜅-VDF [Mace, 2003, 2004; Viñas et al.,
2005] or, in the case of oblique propagation, for the kappa-Maxwellian (𝜅M) VDF model [Hellberg and Mace,
2002; Hellberg et al., 2005; Cattaert et al., 2007] where the dependence of the VDF on the parallel and per-
pendicular components of the particle velocity factor out, with the parallel part modeled as a 𝜅-VDF and the
perpendicular as a Maxwellian (i.e., Gaussian).

The 𝜅M model is physically sound when the parallel velocity spread is much larger than in the perpendicu-
lar direction and when the last one can be reasonably modeled by a Maxwellian distribution. However, for a
more general situation there are already some models of separable distribution functions that are nonther-
mal in both directions, such as the product-bi-kappa (PBK) VDF [Summers and Thorne, 1991]. In this case, as
we shall see, a mathematical treatment that provides closed-form analytical expressions for the components
of the dielectric tensor for isotropic or anisotropic 𝜅-VDFs is still lacking.

In order to introduce such treatment, we will here derive an equation dispersion for DAW in an isotropic
kappa plasma and present the ensuing dispersion relations for both the KAW and IAW branches of the
dispersive Alfvén waves.

We will adopt the same procedure originally proposed by Lysak and Lotko [1996] for the derivation of the
DAW dispersion equation. In their work, the authors assumed low-frequency waves

(
𝜔 ≪ Ωi

)
, where 𝜔

is the wave’s angular frequency and Ωa = qaB0∕mac is the (angular) cyclotron frequency of the particle
species a, propagating in the quasi-perpendicular direction in such a way that both conditions

(
k∥ ≪ k⊥

)
,

where k∥,⊥ is the parallel (perpendicular) component of the wave vector and k∥vTa ≪ ||Ωa
|| apply. It was also

assumed that 𝛽e < 1, where 𝛽a = 8𝜋naTa∕B2
0 is the beta parameter of species a with number density na, but

all other values are possible, including the limiting cases me∕mi ≪ 𝛽e < 1 and 𝛽e ≪ me∕mi.

If the conditions above apply, including others we will discuss afterward, Lysak and Lotko [1996] showed that
the dispersion equation for DAW propagating in an electron-ion plasma is given by

det

(
𝜀xx − N2

∥ N⊥N∥

N⊥N∥ 𝜀zz − N2
⊥

)
= 0, (19)

where N∥,⊥ = k∥,⊥c∕𝜔 are the components of the refractive index and 𝜀xx and 𝜀zz are components of the
dielectric tensor given by

𝜀xx ≈
∑
a=e,i

𝜔2
pa

𝜔2

∞∑
n→−∞∫ d3v

v⊥
[

nJn

(
ra

)
∕ra

]2 fa0

𝜔 − nΩa − k∥v∥
(20a)

𝜀zz ≈
∑
a=e,i

𝜔2
pa

𝜔2

∞∑
n→−∞∫ d3v

v2
∥

v⊥

J2
n

(
ra

)fa0

𝜔 − nΩa − k∥v∥
, (20b)

where 𝜔2
pa = 4𝜋naq2

a∕ma is the plasma frequency, fa0(v) is a (isotropic) general VDF, fa0 = 𝜔𝜕fa0∕𝜕v⊥,
and ra = k⊥v⊥∕Ωa. Notice that the unity was already neglected, as per the usual procedure for very low
frequency waves [see Lysak and Lotko, 1996, for justification].

Using then the fM(v) distribution given by (3), Lysak and Lotko [1996] obtained the following dispersion
equation for dispersive Alfvén waves,

𝜔2

k2
∥v2

A

=
𝜇i

1 −ℋ0

(
𝜇i

) +
k2
⊥
𝜌2

s

ℋ0

(
𝜇e

) [
1 + 𝜉0eZ

(
𝜉0e

)] , (21)

where v2
A = B2

0∕4𝜋nimi is the squared Alfvén speed, 𝜇a = k2
⊥
𝜌2

a, where 𝜌2
a = v2

Ta∕2Ω2
a is the squared gyroradius

of species a, 𝜌2
s = mev2

Te∕2miΩ2
i is the squared ion-acoustic gyroradius, 𝜉na =

(
𝜔 − nΩa

)
∕k∥vTa, and ℋn

(
𝜇a

)
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and Z
(
𝜉na

)
are respectively the gyroradius function, given by (6), and the plasma dispersion function,

given by (12).

Considering both the kinetic limit of the DAW, when me∕mi ≪ 𝛽e < 1 (KAW), and the inertial limit, when
𝛽e ≪ me∕mi (IAW), Lysak and Lotko [1996] derived the following dispersion relations from (21):

𝜔2

k2
∥v2

A

≈ 1 + k2
⊥

(
𝜌2

s +
3
4
𝜌2

i

)
(KAW) (22a)

𝜔2

k2
∥v2

A

≈
𝜇i

1 −ℋ0

(
𝜇i

) (
1 +

k2
⊥

c2

𝜔2
pe

)−1

(IAW). (22b)

We now set forth on the same path followed by the above mentioned authors, except that we will employ
the 𝜅-VDF given by (1), aiming at the generalizations of equations (21), (22a), and (22b). By doing so, we
also intend to present a mathematical treatment that can be readily applied to the general problem of wave
propagation in superthermal plasmas.

