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In this paper we derive the dielectric tensor for a plasma co 4n particles described
i &n function. The tensor

by an anisotropic superthermal (bi-kappa) velocity dist
components are written in terms of the two-variables kappa p sma special functions,
recently defined by Gaelzer and Ziebell [Phys. Plagm 3 22110 (2016)]. We also
obtain various new mathematical properties for t ese ctions, which are useful for
the analytical treatment, numerical imple d evaluation of the functions

C’Ii:be‘l’ymalism developed here and in the

and, consequently, of the dielectric tensor.

previous paper provides a mauthemaﬁ&alniE ework for the study of electromagnetic

waves propagating at arbitrary angﬁhﬁ
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Publishihg INTRODUCTION

During the last years, a substantial portion of the space physics community has been
interested in plasma environments which are not in a state of thermal equilibrium, but are
instead in a turbulent state. Several of such environments can l?/found in a nonthermal
(quasi-) stationary state. When the velocity distribution functions (}’Q%) of the particles

that comprise these turbulent plasmas are measured, they oftem diSplay a high-energy tail

that is better fitted by a power-law function of the particle’syeloeity, instead of the Gaussian

profile found in plasmas at the thermodynamic equilibritm. /<
—

Among all possible velocity distributions with a ower‘ga tail, the actual VDF that
has been marked with a widespread applicatio(;: Sp plasmas is the Lorentzian, or

kappa, distribution (or a combination of kappés d TcDe number of published papers that
| -

employ the kappa velocity distribution func\*ig(:.p F') has been growing by a measurable
exponential rate.! However, the interes o‘rbhg kappa distribution is justified not only as a

better curve-fitting function. A kappa funetion is also the velocity probability distribution

that results from the maximization o wn'onadditive Tsallis entropy postulate. Hence, the

kVDF is also the distribution, of ities predicted by Tsallis’s entropic principle for the
nonthermal stationary state of mmal system characterized by low collision rates, long-
range interactions and s orrgﬁrelations among the particles. For detailed discussions of the

importance of kappa distrihutions for space plasmas and the connection with nonequilibrium

e R?L er is referred to Refs. 1-4. See also the Introductions of Refs.

statistical mechanics;
5 and 6 for comgle ntary discussions and references to other formulations for the kK VDF.

One of th 'Qortant problems related to space plasmas in which the kappa distribu-
tion has Beendncréasingly applied concerns the excitation of temperature-anisotropy-driven
instahilities ‘/propagate in electromagnetic or electrostatic modes in a warm plasma.

These stab&ities (among others) play an important role on the nonlinear evolution and
stea
le

t -state of the measured VDFs. They can also lead to particle energization and

ﬁcs ion and are probably related to some of the fundamental issues in space and astro-
N
physical systems, such as the problem of the heating of the solar corona. Rather than giving
here a long list of references, we suggest that the Reader consults the cited literature in our

previous works.>%

In the present work, we continue the development of a mathematical formulation destined
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Publishittgthe study of electromagnetic/electrostatic waves (and their instabilities) propagating at
arbitrary angles in a warm magnetized plasma, in which the particles are described by
asymmetric superthermal, or bi-kappa, VDFs. The formulation presented here employs the
linear kinetic theory of plasmas and is an extension and generalization of the treatment

developed in Refs. 5 and 6. /

e:é}i\e dielectric tensor

s of the kappa plasma

The structure of this paper is as follows. In Section II we

for a bi-kappa plasma. The tensor components are writtengn

ojs. ction III contains several
tions, destined to provide the

special functions introduced and studied in our previous

new developments and properties of the kappa plasma

necessary framework for the evaluation of the functions andsth dielectric tensor. After the

conclusions in Section IV, we have also includgﬁppe es A, where details about the
derivation of the dielectric tensor are given, aﬁ\v@e additional properties of relevant

\
II. THE DIELECTRIC TENSOR
\ S
The dielectric tensor for a bi- erthermal plasma will be obtained with the use
of the velocity distribution fuss\ iven by
2 ) —Os
v v
) — Al [q I L 1
J m) s ( * Rswi, * KW ’ (1)
%

which is valid fo?s ay.d where 0, = ks + a, and
1 k73T (o))

\ Alos) —
© P T (o —32)
is the noélf}\a constant. The quantities w), and w,, are respectively proportional to
d

special functions are derived.

the parallel pférpendicular thermal speeds, but they can be a function of the x parameter
as well, Finally, I' (2) is the gamma function.

ﬁle (1) is the anisotropic generalization of the isotropic (wH =w, = w) distribu-
%1 ted by Refs. 5 and 6. In these works, it was shown how adequate choices of the

ameters a and w reproduce and formally unify seemingly different (kappa) velocity dis-

tribution functions employed in the literature. Now, in the anisotropic case, if we set a =1

3\ (270
2 _p2 (1 _ ) B
Yo =YL 2k ) \ Tm |

and
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Publishi‘ri‘g function (1) reduces to the “bi-Lorentzian” distribution introduced by Summers &
Thorne” (see Table I. See also Egs. 12a,b of Ref. 4). This distribution will be named
here the ST91 model and in all expressions obtained below one can simply drop the param-
eter a, should the ST91 model be chosen from the start.

However, the parameter a can also be useful when the functi({l fle (vH,v L) describes
(isotropic) one-particle distribution functions with an arbitrar nberf degrees of free-

freedom, one can set k = kg, where kg is the invariant k ameter introduced by Li-

dom. If (1) describes the probability distribution function g;ticle with f degrees of
P

vadiotis & McComas', « = 1+ f/2, w? = 6> = 2T /m g_)i T2, and the normalization
constant is AY) =T (ko 4+ 1+ f/2) (7m002)_f/2 /T (ko + 1), ‘She eby obtaining Eq. (22¢) of
Ref. 1. h

Particular forms of the bi-kappa VDF (ﬂO\rft@iMaxweHian limiting case (when

ks — 00) have been frequently employed, in\g:t rature in order to study temperature-
anisotropy-driven instabilities that a I'Q\&al el- or oblique-propagating eigenmodes in

i
r':‘p%p\oﬁa{lce for the present work are the effects of fi-
S

nite particle gyroradius (or Larmér radiu$) on the dispersion and amplification/damping of

a magnetized plasma. Of particula

or instance; Yoon et al® discovered the oblique Firehose in-

oblique-propagating modes.
stability, which is a non-propagating instability excited in a high-beta bi-Maxwellian plasma
when the ions display témperature anisotropy (with Tj; > 7' ;) and which is continuously
connected to the leftéhan qe"sanch of the Alfvén waves when the ion gyroradius tends to
zero. The same inStabi iéy whs later rediscovered by Hellinger & Matsumoto.”