Introducing (1) into the dielectric tensor components (20a) and (20b) and performing the v∥ integration, we
are able to write the remaining integrals as

𝜀xx =4
∑

a

𝜔2
pa

𝜔2
𝜉0a

∞∑
n→−∞

n2

𝜈2
a
∫

∞

0
dx

xJ2
n

(
𝜈ax

)
(

1 + x2∕𝜅a

)𝜎a+1
Z(𝛼a ,2)
𝜅a

(
𝜉na√

1 + x2∕𝜅a

)

𝜀zz = − 2
∑

a

𝜔2
pa

𝜔2
𝜉0a

∞∑
n→−∞

𝜉na ∫
∞

0
dx

xJ2
n

(
𝜈ax

)
(

1 + x2∕𝜅a

)𝜎a+1∕2
Z(𝛼a ,1)′
𝜅a

(
𝜉na√

1 + x2∕𝜅a

)
,

where 𝜈2
a = 2𝜇a, 𝜇a = k2

⊥
𝜌2

a as before, but now 𝜌2
a = w2

a∕2Ω2
a is the (squared) superthermal gyroradius, which

depends on the 𝜅 index. Moreover, 𝜉na =
(
𝜔 − nΩa

)
∕k∥wa also becomes 𝜅 dependent and Z(𝛼,𝛽)

𝜅 (𝜁 ) is the
𝜅PDF given by (11). We also have introduced the notation Z(𝛼,𝛽)′

𝜅 (𝜁 ) = dZ(𝛼,𝛽)
𝜅 ∕d𝜁 .

The remaining integrals in the expressions for 𝜀xx and 𝜀zz are difficult to evaluate analytically. The argument
of the 𝜅PDF depends on x ∝ v⊥ due to the fact that a kappa or a Bi-kappa VDF are not separable on v∥ and
v⊥ as is the case with the Maxwellian or even with the 𝜅M and PBK distributions.

Expressions similar to the above were already obtained by a general treatment of obliquely propagat-
ing waves in a Lorentzian plasma by Summers et al. [1994]. In their work, however, the results presented
were obtained by numerical integration and analytical expressions were obtained from the power series
expansion of the Bessel functions.

The same approach was adopted on the more recent works by Basu [2009] and Liu et al. [2014] in order to
obtain expressions for the dispersion relations of the DAW. These authors were able to provide expressions
for both the kinetic and inertial Alfvén waves, after expanding the Bessel functions in the case of small
Larmor radius and using either the power series or the asymptotic expansions for Z(𝛼,𝛽)

𝜅 . The problem with
using a power series expansion for the Bessel functions was discussed in section 3.1. If one employs this
method, the convergence of the integrals will demand a constraint between the 𝜆 (or 𝜅) index and the
harmonic number n, which is undesirable. Moreover, the transition between the hypergeometric and
logarithmic regimes of the result is not clear.

We sustain, therefore, that the integrals above must be evaluated using the Bessel functions in a closed form
first, and only then small gyroradius approximations can be made. Of course, one could always evaluate the
integrals numerically, but an analytical expression will always provide more information on the behavior and
mathematical properties of the dielectric tensor components.

Returning to the evaluation of the 𝜀xx and 𝜀zz components of the dielectric tensor, since we are assuming
low-frequency waves, ||𝜉na

|| ≫ 1 for n ≠ 0 and we will employ the asymptotic limit of Z(𝛼,𝛽)
𝜅 given by (17) in

these terms. It must be emphasized here that our formulation does not depend on this approximation. The
asymptotic form of the Z(𝛼,𝛽)

𝜅 function is adopted in this work only in order to simplify the final expressions.
A general formulation for obliquely propagating waves, where no approximations are made, will be pre-
sented in a future publication. For this approximation to be rigorously valid, one should assume that 𝜎 is
in the vicinity of an integer greater than 2. This is not a too stringent restriction, however. If 𝜆 is half inte-
ger, one must employ the logarithmic expression for the asymptotic expansion of Z(𝛼,𝛽)

𝜅 , but it can be shown
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that the first term containing the logarithmic contribution is always much smaller than the approximations
adopted above.

On the other hand, the term with n = 0 should be kept without approximations. However, since||𝜉0i
|| = |𝜔|∕k∥wi ≃ 𝛽

−1∕2
i > 1, we will also employ the asymptotic limit for the ions and only keep the full

thermal effect for the electrons. Conversely, the temperature of the ions will be important for the gyroradius,
which will be considered finite, whereas the electronic Larmor radius will be assumed very small.

Using then the asymptotic expressions and also taking into account that 𝜔peΩi ≪ 𝜔piΩe, k2
∥𝜌

2
a ≪ 1 and

c2
s ∕v2

A = 2Te∕miv
2
A = 𝛽e < 1, we obtain the expressions below for 𝜀xx and 𝜀zz . We will not present this

derivation in greater detail, since it closely follows the procedure adopted by Lysak and Lotko [1996]. We only
mention that we have employed the identity [Olver and Maximon, 2010]

∞∑
n→−∞

J2
n(z) = 1 =⇒

∞∑
n=1

J2
n(z) =

1
2

[
1 − J2

0(z)
]
.

Hence, we obtain

𝜀xx ≈ c2

v2
A

1i −(𝛼i ,1∕2)
0,𝜅i

(
𝜈i

)
𝜇i

(23a)

𝜀zz ≈ − 1
k2
∥𝜆

2
De

𝜅e

(
𝜈e, 𝜉0e

)
, (23b)

where (𝛼,𝛽)
n,𝜅 (𝜈) is the gyroradius function defined by (5), 𝜆2

Da = w2
a∕2𝜔2

pa is the squared Debye length,
1a

.
=
(
𝜎a − 3∕2

)
∕𝜅a and 𝜅 (𝜈, 𝜉) is a new special function defined as

𝜅 (𝜈, 𝜉)
.
= ∫

∞

0
dx

xJ2
0 (𝜈x)

(1 + x2∕𝜅)𝜎+1∕2
Z(𝛼,1)′
𝜅

(
𝜉√

1 + x2∕𝜅

)
. (24)

The reader can verify that on the Maxwellian limit our expressions reduce to the dielectric tensor com-
ponents inside equation (5) of Lysak and Lotko [1996]. It is also noteworthy to point out that the general
expressions from our formulation, without any approximation, would have a structure similar to (24) but
with contributions from any harmonic number n.

Inserting now (23a) and (23b) into (19), we obtain the dispersion equation for the superthermal dispersive
Alfvén waves (𝜅DAW),

𝜔2

k2
∥v2

A

=
𝜇i

1i −(𝛼i ,1∕2)
0,𝜅i

−
k2
⊥
𝜌2

s

𝜅e

(
𝜈e, 𝜉0e

) , (25)

with the ion-acoustic gyroradius now given by 𝜌2
s = mew2

e∕2miΩ2
i . This result reduces to (21) on the

Maxwellian limit.

A closed-form analytical solution to the integral in 𝜅 (𝜈, 𝜉) can be obtained by first employing the formula
for the derivative given by (18). Then, if 𝜉 always remains inside the region on the complex plane that defines
the principal branch of Z(𝛼,𝛽)

𝜅 , as the integration in (24) is carried out, its argument will trace a path on the
complex plane that lies along a strip between 𝜉0e and the origin. Hence, for every point along the integra-
tion path there is always a finite neighborhood around 𝜁 (x) = 𝜉∕

√
1 + x2∕𝜅 where the function Z(𝛼,𝛽)

𝜅 is
analytic and the superposition of all these regions define adequate analytic continuations which ensure that
Z(𝛼,𝛽)
𝜅 is analytic also inside a finite region containing the strip. Therefore, for any x, we can always expand

Z(𝛼,2)
𝜅

(
𝜉∕

√
1 + x2∕𝜅

)
in a Taylor series around 𝜉0e, obtaining then

Z(𝛼,2)
𝜅

(
𝜉√

1 + x2∕𝜅

)
=

∞∑
k=0

k∑
𝓁=0

(−)𝓁
(

k
𝓁

)
(−𝜉)k

k!
Z(𝛼,2)(k)
𝜅

(𝜉)
(

1 + x2

𝜅

)−𝓁∕2

,

where Z(𝛼,𝛽)(k)
𝜅 (𝜁 ) = dkZ(𝛼,𝛽)

𝜅 ∕d𝜁 k . This series is assured to converge thanks to the Taylor theorem. As men-
tioned above, we have obtained representations for the derivatives of Z(𝛼,𝛽)

𝜅 in any order, but the explicit
expressions will be presented elsewhere.
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Inserting the above series in (24), we then obtain the analytical expression for 𝜅e

(
𝜈e, 𝜉0e

)
given by

𝜅e

(
𝜈e, 𝜉0e

)
= −(𝛼e ,1∕2)

0,𝜅e

(
𝜈e

)
+ 𝜅

5∕2
e Γ

(
𝜎e −

3
2

)
×

∞∑
k=0

(
−𝜉0e

)k+1

k!
Z(𝛼e ,2)(k)
𝜅e

(
𝜉0e

) k∑
𝓁=0

(−)𝓁
(

k
𝓁

)𝜅
𝓁∕2
e (𝛼e ,𝓁∕2+1)

0,𝜅e

(
𝜈e

)
Γ
(
𝜎e + 1 + 𝓁∕2

) . (26)

Expression (26), although exact, is still complicated due to all the sums involved. We have also obtained
more compact representations for 𝜅 (𝜈, 𝜉) in terms of generalized hypergeometric functions of two
variables, but these expressions will not be shown here.

Instead of employing the full series expansion in (26), we will make a further approximation and consider
only the term with k = 0. Thus, the form we will henceforth adopt for 𝜅e

(
𝜈e, 𝜉0e

)
is

𝜅e

(
𝜈e, 𝜉0e

)
≈ −(𝛼e ,1∕2)

0,𝜅e

(
𝜈e

)
−

𝜅
5∕2
e Γ

(
𝜎e − 3∕2

)
Γ
(
𝜎e + 1

) (𝛼e ,1)
0,𝜅e

(
𝜈e

)
𝜉0eZ(𝛼e ,2)

𝜅e

(
𝜉0e

)
. (27)

This approximation still retains all pertinent physical effects due to finite gyroradius, thermal pressure,
wave-particle interaction, and superthermal particles.