Other studi

eﬁ‘wuently considered the excitation of low-frequency instabilities at
0

s il bi-Maxwellian plasmas for other situations, such as low-beta plasmas,*
Tee energy sources such as electronic temperature anisotropy,!! field-
;"2 loss-cones,'® and density inhomogeneities'® (see also reviews by Refs.
15<17).

n co@parison, similar studies employing anisotropic superthermal distributions are rare.
E&lﬂers et al.'® obtained the first expressions for the general dielectric tensor of a bi-
kappa (bi-Lorentzian) plasma. However, their final expressions are not written in a closed
form, i.e., for each component of the tensor, there remains a final integral along v, (the
perpendicular component of the particle’s velocity) that should be numerically evaluated.

A similar approach was later adopted by Basu,'? Liu et al.?° and Astfalk et al.?!

4
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Publishingln order to circumvent the mathematical difficulties involved in the integration along v,
Cattaert et al?? derived the dielectric tensor and considered some simple cases of oblique

waves propagating in a kappa-Maxwellian plasma. More recently, Sugiyama et al.*®

em-
ployed the same VDF in a first systematic study of the propagation of electromagnetic
ion-cyclotron waves in the Earth’s magnetosphere.

Closed-form expressions for the components of the dielectr

i &i%f a superthermal

for the particular case

plasma were for the first time obtained by Gaelzer & Ziebelk®

of isotropic (w”S =w LS) distributions. Here, we will o adS dielectric tensor for the

bi-kappa VDF given by (1).

—
The general form of the dielectric tensor can be wiitten 3@

gij (k,w) 5ZJ+ZX ,Q ,) (2a)
Zns); LT

(s) d3
XZJ ( 2:\ L — nQ — k:”v”

+6ZZ5JZ ”' Lfs (2b)

where Xz(j is the susceptibility ssoaated with particle species s, the set {i,j} =
{z,y, z} identifies the Cartesi n& space) components of the tensors, with {Z, 9y, 2}
being the basis in E?, =, %\ —iJ! (05) Y + (vH/vl) n (0s) 2, where J, (2)
is the Bessel function t}h}qt kind,** ¢, = kv, /Qs, Lfs = v10fs/0v) — vdfs/0vy,

Lfs =wdfs/Ov, + |Lf

cyclotron freque 1es 0 z{es s, respectlvely, wand k = k1 Z+ k|2 are the wave frequency

= 4mnsq?/ms and Q, = q,By/msc are the plasma and

and wavenu Boz (By > 0) is the ambient magnetic induction field and the

(L )denote the usual parallel (perpendicular) components of vectors/tensors,

In r‘t?ng §h function (1) into (2b) we obtain the desired susceptibility tensor for a bi-

kappa plasmd. More details on the derivation of the components of x;; are given in Appendix
A(@Sve will presently show the final, closed-form expressions, given by

w2 [e)
\\ chsx) =—£ Z [505 na,;’ (NSafnS)

w2 n——oo 'S
1
+§Asa£nsz7(l?js;1) (/’LS7 STLS):| (33)
.W23 oo
X =i S (600 25 (tes )
W S
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2
(5) — _ Yps Wis 4
Xz wg W s = kj_ W <§Os sgns)
X agns nafjs’ (MS? gns) (30)
w2s [e's) /
X =w—p2 > [f WV (1 Eus) \
n——00 5
X(z) - w w”S kLwJ_S OO 505 XQ
! wQ Wis S n——00
<O éa:; (1 5’”‘\5 (30
X = A}

% €0, \Q ). (36)

WP (1, € &) —2uY% (1, €).

Notice that the off-diagonal com \ts f xi; obey the symmetry relations X, = —Xya»

where

Xzz = Xzz» and Xyz = —Xyz-

In (3a-f) we have fmﬁx e parameters p, = kip? p? = w?,/20% and &, =

(w —n8) /kjw)s. Thé parameter p; is the (kappa modified) gyroradius (or Larmor radius)

of particle s. H ) 1s t}e normalized gyroradius, proportional to the ratio between p;
and A\, the pege2 icula® projection of the wavelength. The magnitude of us; quantifies
the finite L bradii effects on wave propagation. On the other hand, the parameter

&ns quantifies /the inear wave-particle interactions in a finite-temperature plasma. Also in

(Sa— tl{y

Wis

Ay=1-

Wyis
%:blsotropy parameter, which quantifies the effects of the VDF’s departure from
Xlso ropic distribution, due to the temperature anisotropy. The symbol 97, = =

0z -+ - 0z,) is the n-th order partial derivative, relative to z1, ..., z,.
Finally, the functions Z{% (1, &) and Y%7 (i, &) are the so-called two-variables kappa
plasma functions. Their definitions were first given in Ref. 6 (hereafter called Paper I)

and are repeated in Eqgs. (20a)-(20f). Some properties and representations of Z and Y

6


http://dx.doi.org/10.1063/1.4953430

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishiwgie also obtained in Paper I and several new properties and representations will be derived
in Sec. III. The evaluation of the functions Z and ) is determined not only by their
arguments g (normalized gyroradius) and £ (wave-particle resonance), but also by a set of
parameters: n (harmonic number), s (kappa index), and the pair (a, §). Parameter « is the
same real number adopted for the kVDF (1). This parameter car?ge ignored and removed
from the equations if the distribution model is fixed. On the ot andythe real parameter
[ is crucial for the formalism. The value of 3 is related f\t;ﬁpeciﬁc dielectric tensor

f the k

component, wave polarization and mathematical properti appa plasma functions.

The isotropic limit of Xz(j) is obtained from (3a-f) by set Ay=0(and wi, = wys = wy).

—
In this case the susceptibility tensor for each particl Speciaf reduces to the form that can

be easily gleaned from the Cartesian componenﬁ'f Eij ented in Appendix C of Paper

I. On the other hand, the susceptibility tensorof a @axwellian plasma is also obtained

from (3a-f) by the process called the Max%' it, i.e., the result of taking the limit
(s) s
Xi

tj

ks — 00, for any species s. The Maxwellian is given by Eqs. (Ala-f).

Equations (2-3) show the general form“or the dielectric tensor of a bi-Kappa plasma.

These expressions, along with th rep>ntatlons of the kappa plasma functions derived in

N

absorption in an anisotropic, superthermal plasma. Fu-

Paper I and in Sec. III, contain su formation for a methodical study of the properties

of wave propagation and emissi

ture works will impleme, tﬁ’erxnjﬂysis of temperature-anisotropy-driven instabilities excited

o,

in low-frequency paraflel- lique-propagating electromagnetic eigenmodes.