From the dispersion equation (25) and the 𝜅 function given by (27), we are now able to derive the
dispersion relations for DAW in superthermal plasmas.

4.1. Superthermal Kinetic Alfvén Waves
Assuming hot electrons

(
𝜉0e ≪ 1

)
with small Larmor radius

(
𝜈e ≪ 1

)
in expression (27), in the second term

we can keep the lowest-order contributions from (7) and (16) and approximate

𝜅e

(
𝜈e, 𝜉0e

)
≈ −(𝛼e ,1∕2)

0,𝜅e

(
𝜈e

)
+ 2

Γ
(
𝜎e + 3∕2

)
𝜅

1∕2
e Γ

(
𝜎e + 1

)(𝛼e ,1)
0,𝜅e

(
𝜈e

)
𝜉2

0e

≈ −(𝛼e ,1∕2)
0,𝜅e

(
𝜈e

)
.

Inserting this result into (25), we obtain the following dispersion relation for kinetic Alfvén waves propagat-
ing in superthermal plasmas (𝜅KAW),

𝜔2

k2
∥v2

A

=
𝜇i

1i −(𝛼i ,1∕2)
0,𝜅i

+
k2
⊥
𝜌2

s

(𝛼e ,1∕2)
0,𝜅e

. (28)

Notice that the right-hand side no longer depends on k∥.

A more usual form for this result can be obtained if we employ the expansion (10) and remember that
𝜈i ≫ 𝜈e, in order to write down

(𝛼i ,1∕2)
0,𝜅i

(
𝜈i

)
≈ 1i − 𝜇i +

3
4

𝜅i

𝜎i − 5∕2
𝜇2

i + 𝛾i𝜇
𝜎i−1∕2
i

(𝛼e ,1∕2)
0,𝜅e

(
𝜈e

)
≈ 1e,

where

𝛾i
.
=

Γ
(

1∕2 − 𝜎i

)
Γ
(
𝜎i

) (
2𝜅i

)𝜎i−1∕2√
𝜋𝜅iΓ

(
𝜎i − 3∕2

)
Γ
(
𝜎i + 1∕2

) .
This result is valid as long as 𝜎i is not too close to a half integer. Therefore, we finally obtain the 𝜅KAW
dispersion relation:

𝜔2

k2
∥v2

A

≈ 1 + k2
⊥

(
𝜅e

𝜎e − 3∕2
𝜌2

s +
3
4

𝜅i

𝜎i − 5∕2
𝜌2

i

)
+ 𝛾i

(
k2
⊥
𝜌2

i

)𝜎i−3∕2
. (29)

Comparing this result with (22a), we observe the following differences between the usual KAW dispersion
relation and expression (29). First, we notice that the 𝜅 indices of both electrons and ions contribute, which
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means that the wave dispersion will vary in different ways if electrons and ions have different degrees of
departure from the thermodynamic equilibrium. Moreover, there appears a new term on the dispersion
relation, which does not exist for a Maxwellian plasma. For small values of the 𝜅 index, we have 𝜎i − 3∕2 ≳ 1,
but we also observe that ||𝛾i

|| >1, which means that for a superthermal plasma this last term can be of the
same order as the other terms. Notice also that this term, in general, contains a noninteger power index, as
we have mentioned in the discussion in section 3.1.

However, the final profile of the dispersion relation also depends on the specific model employed, since
𝜌s and 𝜌i depend on the parameter wa, which depends on the adopted model. As a practical example, for
the ST91 model, 𝜎a = 𝜅a + 1, w2

a =
(
𝜅a − 3∕2

)
v2
𝜅a∕𝜅a, and 𝜅a > 3∕2. Therefore, (29) becomes

𝜔2

k2
∥v2

A

≈ 1 +
(
𝜅e − 3∕2

𝜅e − 1∕2
+ 3

4

T𝜅i

T𝜅e

)
v2
𝜅e

2v2
A

k2
⊥

c2

𝜔2
pe

+ 𝛾i

(
𝜅i − 3∕2

𝜅i

T𝜅i

T𝜅e

v2
𝜅e

2v2
A

k2
⊥

c2

𝜔2
pe

)𝜅i−1∕2

,

with

𝛾i
.
=

Γ
(
−𝜅i − 1∕2

)
Γ
(
𝜅i

) (
2𝜅i

)𝜅i+1∕2√
𝜋Γ

(
𝜅i − 1∕2

)
Γ
(
𝜅i + 3∕2

) .

The traditional term only depends on 𝜅e, but the new term is strongly influenced by 𝜅i . Since for KAW,
v2
𝜅e∕v2

A = mi𝛽e∕me ≫ 1 and k⊥c∕𝜔pe ≃ 1, if 𝜅i = 2, there results 𝛾i = −5.79, and thus, the new term can really
become as important as the usual term.

4.2. Superthermal Inertial Alfvén Waves
On the other limit, if the electrons are cold, ||𝜉0e

|| ≫ 1 and 𝜈e ≪ 1, and so we can approximate

Z(𝛼,2)
𝜅

(
𝜉0e

)
≈ −

Γ
(
𝜎e + 1∕2

)
𝜅2

eΓ
(
𝜎e − 3∕2

) 1
𝜉0e

[
1 + 1

2

Γ
(
𝜎e − 1∕2

)
Γ
(
𝜎e + 1∕2

) 𝜅e

𝜉2
0e

]
,

(𝛼e ,1∕2)
0,𝜅e

(
𝜈e

)
≈

Γ
(
𝜎e − 1∕2

)
𝜅eΓ

(
𝜎e − 3∕2

)
(𝛼e ,1)

0,𝜅e

(
𝜈e

)
≈

Γ
(
𝜎e

)
𝜅

3∕2
e Γ

(
𝜎e − 3∕2

) ,
resulting for (27),

𝜅e

(
𝜉0e, 𝜈e

)
≈ −

1e

2𝜎e
+

𝜎e − 3∕2

2𝜎e

k2
∥w2

e

𝜔2
.

Therefore, from (21) we obtain the dispersion relation for inertial Alfvén waves in a superthermal
plasma (𝜅IAW),

𝜔2

k2
∥v2

A

≈
𝜇i

1i −(𝛼i ,1∕2)
0,𝜅i

(
1 +

𝜎e

𝜎e − 3∕2

k2
⊥

c2

𝜔2
pe

)−1

. (30)

Even if the ion gyroradius is very small, we obtain

𝜔2

k2
∥v2

A

≈

(
1 +

𝜎e

𝜎e − 3∕2

k2
⊥

c2

𝜔2
pe

)−1

and the dispersion relation will still depend on 𝜅e. If k⊥𝜌i ≃ 1, then the 𝜅IAW dispersion relation will also
depend on the 𝛾i parameter.
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5. Numerical Results

Some results from the dispersion relations obtained in the preceding section will be presented here.

In order to obtain the desired results, we first need to adopt a particular model for the distribution function.
So we will consider once again the ST91 model, for which 𝛼a = 1 and w2

a =
(
𝜅a − 3∕2

)
v2
𝜅a∕𝜅a.

The kinetic and inertial branches of the dispersive Alfvén waves are distinguished by the parameter

r2
v =

v2
𝜅e

2v2
A

= 1
2

mi

me
𝛽e,

in such a way that when rv ≪ 1, the dispersion occurs along the IAW branch and when 1 ≪ rv < mi∕2me, we
have the KAW. This distinction is also important because the approximate expressions that were obtained
for the dispersion relations of both branches do not compare on the same footing with the numerical solu-
tion of the dispersion equation. This happens due to the fact that the ion gyroradius also depends on the
rv parameter,

𝜌2
i =

𝜅i − 3∕2

𝜅i

T𝜅i

T𝜅e

rvc2

𝜔2
pe

.

Hence, the assumption of small ion gyroradius
(

k⊥𝜌i ≪ 1
)

for an arbitrary value of k⊥ is reasonable for IAW
but, in general, is not valid for KAW.

We will consider first the inertial waves. The dispersion relation for 𝜅IAW with the ST91 model is given, from
(30), by

𝜔2

k2
∥v2

A

=
𝜇i

1i −(1,1∕2)
0,𝜅i

(
1 +

𝜅e + 1

𝜅e − 3∕2

k2
⊥

c2

𝜔2
pe

)−1

, (31)

where

𝜇i =
𝜅i − 3∕2

𝜅i

T𝜅i

T𝜅e
r2

v

k2
⊥

c2

𝜔2
pe

.

The results are shown in Figure 3, where we have chosen r2
v = 0.1 and T𝜅i = T𝜅e. In this figure, we show the

dispersion relations both for the inertial and 𝜅-inertial Alfvén waves. Figure 3a displays Re
[(
𝜔∕k∥va

)2]
and

Figure 3b displays Im
[(
𝜔∕k∥va

)2]
, both as functions of k⊥c∕𝜔pe in the interval [0.1, 5].

The dotted line in Figure 3a (marked IAW) is the IAW dispersion given by (22b), whereas the numerical solu-
tion of the dispersion equation (21), for DAW in a Maxwellian plasma, is the dashed curve (marked Maxwell).
We first point out in Figure 3a that even for a Maxwellian plasma there is a visible difference between the
approximate dispersion relation (22b) and the real part of the numerical solution of equation (21). This
difference will be even greater for the kinetic waves.

In the same panel (Figure 3a), one can observe also the 𝜅IAW dispersion relation given by (31) for some
values of 𝜅e = 𝜅i (long-dashed curves) and the corresponding solutions of the equation (25) (real parts,
continuous curves). One can clearly see how the 𝜅IAW distinguishes itself from its IAW counterpart, both in
the approximate and in the “exact” numerical solution, as the 𝜅 index decreases. However, the difference is
more pronounced with the numerical solutions.