£

NEW SS NS FOR THE KAPPA PLASMA SPECIAL

FUNCTI
e rthermal plasma gyroradius function

1on ’H(a’ﬁ z) quantifies the physical effects on wave propagation due to the
pa iclessls finite gyroradii when their probability distribution function is described by a

hpa&VDF. For this reason, it was named by Paper I as the (kappa) plasma gyroradius
function (kPGF). The basic definition of this function was given in Eq. (1.20) (i.e., Eq. 20
of Paper I) and is repeated here,

xJ? (yx) -
()=2 [ dz e (v =2), W

7
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Publishiwficre A = k 4+ o + 5.
The Maxwellian limit of this function is the well-know representation in terms of the

modified Bessel function,?

lim ’H(O‘ (2) =54, (2) =e *1,(2). (5)

K—00
mtles of H!&P (z)

exceptions. One of the

Sections III.B and A.2 of Paper I contain several mathem

and most of them will not be shown here, with a few impérta

exceptions is its general, closed-form representation in m5 e Meijer G-function, as

shown in Eq. (I.22). Namely,
1/2,
HED (2 ”—G?é 2z [\ % (6a)
’ ' —2,n,—n
712 n,1 n
_ @it (6b)
Representation (6b) was obtained empl ym metry property of the G-function given

by Eq. (I.11a).

The definition and some propetties B‘G function can be found in Sec. B.2 of Paper I
and in the cited literature. S me&k o al properties, employed in the present paper, are
given in Appendix B.

Additional mathema, cﬁ*gs)pertles of the H-function, that were not included in Paper

I, will be presented re.

1. Derivat 'ves\

Equati ns -(1.25d) show recurrence relations for the H-function that involve its first
derivative a t At in the Maxwellian limit reduce to the respective relations for J, (z),

easily btaln§d from the properties of the modified Bessel function.
Q:iulso possible to obtain closed-form representations for the derivatives of Hfﬁkﬂ) (2)
der. Applying the operator D* = d*/dz* (k=0,1,2,...) on (6a) and employing

n
§n® (Bla), we obtain

HBE) (2) T—1/2 G
(~=)" TO-1 [

where H®) = d*H /d2".

/2.0
kA —2,n, —n] ’ (7a)
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Publishin gllormula (7a) is valid for any z and k, but the value of H at the origin must be treated
separately. Applying the operator D* on the definition (4), we can employ the power series
expansion of J?2 (yz) given by Eq. (10.8.3) of Ref. 24 in order to evaluate the integral in the
limit y — 0, thereby obtaining

2

H @A H) ()
Chle (

) (A—2) Vfﬂ/é‘\

—k
o ;)kﬁ%

which is valid for A > 2+ k. Here, §,,,, is the Kronecker del\ ), =T (a+10)/I(a)is

the Pochhammer symbol. One can easily verify that th ca%k =O.reduces to Eq. (1.21).
As it happens with Hﬁﬁf) (2), its derivative in any @rder Itag two different representations

in terms of more usual functions, depending on Whe_‘?h A is)nteger or not. These cases will

now be addressed. ,-)

Case A noninteger. \L—
If A # 2,3,..., then we can employ @ ntation of the G-function in terms of
generalized hypergeometric functions, @iﬂq. (I.B14). Hence, we have
HBE) (2) T 1/2, l

(=)™ T(A-1)

=32, A —1
F ’ 2
SRR N RPN Ry m)

rA—2—-n)T né n+12,n+1 ‘
* T (2n + Q p (202)" 2F3<n+3—A,2n+1,n+1—k’2m>]’ (7)

where ,F'y ( S % is a thQ{ hypergeometric series of class 1, discussed in Sec. B.1 of Paper
I. The case k reduges to Eq. (1.23).

Case A gin . Now, writing A = m+2 (m=0,1,2,...) in (7a) and looking at the

representagiod (B4Db), we notice that if we choose 4t =n — k and v = n + k and employ the

differ nt-i‘étiog rmula (I.B13a), we can write
. — m

@y -

S ¢ T (VF) Ko (V)]

dym—I—k

)
Yy=2Kz

where K,, (2) is the second modified Bessel function.?* Finally, employing Leibniz formula

for the derivative®® and the identities written just before Eq. (I1.24), we obtain
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(=)
(" Y B (V) e (VB (7

s
fo%xact for any z and the
orally

function could be formally expressed in terms of the 5 Fg4« - - %) hypergeometric series, after

Publishing, , 54 22" (/-@2
[P0 (2) = =

()_F(m+1) 2

(m-+k) /2 m+k
)

s=0

As expected, for k = 0 this result reduces to (1.24).

2. Asymptotic erpansion

The representation of the H-function given by (6b) i

using Eq. (I.B14). However, as explained in Sec B of ch)er I, the 4F; belongs to class

3, whose series are everywhere divergent, exce 0 Hence, the representation of
Hﬁ{f‘f) (z) in terms of 4 F', only makes sense Wh&s oking for an asymptotic expansion
of H, which provides a finite number of dlg s when z > 1 if only a finite numbers
of terms in the series expansion is kep‘c\BQ

With this caveat in mind, using Eg«(l.B14) in (6b), we obtain

1 rI'(A=3/2)

o
Hfﬁ%ﬂ) (2) = 7 T(h— )v%\\

‘F, ( —3/2, 1/2+n1/2—nhi>’

— " 2Kz

which, as explamed@ on the limit z — oo. Inserting the series (I.B1), we obtain
ansiQn

the asymptotic e

/<a — 3/2)

—1 2/12’

HED (2

(A =3/2), (12 +mn), (12— n)k;

X k
par k! (2k2)

(8)

N tlce at t)e upper limit of the sum is absent. This upper limit must be computationally

d termn!fd taking into account the desired number of correct digits in the evaluation of

(a7
P~

The Maxwellian limit of (8) renders

I'(n+k+1/2)
P \/%,CZ‘;F n—k+1/2)k!(2z)’

which is exactly the asymptotic expansion of .77, (z) given by Eq. (8.451.5) of Ref. 27.

10
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Sum rules are useful for the numerical evaluation of special functions. If we sum (4) over

all harmonic numbers and use the identity?*

S ACES y )
Mt \

the remaining integral can be evaluated by the definition of thé\Beta function,? resulting
Z HED ( "4 D (10)
P ~

—
Several other sum rules for H can be found in the sa@o
f -

Among the representations for the tw%@ unctions 27(1?155) (11,€) and y B) (1, &),
derived in the section III C 3, the follow1 g fittetion appears,

7'[( B) (,u) w3)“ 2:1 [

n,k,k A\ 1)

4. The assoctated gyroradius functio

(11)

which is clearly related to H, dlfferlng by the parameter k. For this reason, it is

christened here as the a ed plasma gyroradius function.
Some propertles oWt %Cmon are now presented. A trivial property is ’Hn 0.k ( ) =

fH(a ) (
Relation wit ’H‘\G The associated PGF is related to the H-function and its deriva-
the

tives. First, due t ifferentiation formula (Blc), it is clear that we can write
”(a 1/2 d* k—1/27/(c,B)
(1) = 2 [P ()]

n k, n duk
Then sing belbmz s formula and the formula for D™z" just above (Blc), we obtain
k 097(c,B)(¢
N(Oéﬁ) _ 1) k: :u HTL,K (:u)
=I'k+ = —_. 12
R =1 (k4 5) 3 () R S (120)

\ 2 =0
~

The reciprocate relation is obtained starting from (7a), which is written in terms of the

Mellin-Barnes integral with the help of (I.B10). Then, we have

—k

a,B)(k _ /{(_IJ/)

11
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Publishing « [ RO _r2(_j)1r +(n)_(;> F)(_lf ) (o) ds
L n s) (2kp

On the other hand, from (11) and (I.B10) again, we have

-1

ﬁ(a,ﬂ)

n,k,n(ﬂ):% /
. F(A—Q—S)F(”%Bm)c >ds.