Figure 3b shows the dependence of the damping coefficient, evaluated as Im𝜔2, as a function of k⊥.
Again, the dashed curve marked “Maxwell” is the solution of the equation (21), whereas the continu-
ous curves are solutions of (25) for the same values of 𝜅 index adopted in Figure 3a. The behavior of the
damping coefficient with 𝜅 varies with the perpendicular wave number. For large perpendicular wave-
length

(
k⊥c∕𝜔pe ≲ 1.6

)
, the absorption rate slightly increases with 𝜅, whereas for small wavelength(

k⊥c∕𝜔pe ≳ 1.6
)

one can observe exactly the opposite effect.

The results shown in Figure 3 are by no means an exhaustive study about the effect of superthermal par-
ticles on the usual dispersion relation (and their damping rate) of the inertial Alfvén waves. The main
objective here was to show a practical application of the formalism developed in the preceding sections,
destined to the full description of oblique propagating waves in superthermal plasmas.
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Figure 3. Dispersion relations for inertial and 𝜅-inertial Alfvén waves for r2
v = 0.1 and Ti = Te . (a) Real part of the solution

of (25). (b) Imaginary part of the solution of (25).

Considering now the kinetic Alfvén waves, one has to be even more careful analyzing the validity of the
approximate dispersion relations. Since now rv ≫ 1, the argument of the gyroradius function

(
𝜇i = k2

⊥
𝜌2

i

)
soon becomes large

(
𝜇i ≳ 1

)
for the same range of perpendicular wave numbers employed in the previ-

ous case. However, for the same range of values one can still consider k⊥𝜌e ≪ 1. For this reason, the usual
dispersion relation for KAW given by (22a) should be compared with the more exact expression

𝜔2

k2
∥v2

A

=
𝜇i

1 −ℋ0

(
𝜇i

) + k2
⊥
𝜌2

s , (32)

for all the considered values of k⊥. Both dispersion relations (22a) and (32) will be shown below for the same
physical parameters.

On the same vein, if one compares the dispersion relations for 𝜅KAW obtained from either expressions (28)
and (29), where the former is the more exact, one will also find marked differences between them. In fact,
the discrepancy is much more pronounced for 𝜅-kinetic waves than for the KAW.

These observations are exemplified by Figure 4, where we have adopted r2
v = 2 and Ti = Te. The curves

marked M-A1 (dotted) and M-A2 (dashed) are, respectively, plots of expressions (22a) and (32) as functions
of k⊥. The difference between both approximations may seem small, but the reader must notice that the
scale is logarithmic.

In the same figure, we included plots of dispersion relations (29) (𝜅-A1, dash dotted) and (28) (𝜅-A2, continu-
ous) for the 𝜅-kinetic waves for some values of 𝜅e = 𝜅i = 𝜅. One can clearly see that the approximation 𝜅-A1
(expression (29)) is only valid for a very restricted range of k⊥ values. Recall that approximation 𝜅-A2 (expres-
sion (28)) is more exact than approximation 𝜅-A1. In fact, the latter can even change sign, depending on the
values of 𝜅 and k⊥. This odd behavior is a mere consequence of the varying relative importance between
the consecutive terms of the two series that appear in the expansion of the gyrofunction (𝛼,𝛽)

n,𝜅 (z) given by
(10). When 𝜅 → ∞, the second series

(2

)
vanishes, and only 1 remains, which is why the KAW dispersion

relation (22a) does not display the same behavior. However, when 𝜅 is small, both 1 and 2 series can be
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Figure 4. Plots of the dispersion relations of KAW (M-A1 and M-A2)
and 𝜅KAW (𝜅-A1 and 𝜅-A2) for r2

v = 2, Ti = Te, and some values of
𝜅e = 𝜅i = 𝜅.

of the same order and then one has to
exert an extra care on the assessment
of the validity of the approximations
employed. Therefore, the first conclusion
one must reach is that one should only
employ approximation 𝜅-A2 (28) to study
the 𝜅-kinetic Alfvén waves.

Figure 4 also shows that for small 𝜅 index
(𝜅 = 3), the dispersions of KAW and 𝜅KAW
at k⊥c∕𝜔pe = 3 differ by around 40%,
whereas when 𝜅 = 50, the 𝜅KAW are
indistinguishable from the KAW.

The numerical solutions of the dispersion
equations (21) and (25), where the full
thermal effects due to the electrons are
maintained, are shown in Figure 5, for the
same plasma parameters as in Figure 4.
In Figure 5a, the M-A2 dispersion rela-
tion for KAW presented in the preceding
figure is repeated, in order to compare it
with the real part of the solution of (21),
marked with the label Maxwell. One can
clearly observe that when full thermal

Figure 5. Plots of the (a) real and (b) imaginary parts of the solution of the dispersion equations (21) and (25) for r2
v = 2,

Ti = Te , and some values of 𝜅e = 𝜅i = 𝜅.
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effects from electrons are maintained in the solution, even in Maxwellian plasmas the approximate dis-
persion relation (32) differs substantially from the full solution. Its validity, in this case, is restricted to
k⊥c∕𝜔pe ≲ 1.