/L T(1+n+ (?QC
Then, if we employ the identity %

@i, =3 (}) @ 06

we can finally write the reciprocate relation ’)
L

HE O (1) & \ (o
P (1) _ 3 %{ )k_ HEE (). (12b)

s
H =0

,u) can be carried out as follows. For non-

integer A, it is more efficient to Kj ﬁﬁty (I.LB14) and evaluate
ﬁiakﬂg (2) = TR #ﬂ\&% 2K2) A2 by, (2)

where

Representations. The computa 'ou%f
e

F'A—2-—n)

e e )] )

A=3k+k 9y

—3/2+k:) pEL] GV PSSO

n+12+k

F ;2 .

& n.|_1/2—|—k:) ! 2<n+3—)\2n+1’ HZ)

Qn the oawr hand, for integer A the only representation found for H similar to (7¢)

tams& double sum. Consequently, it is equivalent to simply employ Eqs. (12a) and (7c¢).
Sﬁzurrence relation. 'The numerical computation of ﬁfﬁk’gg (z) can be carried out using
either Eq. (13) or Egs. (12a) and (7c) combined. However, since the associate function
appears in series involving the parameter k, if a recurrence relation for ’;[ngakﬁ ) (2) = H[k] on
this parameter could be found, it could substantially reduce the computational time required

for the evaluation of the series.

12
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Publishinguch recurrence relation can be found by first considering the particular case of noninteger
A, given by Eq. (13). We observe that the auxiliary functions hy (z) and g (z) in (13) and,
consequently, the function ﬁ[/@] itself, all obey the same four-term recurrence relation, which
can be derived from the corresponding relation for the function | F, (--- ;z) in the upper

parameter, given by Ref. 29. Namely, /

)k—sz]H[/{:—i—l}
4

’H[k:+3]—<A+2+3k>’7-[[k+2]+[2/\—n2—2+2</\+ %k

L3 LN

5 - k;) HIk] =0. (14)
Although the relation (14) was derived for nonin% can be easily shown that it
s H|

is indeed valid for any A. Substituting into the funct k] in (14) the definition (11)

and then the corresponding representations in te ofT)[ellin—Barnes integrals (Eq. 1.B10),
one can show, by using known properties o t}%n‘ﬂ function,® that the identity (14) is

indeed valid for any real \.

ﬁ\
B. The superthermal plasma \?”Sko function

The superthermal (or ka(&\s dispersion function (kPDF) was defined by Eq.

(I.11), and several of its propertieg were discussed in sections III.A and A.1 of Paper I.

Here, we will merely p‘% ew additional properties, which were not included in Paper

or }he k at hand.
£
o

rtan
1. Repres n‘hah&zn terms of the G-function.

I and are impo

Taking thefrepresentations (1.15) for Z(®% (¢) and (I.B15a) for the Gauss function, we

have Qs /
- 1/2,.—-1 2
a,f) i K fG%:g [é

0,3/2— A
i @ T (0 —3/ 0,_1/2]

iml/2 _ 2\ —(A=1)
e O (149

As explained in Paper I, the Maxwellian limit of this representation reduces to the known

K

expression of the Fried & Conte function in terms of the Kummer confluent hypergeometric

series.
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PublishingAnother, more compact, representation is obtained if we first modify the limits of the
integral in (I.11) to the interval 0 < s < oo, define the new integration variable s = /u
and identify the resulting integration with the identity (I.B12). Proceeding in this way, we

obtain the equivalent representation

-1/2,.—p8-1 2 —
700 = e -5 ;{I\ (150)

Bdc), we obtain

K—00

lim Z{*% (€) =€U< - ‘)""'--.

representation of the Fried & Conte function.?}!

2. The associated plasma disper imon

\

¥/
where U (- - - ; 2z) is the Tricomi confluent hyperg@e&&fm)ction.?’o This is another known
-

The associated plasma dispersion i

-
_ ko~ (k+B+1/2) _
ZIE?ZB) (&) = —M C I_‘(3)\2 1)\\\

00 2k (1 2/, —(A=3/2+k)
x/ s s (14 s?/R)
—00 S — f

is another new spe€ial functien that appears in the series expansions derived in section

, (16)

IITC 3 for the twb-yaria s/special functions Z(%% (u, &) and Y%7 (1, €). It has the trivial
property 5\

) 2516 = o 28 ), (17

and, ifr the fo xéng, alternative representations for the Z-function will be derived.
ngq@ tions. The first expression is valid when A is half-integer (A = 5/2,7/2,...).
Iy this @se, writing m = A —3/2+k (m=1,2,...), all singular points in (16), at s = ¢
‘ﬂﬁ 9\ ="+i4/k, are poles and thus we are permitted to evaluate Z,ﬁ‘if ) (€) using the residue
theorem, exactly as was done by Summers and Thorne.”

Let us consider the contour integral

2k (1 o g2 /)" ATE—Y2)
I — / st (14 s°/kK) |
B s—¢&

14


http://dx.doi.org/10.1063/1.4953430

! I P | This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

Publishiwg( re the contour B is comprised by the semicircle in the lower-half plane of complex s
(with radius S — o0), which is closed by the integration along the real line of s, deformed
according to the Landau prescription (i.e., circulating around the pole at s = £ from below).
See, for instance, the contour in Fig. 2 of Ref. 7, but with closing in the lower-half s-plane.
Then, it is easy to show that the contribution along the semicircl of radius S vanishes as
S — oo and [ is simply evaluated from the residue at s = —i SR 2miRes (—iv/k),
since the pole at s = ¢ is always outside B.

The residue is evaluated by the usual formula for a rde m,3? leading to the

/ O

representation
27 (=) T (A —1) 3
KBOHL2T (o — 3/2) -'

M m—1-¢ 2k m 1 i
X;)z( r(D -

= 2mel (m — ) lr!
(m—~L—r)
) , (18a)

2P (&) =

1 _ 5
\ NG
where M = min (m — 1,2k). One Can\glkv rify in (18a) that for integer x,

1 /{+3/2

( \&
\z& 29,
where Z* (§) is given by ef. 7.

A different expressjon'or thd Z-function will now be obtained, which is valid for any real
A. We already k thaft for = 0 the Z-function is given in terms of the xPDF by (17).
Now, for k& > e limits of the integral in (16) to the interval 0 < s < oo, define

and employ identity (I.B12) in order to obtain

) B2 (N - 1)
LN A (0 =3 T (A + k= 3p)

) e [—52

k,1/2

whieh isSa G-function representation of the associated PDF. If we now employ formula

nlﬁa), we can write

K

A] . (18b)

B k—(k+8+1/2)T ()\ _ 1)
Tl (0 —32) T (A + k — 3/2)

< i l | " ] ’
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Publishiwg( re we have provisionally defined z = —&2 /K. This result will now be identified with the
derivatives of Z(®%) (¢).
If we take representation (15b) of the kPDF, evaluate the k-th derivative on £ and employ
the differentiation formula (Eq. 1.1.1.2 of Ref. 33),

PR

d* ML, T(k+0)

& VA =X O v ga 5\

—k—¢
K ) (V)
which is valid for k£ > 1, we finally obtain Q\\

o KIPT(N=1) = T(k
4370 = 26T (A (3/2+l)~:)22€r( 0) ! -b

\ L} F=t ZlaB=120=0 (¢) - (18¢)
A final representation for Zk \m ed by returning to (16), changing the

integration variable to ¢, defined as s* = t) and comparing the resulting integral

with the formula (I.B5). In this way, }7@1

TA-1)BA 1K

VTRAHT (o
IL,LA—1 £2
F ’ 1+ = S 0 18d
X€2 1()\—1/24-]?, +/£>7(\$§> )7 ( )
where B (a,b) = T'{u F/(b (a + b) is the beta function®® and ,F, (--- ;z) is the Gauss
hypergeometric ction® ee also Sec. B.1 of Paper I). It must be pointed out that the

representatio )i ly valid for the upper-half of the &-plane. In order to employ this

expressionfwhen$s¢ < 0, one must evaluate also its analytical continuation, employing the

same techii ée a,pplied to Eq. (1.13). The resulting expressions for the functions Z and Y

ﬂ
are S%Eq . (25d) and (27c).
Reécur relation. The representation (18d) also allowed us to obtain a recurrence

LeIQn )or the associated PDF on the parameter k. Employing the shorthand notation
\}2’:6{(@ =7 [k], we can write
= r(A—1)°
Z[K = [ (A—1)]
VTRBHT (0 — 3/2)
. r (k‘ —+ 1/2) 1 A\ — 52
0 (SR
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PUbliShngl ce, if one finds the recurrence relation for the auxiliary function z (), the same relation
applies to Z [k].
Such a recurrence relation on the lower parameter of the Gauss function is given by Ref.

35. Consequently, we obtain

()\—;+k><1+é:>2[k+2] <\
—[()\—;+k>f+<k+;>(1+§2 Al
Pewr;) fZ[k] =0. (19)

-~
This result can be verified by inserting the defi iﬁo&%)}n the place of Z [k] and then
adequately manipulating the integrand. ‘)

The three-term recurrence relation (19) cn pot ti‘EHy reduce the computational time for

i‘\
C. The two-variables kappa¢ pl functions
;bl

The dielectric tensor of a s (kappa) plasma is written in terms of the special

)
the evaluation of the functions 31(&5) (i, EM () (1, €), discussed in the next section.
a

functions Z@% (4, &) a

b
n,K

functions (2VKPs),

(?‘,;ﬁ) (1), collectively called the two-variables kappa plasma

can_be verified in Eqgs. (I1.6a-6d), for an isotropic kKVDF, or in Egs.
(3a)-(3f), for a bi- addistribution.

The functioj and Y were defined in Eqgs. (1.26a-26b) in terms of a single integral
involving th su@hal plasma dispersion function (kPDF) Z(9 (¢) (see Sec. IILA of

Paper I). he/$e nitions will be repeated below. We will include equivalent definitions in
terms of.dotble jzftegrals, which will also be used in this work.

Iig : WeSdeﬁne
2
) B 00 xJ? (vo) (8) 1S
n,k ,U,f) - 2/ dl: _ Z,g (20&)
\\ 0 (1+a22/k)! 1+ 22 /K
2 2

2 L(A—1) oo ©  xJ?(vr) 22 2\ O
- d / ds T\ (g 5 201
7r1/2/<1/2+ﬁf(0—3/2)/0 Tl s—¢& * K * K . (200)

Y ) = & [ e T e () 70 ( : ) (200

(1+22/k)" J1+a2/k
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Publishing B 2 raa-1 /00 e /°° s 23T, (vT) Jupy (V) 14 xj N 372 —(-1)
- w228 T (0 —3/2) Jo —o0 s—¢ K K ’
(20d)

where 12 = 24 and, as usual, 0 = kK +a and A = o + .
Other definitions in terms of a single integral can be obtained, which are the counterparts
}mb)

of Egs. (20a) and (20c). If we change the order of the integration and (20d) and

define a new integration variable by x = ,/xt, where x = S the integral in ¢ can be

identified with (4) and we can write ‘)

U2 P (A—1) e 2/, f 02 o
Z50 (1) = 7 FF((UA_ 3}2)) /m as L S/r%\,:}m) [u (1 + K)] (20¢)

N V2 T (AN=2) o (1+ 0 B1V 52
Vi (n,€) = T (o~ 52) /_mds o {uf=1) lu <1+Fh>]. (20f)

The Maxwellian limits of the 2VKPs \Qs{d obtained in Eq. (I.7) and are

lim Z(?f;‘m?% (1) Z (€)
| (21)

,}:'Kyim L1€) = A1) Z ().
where the function 7%, () 1&3@6) and Z (£) is the usual Fried & Conte function,

Ry

given, for instance, by Eq. (1.10)
Some new propertie&; esentations of the functions Z and ) that were not included
d.

in Paper I will nowde djscu
AN
o\g,_

1. Deriv z'@j f 2P (u, &)

As cahibefseen in Eqs. (3a)-(3f), almost all tensor components are given in terms of
partidl derivatiués of the function Zﬁf‘,f) (11,€). These derivatives can be easily computed
fr m\&% t function, if one uses relations derived from the definitions (20).

We n%éd the partial derivatives 0¢Z, 0,2, and the mixed derivative 8527#2 . Applying 0
}f?(Q\Oa and using Eq. (I.18a), we can identify with (4) and (20a) and write

TA=12) 1
(a,B) - _ (a,f+1/2)
agzn,lﬁ (M) 5) 2 lﬁﬂ+1r (0_ _ 3/2) HTL,R (lu)

HEZEI (1,6) | (22a)
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PublishingNow, applying 9, on (20b) and integrating by parts the z-integral, the resulting expression

can be manipulated in order to provide the relation between the derivatives

10, 2% (u 5)——5652”(%5)

= (A =2) 2557 () — w2157 (1)

Hence, after inserting (22a) there results 3\

PO 2P (1,€) = (A —2) 2% (1, €) \
_K<1+§_:> Z(aﬂ+1)( )

( EHIT (). (22b)

- +1F ,lg —3 /2
Finally, the crossed derivative can be obtalneg from-gither of the results above, leading

directly to \
200 (1.6 =25 | v 1+%) ZW% 1) 26 (o s)]

\
LAY S T (, <A )Hw B2 ()| . (220)
KAHIT (o — 3/2 }7 8

2. Values at £ =0 or /L%

From the definitions 4,§Ub§)20d), and (I.11), we obtain the following limiting expressions,

,Znﬁ( = ZPV () buo (23a)
o,5) i/l (A —1) (o

/\ w s 0) =5 (0 —3%) HED () (23b)

) yr(g’%ﬁ) (1,0) = Z\/_FO\ 2) (=1

/ - KkB—1/2T (0 —_ 3/2) n,K (:U) (23C>

- 4 QB) (0,€) = ( n0 — %6|n|,1) Z(@873) (¢) (23d)

-\b 0e 2157 (0,€) = ZLP 7V (€) buo (23e)
/Tl (A —1

b (5 (10) = Y O D ). (231)

~

3.\ Series representations

In Paper I, we have obtained representations for the functions Z{%? (u,€) and V(%) (1, €)
in terms of series involving the xKPGF H{™? (1) and derlvatlves of the kPDF Z(®) (¢).