The solid curves in Figure 5a show the real parts of the solutions of the 𝜅DAW dispersion equation (25).
Clearly, when 𝜅 is small (𝜅 = 3), there is a substantial difference in the dispersion of 𝜅-kinetic waves as com-
pared with their Maxwellian counterpart when k⊥ is large. Once again, when 𝜅 increases, the difference goes
to naught, with the case 𝜅 = 50 already very close to the Maxwellian limit.

Figure 5b shows that the damping coefficient of 𝜅KAW, differently to what happens with the 𝜅IAW, always
decreases with the 𝜅 index, with |Im𝜔|max resulting for 𝜅 → ∞ for all perpendicular wave numbers.

As we have pointed out above, the results shown by Figures 4 and 5 are by no means an exhaustive study
about the effect of superthermal particles on the usual dispersion relation (and their damping rate) of
the kinetic Alfvén waves. Future communications will endeavor more comprehensive analyses, with the
inclusion of anisotropy features in the VDF, in which case one will be able to analyze the effect of the
superthermal tails on obliquely propagating instabilities.

6. Conclusions

We have presented a formalism destined to the general description of obliquely propagating waves in
superthermal (kappa) plasmas. The details presented in this work were tailored out for the case of the
quasi-perpendicular, low-frequency modes called, in general, dispersive Alfvén waves, which are essentially
a modification of the usual shear Alfvén waves with the inclusion of the effects of finite ion gyroradius and
finite electron mass and thermal pressure terms. These modes are usually denominated inertial or kinetic
Alfvén waves, depending on whether the electron inertia or the temperature, respectively, is the dominant
effect on wave dispersion.

The main objective of the present work was on the presentation of our formalism, which was then applied
to the mentioned dispersive modes. We have shown that the superthermal tails of the kappa distribution
functions can affect a visible modification to the usual dielectric tensor components, to the DAW dispersion
relations, as well as to their respective damping coefficients. Among the discussed mathematical properties
regarding the dielectric tensor, we have shown that for the case of nonparallel waves, not only a generalized
plasma dispersion function is necessary but also a superthermal generalization of the gyroradius func-
tion appears. Interestingly, the new kappa gyroradius function is shown to display an ambivalent behavior,
belonging to either a hypergeometric or a logarithmic class, depending on whether the 𝜅 index is inte-
ger or not. Moreover, we have shown that even in the hypergeometric regime, the gyroradius function for
finite 𝜅 is always expressed by a combination of two power series, one of which is proportional to a non-
integer power of the particle’s gyroradius. These characteristics are completely absent in the Maxwellian
gyroradius function, and the numerical results have shown that as a consequence the derivation of approxi-
mate expressions for the dispersion relations must be carried out taking these mathematical characteristics
into account.

Beyond the practical application presented here, our formalism can be readily extended to more general
cases. The adopted VDF is able to reproduce several distributions employed in the literature, such as the
ST91 and Le02 models, for instance, which are all examples of isotropic, equilibrium distributions in a canon-
ical ensemble. On the other hand, a straightforward generalization of our model VDF for a grand canonical
ensemble is possible, by introducing the chemical potential and by the adequate definition of the constant
w, thereby reproducing, e.g., the generalized Lorentzian distribution derived by Treumann [1999a].

Additionally, although the mathematical expressions and results presented here were adequate for the par-
ticular dispersive Alfvén modes, our formalism can be straightforwardly extended to the general case with
arbitrary propagation angle, frequency range, and plasma species and temperatures. The formalism can also
be applied to other isotropic or to anisotropic (kappa) velocity distribution functions, such as the bi-kappa
or product-bi-kappa functions, in which case one will be able to study the generation and propagation
of kinetic and reactive instabilities in a superthermal plasma as well. The necessary details for this general
treatment will be divulged in future publications.
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Appendix A: Generalized Hypergeometric Functions

This section presents some mathematical properties of the hypergeometric functions that appear in
our work.

A1. The Generalized Hypergeometric Series
The generalized hypergeometric function is defined by the power series Askey and Daalhuis [2010]

pFq

(
a1,… , ap

b1,… , bq

; z

)
=

∞∑
k=0

(
a1

)
k
· · ·

(
ap

)
k(

b1

)
k
· · ·

(
bq

)
k

zk

k!
, (A1)

where p, q = 0, 1, 2,… and (a)n = Γ (a + n) ∕Γ(a) is the Pochhammer symbol.

The power series in pFq(· · ·) is defined as long as bj ≠ 0,−1,−2,… (j = 1,… , q), and it can be divided in
three classes, depending on whether p ≤ q, p = q + 1 or p ≥ q + 2. In the present work, there appear
functions belonging to the first two cases, which are briefly presented below.
A1.1. Case p ≤ q: The 1F2 Function
The 1F2(· · ·) function is defined from (A1) as

1F2

(
a

b, c
; z

)
=

∞∑
k=0

(a)k

(b)k(c)k

zk

k!