19
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Publishifificse representations are given by Eqs. (1.28a-28b). Subsequent applications have shown
that these expansions start to converge slower when & — —%\/E (&: imaginary part of
¢) and may diverge when & > —%\/E Consequently, new function representations are
necessary, in order to enlarge the convergence region of the expansions.

In this section, some new expansions for the 2VKPFs are derivel. Some of the obtained
expansions are applicable to particular regions of the functions’ haimand some are valid

i

that at least one series expansion is involved, which con ast one special function.

throughout the domain. However, all representations that he&i found have in common
at

This is due to the fact that we were not able to factor th linctions in two simpler terms,
Z(u, &) # Fy () F5 (§), for instance. Indeed, we eheve?hat the functions Z (u,§) and

A

y (u, €) are in fact altogether non-separable.
The transcendental relation between the v %@ ~w,) and & (N w”) ultimately

stems from the physical nature of the KV Acgording to the interpretation of Tsallis’s

entropic principle, one-particle dlStrl\ nctlons such as (1) describe the statistical
noncelli

distribution of particles in a (almo sional system, but with a strong correlation
between the different degrees of eed(hvb‘fhis strong correlation prevents the kKVDF (1)
from being separable in the dj eg\ ocity components. In contrast, a physical system in
thermal equilibrium has an entr(%en by the Boltzmann-Gibbs statistical mechanics and
is characterized by sho, ,—@gs Coulombian collisions and absence of correlation between
the degrees of freeddm. a/consequence, the equilibrium Maxwell-Boltzmann VDF is
completely sepazrﬁle. éheyéfore, the non-separable nature of the functions Z (i, &) and
Y (1, €) is a mat eh&\ml consequence of the strong correlation between different degrees of

freedom of th

ticles that compose physical systems statistically described by the kVDF.
It is thfmentioning here that the nonadditive statistical mechanics also admits that
partidles with t/ correlations may be statistically described by separable one-particle dis-
tribugti

F 47 §f which the kappa-Maxwellian distribution®?° is a particular case. For such distri-

functions.* This is the case of the product-bi-kappa (or product-bi-Lorentzian)

‘Dﬁi(as, the functions Z (u, &) and Y (u, £) result completely separable and the mathematical

treatment is much simpler. Future works will also consider this possibility.

The first representation to be derived is a power series in £, valid when [¢] < y/k. Starting

from (20a), we introduce the form (I.15) for the kPDF and obtain

20
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Publishing, @) (4,6) = - HZ;EI(F)\(_O'ZQZ)%/€2>

x/“’dx( A (u_l/g; ﬂ)

L+a2/e) 2200 % 7 Tva?e

2im/2T (A — 1) /00 J rJ? (vr)
T # .
/1,34-1/21_‘ (O’ _ 3/2) 0 1 + 52/14& + 132/&))\_1
The second integral can be evaluated. If we initially assu t £ Isreal and define a

new integration variable by x = \/it, where ¢ = 1+ £2?/k, thén wean identify the resulting

integral with (4) and write )

/oo v J? (vz) do A1 & &)
o (1+&/k+a2/p) 1+§y:‘5)\_2 '

Identity (24) can be analytically continued t@e (;Jinp ex plane of ¢ as long as it stays

(24)

within the principal branch of H(? (z) (i.e., of the Gafufiction). Since the origin is a branch
point of the G-function and the infinity is%s‘ ential singularity,®” the complex-valued H-

function in (24) has branch cuts along ﬂ\c-l-m,q‘—ioo, —iy/k] and [iy/k,i00). Hence, we can

employ result (24) when |{| < v/k.
On the other hand, if the Gaugs fun fon 1n the above expression for Z is substituted by
V\xso converge if || < y/k, and we are then allowed to

its power series (I1.B4), the s i(\
integrate term by term and obtail

A= 12), <_f_2>kH(a,/s+k+1/z) ()

n,K

Q\ L DO HED [+ €]
£

(25a)

KkB+1/2T (0- _ 3/2) (1 + §2//i)>\_2
Foyfhie nexg séfies expansions, we will consider the H-function in (20e). Since 1+ s%/k >
-\k

1, we Gan uséthe multiplication theorem (B2) to write

K

(D) (145) A, e
In this result, the function ﬁflakﬁ,z

by (11).

() is the associated plasma gyroradius function, defined

21
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Publishing: n this way, the Z-function can be written in the generic (and compact) form
2D ( Z k,%fﬁ ) 25 (©), (25¢)

where, accordingly, the function Z,Efff ) (&) is the associated plasmy’ispersz’on function, de-

fined by (16)

Therefore, we can evaluate the function Z 0‘5) (1, &) using r‘%,%) the representa-
tions (12a) or (13), and for Zk?;’ﬁ ) (€) the representations (18asl8¢

For the Z—function, we can also employ representation, 1%\761‘, in this case, as was
then mentioned, we also need to include the analytical‘eantinuation when & = I¢ < 0. The
necessary expressions can be gleaned from the discussi cona;zrning the related continuation
of Eq. (1.13). In this process, one would have@in%l e the continuation of the Gauss
function. Alternatively, one can start anew fromg Eqg.7(20b) and introduce the adequate
continuation for the s- mtegratlon In thl one avould end up with an additional term,

which is proportional to Eq. ( Prog%sd-\m.g\n this way, the last series expansion for the

Z-function is finally

\
aﬁ) Z k'Hnakaz Q é&
2[%&)\1 gz <1+§2> (A—2)
hﬁ'ﬁ‘l/QF 3/2
(aﬂ 52
/ M l <1+ﬁ>], (25d)

4
®)

where we hav ust orthand notation Z (184 &) = Z,ﬁf“f ) (&;Eq.18d). We have also
iside function © () = +1 (if z > 0) or © () =0 (if x < 0).