= 1 + a
bc

z + a
bc

(a + 1)
(b + 1) (c + 1)

z2

2
+ · · · . (A2)

For fixed a, b, and c parameters, the series (A2) defines an entire function of z, as long as b, c ≠ 0,−1,−2… .
If a = −m (m = 0, 1,…), the 1F2(· · ·) reduces to a polynomial of degree m.
A1.2. Case p = q + 1: The 2F1 Function
The so-called Gauss hypergeometric function is defined by the Gauss series given from (A1) as
[Daalhuis, 2010]

2F1

(a, b
c

; z
) .
= F

(a, b
c

; z
)
=
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k=0

(a)k(b)k

(c)k

zk

k!

= 1 + ab
c

z + ab
c

(a + 1) (b + 1)
(c + 1)

z2

2
+ · · · . (A3)

The series (A3) converges inside the unit circle |z| < 1 and has conditional convergence along |z| = 1.
As a consequence, the series has to be analytically continued to the region |z| > 1. Since the point z = 1
is a branch point and the function also has a singularity at |z| → ∞, the branch line runs in the interval
1 ≤ z < ∞, defining the principal branch of F(z) as the region |arg (1 − z)| ≤ 𝜋.
A1.2.1. Transformation Formulae
Among the existing linear and quadratic transformation formulas, we have employed the following below:

F

(
a, b

a + b − 1∕2
; z

)
= (1 − z)−1∕2 F

(
2a − 1, 2b − 1

a + b − 1∕2
; 1

2
− 1

2

√
1 − z

)
(A4)

F
(a, b

c
; z
)
= Γ(c)Γ (c − a − b)

Γ (c − a) Γ (c − b)
F

(
a, b

a + b − c + 1
; 1 − z
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+ (1 − z)c−a−b Γ(c)Γ (a + b − c)

Γ(a)Γ(b)
F

(
c − a, c − b

c − a − b + 1
; 1 − z
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(|arg (1 − z)| < 𝜋) (A5)

= Γ(c)Γ (b − a)
Γ(b)Γ (c − a)

(−z)−a F
(a, 1 − c + a

1 − b + a
; 1
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)
+ Γ(c)Γ (a − b)

Γ(a)Γ (c − b)
(−z)−b F

(
b, 1 − c + b

1 − a + b
; 1

z

)
(|arg (−z)| < 𝜋) (A6)

A1.2.2. Particular Cases

F (a, b; b; z) = 1F0 (a; −; z) = (1 − z)−a . (A7)

GAELZER AND ZIEBELL ©2014. American Geophysical Union. All Rights Reserved. 9353



Journal of Geophysical Research: Space Physics 10.1002/2014JA020667

A2. The Meijer G Function
The Meijer G function is that function whose Mellin transform [Paris and Kaminski, 2001] can be expressed as
a ratio of certain products of gamma functions. Explicitly,

Gm,n
p,q

[
z
||||||
(

ap

)(
bq

) ] = 1
2𝜋i ∫L

∏m
j=1 Γ

(
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(
1 − aj + s

)
∏q

j=m+1 Γ
(

1 − bj + s
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j=n+1 Γ
(

aj − s
) zsds. (A8)

In (A8), 0 ≤ m ≤ q and 0 ≤ n ≤ p. If m + 1 > q or n + 1 > p, the product is replaced by one. The notation
is such that

(
ap

) .
= a1, a2,… , ap and

(
bq

) .
= b1, b2,… , bq. It is assumed that the parameters

(
ap

)
and

(
bq

)
are such that no pole of Γ

(
bj − s

)
(j = 1,… ,m) coincides with any pole of Γ

(
1 − ak + s

)
(k = 1,… , n). That

is,
(

ak − bj

)
is not a positive integer. It is also assumed that z ≠ 0, since the origin is a branch point.

The integral in (A8) is called a Mellin-Barnes integral, and the integration contour L corresponds to that of
the inverse Mellin transform but is deformed in such a way that the poles of Γ

(
bj − s

)
(j = 1,… ,m) lie to the

right of the integration path and the poles of Γ
(

1 − aj + s
)
(j = 1,… , n) lie to the left of the path. A detailed

account on all possible integration contours and properties of the G function is given by Luke [1975].

The G function, although little known in the plasma physics community, has remarkable properties, some of
which are presented here. In particular, it can display two different types of behavior, or regimes, depending
on the parameters. If no two of the bh (h = 1,… ,m) parameters differ by an integer, all poles are simple and
the G function can be expressed in terms of the hypergeometric series (A1) as
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expression which is valid for p < q or p = q and |z| < 1. The notation Γ
(

bj − bh

)∗
means that this term is

absent when h = j.

If any pair of values of bh differs by an integer, then the G function can no longer be expressed simply as the
combination of hypergeometric functions given by (A9). In this case, the poles of the Γ(z) functions have
to be canceled out by a limiting process and the resulting representation of the G function contains a log-
arithmic term. The final expression is rather large and will not be presented here, since for our applications
we will always be able to express the logarithmic regime for the G function in a compact closed form. The
reader is referred to Luke [1975] for a detailed account on the derivation.
A2.1. Elementary Properties
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A2.2. Integrals Containing the G Function
Several integrals that contain the Meijer function can be expressed by the same function.

∫
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A2.3. Representations of Special Functions
All special functions can be represented by the G function. A few examples are listed below [Luke, 1975;
Prudnikov et al., 1990].
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