employed the
The ségiesdexpansions for the function y,(;’,f) (i, &) follow the same methodologies and

their (erivati
2t )

o0 5 P Jpy (V) S (vz) 1 wp
(1+&/k+a2/r) P 2X1-2

~(A—4)
X (1 + 52) H B0y [u (1 + 52)] . (26)
K ’ K

which is derived similarly to Eq. (24) and to which apply the same considerations about

will not be repeated. The only intermediate result shown here is the

o

the analiticity domain.
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[(A—=3/2) 6 & (N —3/2),
mﬁF(U—3/2)kz:%) (3/2)y,

€2\
x HLTERR () (—)

y?&?n’ﬁ) (H’? 6) = -

valid for [¢] < v/k,
1 (s
(:u g) Z k;|,H7(z,k,B/-c v

valid for any &, and C
Ve o) =3+ Hffki (1) Z{1gg) (€) o

k:0

52
\ ~ X H,({f‘,;ﬁ*l)’ [u (1 + )] , (27¢)

also valid for any &. \\

The series expansions an ther properties derived in this section and in Paper I
are sufficient to enabl )c-(h)utational implementation of the functions qu?jf) (u, &) and
i (1,€), and hegle for §

The numericz?/evalu 101/ of the series can be substantially accelerated if one also employs

valuation of the dielectric tensor (2a) for a bi-kappa plasma.

the recurrenc

—Qﬁltio (14) and (19). However, we must point out that so far no analysis

of the stabilit these relations for forward recursion has been made. It is possible that

for a give sof of ?a ameters either or both relations are only stable for backward recursion,

and s dlffergn trategies must be implemented.
ﬁ
4%%1%01%0 exrpanstons

NI

Here we will derive expressions valid for either |£] > 1 or p > 1. Starting with &,
the expansion we want to derive is not the ordinary series representation for [£| > +/k.
Although such a series can be easily obtained from the expressions already shown, they

would be unnecessarily complicated, as it was hinted by the derivation of the representation
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AllP

Publishifigl5) for the xPDF. Instead, we want to derive an expansion valid for |£| > /&, convenient
for a fluid approximation of the dielectric tensor.
Accordingly, in the s-integrals of Egs. (20b) and (20d) we will approximate
Lo 1<1+ N 2+...>:_1 s
s =& § § & s ?
i.e., we ignore the high-energy particles at the tail of the VDF Metic effect of the

pole at s = £. Notice also that we have not written the upper limitfof the sum above, since
such expansion is only meaningful for a finite number o tjm Inserting this expansion
thers

into the s-integrals, all the terms with ¢ odd vanish and can be easily evaluated.

However, these integrals only exist if the additional ¢ ndltlog >k+32(k=0,1,2,...)1s

satisfied. ( -
Identifying the remaining z-integrals with al @), we obtain
Zr(z?féﬁ) (M? 6) = -

(28a)

k
K 3/2)1
k+ >£2’“H( ST () (28b)

Now, the large gyr, Qpansmn i > 1) is obtained if we start from (20e, 20f) and

he resulting integrals can be identified with the definition of

the kPDF in (I.41 we obtain
Z (1/2+n), (Y2 —n),

) Z(aﬁ)
Q\n (1, €) ~ ka 0 B (2"

m X Z{PHR) (¢) (28¢)
a (1/2+n),, (Y2 —n)y (kK +1/2)
_‘&3 yéﬁﬁ) (1, €) =~ \/m Z X (2,u)k
&3 x Z\Brk=%2) (¢ | (28d)

A closed-form expression for ZT(SQB) (5 8)

Since Z{%) (u,€) and V(%) (u,€) are non-separable functions of two variables, it is a

relevant question whether they can be represented by some special function discussed in the
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Publishilitg rature. Here, we will show for Z{%% (1, €) that indeed it can be represented in closed,

compact form by the relatively newly-defined Meijer G-function of two variables, introduced
in section B 2.

Returning to the definition (20b) and defining the new integration variables x = \/ku
and s = /kv, the double integral can be written as /

\/_/ du / dvv™ 1/2J2 (\/2/wu>
Introducing now the function representations (B4a), (L.B1 \

and then expressing

the last in terms of the double Mellin-Barnes 1ntegral ‘E'-e.btams
/{3/2672 1
L=— | ] dsatrn-1z
2 4yl (A= 1) (2mi)? Jr. Jr. ( L

n, —

{ duu~ SG13 l2/<;,uu

where we have also interchanged the ord
The u- and v-integrations can now b&Qrmed by means of the Mellin transform (B3),

resulting
C VREs)T (R \\
_[2 = 4\/_7_(_1_‘—()\_1) 62 I dsdtT’ ()\ 1 S t)
" r +1-—

WO (; + t> r (; - t> ()] (-i) N (29)

ith (B5), in which case we obtain finally

This result can be

Z(a B)

o121 [(2/@0 "= XN:il—n1+n: 1] (30)

(0 —3/2) ¢ 1,0:2,1:1,2 & /k —:1:1/21

The final expr 10n for the Z-function in (30) was obtained after employing also the trans-

lation pro r{
T Max e an limit of (30) can be obtained. Expressing again the G®®-function in (30)
e definition (B5), and applying the limit kK — oo on the resulting expression,
O‘Ingvaluate the limit using Stirling’s formula.?® As a result, the s- and t-integrations
%ﬁo&out, and the remaining integrals can be identified with G-functions from the definition
(I'B10), which in turn can be identified with representations (I.B15d) and (B4c). After
employing properties (I.B11a), one finally obtains

i 2659 () =1, G0 €0 (€)= 6.0 20,

K—00
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Publishimgexpected.

Formula (30) is the more compact representation of the function Z{%% (u,€) that we
have obtained. However, despite of being a closed-form for Z, this representation is not yet
very useful, since there is no known computational implementation that evaluates the G-
function, contrary to the one-variable G, which is implemented bg 1e Computer Algebra
Software and also by the python library mpmath.?® Neverth essb?eﬁd it important to
include the derivation of formula (30) in order to stress the n&i of further development
on the numerical evaluation of these special functions @nd also present to the plasma
physics community the techniques involved with Meijér's. G- m@)—functions and Mellin-
Barnes integrals in general, since we believe that_asmore aymplex aspects of the physics
of plasmas are considered, such as more general BFS 1d dusty plasmas, for instance, the

techniques employed in this work and in Paper ve tlie potential to provide mathematical

answers to the challenges that will appea\
\\\
\ h
IV. CONCLUSIONS \\

In this paper we hav Q\ted two major developments for the study of waves with

arbitrary frequzr? dﬂire}tl n of propagation in anisotropic superthermal plasmas. First,
th%] ric tensor of a bi-kappa plasma. This tensor will be employed
nce

in future st iebco ing wave propagation and amplification/damping in anisotropic
superthe@ as.

Tiizéni)r omponents were written in terms of the kappa plasma special functions,

St & numerically evaluated for practical applications. To this end, we have derived

we have derive

which
in\the p§sent paper (and in Paper I) several mathematical properties and representations

Wt&ese functions. With the development presented here and in Paper I, we believe that
all_ the necessary framework for a systematic study of electromagnetic/electrostatic waves
propagating at arbitrary angles in a bi-kappa plasma has been obtained. In future studies
we will apply this formalism to specific problems concerning temperature-driven-instabilities

in kappa plasmas.
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6. /
Appendix A: Derivation of the susceptibility tensor

The derivation of Xza for a bi-kappa plasma (or for @or that matter) is sim-
comm

plified if one observes that all tensor components ha factors. First, inserting the
function (1) into the tensor (2b), all components centa the)ierlvatlves Lf,and Lf,. Using
these derivatives, one can proceed with the ey, 1&@:{3{ the integrals. Using a cylindrical
coordinate system and defining the nondimensional fn'tegration variables t = v, Jw, ¢ and
u = v|/w)s, one obtains, after some straig% algebra, the unified form

S -~

(9) _ o 05 (s @) 7
Xis Z_: S\

w2 ﬂ-l/2’%5 n——oo
t2 —os—1
x/ dt/ du 1) 1+—+ ,
\\ ig,m Ky

where
Iz(]s,)n (505"> Jz(]s,Zw zz n - (503 Asgns) KZ(JS”’

() _ ”jw
/ CEI‘,TL é‘ns

- V. 1 :\/5 ntJ( £) J! (vst)
b o s U_fns
224 72 () — 3Ty (vst) Jnar (vs)

,ﬁ
() — 92ms -
b Jyy ’ U — gns

2
NI~ Ko, = /30 1t )

Wis s U — gns
wys t*udy, (vst) J) (vst)

K = 2

yan wJ_s u— fns
2
s ||S tuJ; (Vst)
Kiz n gns _6 )
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Publishiwgh g (ks, o) = K732T (04) /T (05 — 3/2), vs = k1w /S, and where the anisotropy param-
eter A, =1 —w?,/ wﬁs appears for the first time. These results were obtained using the

identity (9) and the recurrence relations of the Bessel functions.

The remaining integrals in the Js and Ks can now be identified,with the definitions of
the two-variables kappa plasma functions ng‘,f) (1, &) and yg:f) (/ and their derivatives,
given by Egs. (20) and (22). In this way, one arrives at the fi 1%}%% shown in Eqgs.
(3a-3f).

The Maxwellian limit of the partial susceptibility tens Doht@ined by the process ks, —

oo. Upon applying this limit, one must replace wj MQLTL ) = /2T (1)/m and the kappa
en 'o§s (2

plasma functions are replaced by their limiting re(res' 1). In this way, one arrives

; \\L_

w23 o0 TL2 1 ,
=2 S PG (6) + A ()] (Ala)

n——oo K'S 2
2 00
W =ih —&\n%;(b 60,7 (60) + 54,7 (6] (Alb)

X;(zs:z') - - _P;M\Z ) (505 - Asgns)

W2 Vs 50 KLU s

(Alc)
) — 2:“8% (PJS)]

Y I
\ x [fosZ (&ns) + %ASZ’ (sns)] (A1d)
(s

S
s UT)s KLUTLs o
Q&//yz) = ZL:)_Z;);_L l;;;j ;OO (§OS - Asgns)

x I (11s) Z' (€ns) (Ale)
o wzs vg s
b Xgi) - - w_pzng” Z (503 - Asgns)
Tls n——o0

\ X Ean (112) 7' (Ens) (A1f)

These results agree with expressions that can be found in the literature. See, e.g., Eq. (20)

of Ref. 22.
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Publishi.ﬁg)pendix B: The one- and two-variables Meijer G-functions

1. The G-function

The definition and some properties of the G-function are given‘%/'n Sec. B.2 of Paper L.

All identities shown there and in the following can be found in RefS§.

w 39, except when
explicitly mentioned. Q
a. Derivatives Q"\
Q

We have 5
dk m,n (ap) ) O
wGp’q [Z kj, (bq) . (Bla)

((I ) —k M
b)) = i |*
We will now derive a formula that is W found in the literature. If n > 1, we

can employ the definition of the G—fun&%ﬁ.t@rms of a Mellin-Barnes integral, given by
[.B10), and evaluate, for £ = 0,1, 2,5
1510 v

dk

@ {Zk_alGZj'(’]n [Z \\

[ ol — 5)

1
_ 1 —atsgs  (Blb
27TZ'/LH;1 b +s)1‘[§.’:n+11“(aj—s) F'(l—a;+s) z s, ( )

=m+ (1 J
%/m ['(y+1—m). Consequently, we obtain the differentiation

since D™z7 = 1}//
formula \

T(l—=aj+s) T(Q—a +k+s)

m,n ai, y Qp —aq N ay k,...,ap‘|
z oz = UG | n>1 Blec
2 |y e Ty e
_— V.
b M)ication theorems
S‘&o> /2. and n > 0,
\ <
m,n (Clp)‘| a1—1
A AT = w
pi [
- (1_1/w)k m,n al_k7a2a-'-7ap
X I;) o G |2 (b,) (B2)
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Publishing Mellin transform

The Mellin transform of the G-function is

e .

d. Function representations )
—~—
Q

Lo UQC\HQ} o
L (Vz) K, (1\/5) _ o Wo, 15_ ) W] (B4b)
(2y/7) | e e

2. The two-variables ‘% ction

The logical extensi gbﬁeijer’s G-function for two variables was first proposed by
Agarwal®® in 1965. ub/se nt publications proposed slightly different definitions for the
same extension.*#* his/vork, we will adopt the definition by Hai and Yakubovich (Eq.

13.1 of Ref. 4 ),)\

a(ll) . a(i) : a(?;) . B
((bZ}); : Ebg?; : ((bg%))] = W/ (s +0)Wa (5) Wy (1) 7"y dsdl,
(B5)
S Wy (1) = [ T <b§k) + T) 2 T (1 —af" - 7“)
- Pr

1 D <a§k) + 7“) H?’;mkﬂ r (1 — b§-k) - r) .

The Reader is referred to Sec. II.13 of Ref. 43 for explanation on the notation and a
discussion on the general conditions on the validity of (B5). Whenever convenient and

unambiguous, we will refer to the two-variables Meijer function as the G®-function.
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PublishingWe list some elementary properties of the G®®-function, some of which are employed in
this work. The symmetry property

(o) + () : <a§?>]
() : () : (o)

Gml ;112,21 3,13 x
P1,91:p2,92:P3,93 y

o et 1= (0) 1= (’*}\1— b3
= G [y . ((ag;g . %ji) : 1_Ea‘§§% . (B6)
and the translation property _)\
e e ||l ) (49) “&R
PR, y (bql):(b@):(b%) 5
= e [ gy ) ves () 1)
v | (b adfB: (b)) +a: (b)) + 58

A product of two G-functions can be W&Qﬂ single G®-function as
) () N T [(a2) (o)
@) oty | ¥ G |Y - (B
- . (bq2 )

(bg)> P3,43 (bg’))
We will also use the functh\;:es tation

GO,O:mg,nzzmg,,ng T
0,0:p2,92:p3,93 y

/II

in Sec. I1.13 of g /

~
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