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I. INTRODUCTION

During the last years, a substantial portion of the space physics community has been

interested in plasma environments which are not in a state of thermal equilibrium, but are

instead in a turbulent state. Several of such environments can be found in a nonthermal

(quasi-) stationary state. When the velocity distribution functions (VDFs) of the particles

that comprise these turbulent plasmas are measured, they often display a high-energy tail

that is better fitted by a power-law function of the particle’s velocity, instead of the Gaussian

profile found in plasmas at the thermodynamic equilibrium.

Among all possible velocity distributions with a power-law tail, the actual VDF that

has been marked with a widespread application in space plasmas is the Lorentzian, or

kappa, distribution (or a combination of kappas), and the number of published papers that

employ the kappa velocity distribution function (κVDF) has been growing by a measurable

exponential rate.1 However, the interest on the kappa distribution is justified not only as a

better curve-fitting function. A kappa function is also the velocity probability distribution

that results from the maximization of the nonadditive Tsallis entropy postulate. Hence, the

κVDF is also the distribution of velocities predicted by Tsallis’s entropic principle for the

nonthermal stationary state of a statistical system characterized by low collision rates, long-

range interactions and strong correlations among the particles. For detailed discussions of the

importance of kappa distributions for space plasmas and the connection with nonequilibrium

statistical mechanics, the Reader is referred to Refs. 1–4. See also the Introductions of Refs.

5 and 6 for complementary discussions and references to other formulations for the κVDF.

One of the important problems related to space plasmas in which the kappa distribu-

tion has been increasingly applied concerns the excitation of temperature-anisotropy-driven

instabilities that propagate in electromagnetic or electrostatic modes in a warm plasma.

These instabilities (among others) play an important role on the nonlinear evolution and

the steady-state of the measured VDFs. They can also lead to particle energization and

acceleration and are probably related to some of the fundamental issues in space and astro-

physical systems, such as the problem of the heating of the solar corona. Rather than giving

here a long list of references, we suggest that the Reader consults the cited literature in our

previous works.5,6

In the present work, we continue the development of a mathematical formulation destined
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to the study of electromagnetic/electrostatic waves (and their instabilities) propagating at

arbitrary angles in a warm magnetized plasma, in which the particles are described by

asymmetric superthermal, or bi-kappa, VDFs. The formulation presented here employs the

linear kinetic theory of plasmas and is an extension and generalization of the treatment

developed in Refs. 5 and 6.

The structure of this paper is as follows. In Section II we derive the dielectric tensor

for a bi-kappa plasma. The tensor components are written in terms of the kappa plasma

special functions introduced and studied in our previous works. Section III contains several

new developments and properties of the kappa plasma functions, destined to provide the

necessary framework for the evaluation of the functions and the dielectric tensor. After the

conclusions in Section IV, we have also included Appendices A, where details about the

derivation of the dielectric tensor are given, and B, where additional properties of relevant

special functions are derived.

II. THE DIELECTRIC TENSOR

The dielectric tensor for a bi-kappa superthermal plasma will be obtained with the use

of the velocity distribution function given by

f (α)
s

(
v∥, v⊥

)
= A(σs)

s

1 +
v2

∥

κsw2
∥s

+ v2
⊥

κsw2
⊥s

−σs

, (1)

which is valid for σs > 3/2 and where σs = κs + αs and

A(σs)
s = 1

π3/2w∥sw
2
⊥s

κ−3/2
s Γ (σs)

Γ (σs − 3/2)

is the normalization constant. The quantities w∥s and w⊥s are respectively proportional to

the parallel and perpendicular thermal speeds, but they can be a function of the κ parameter

as well. Finally, Γ (z) is the gamma function.

The VDF (1) is the anisotropic generalization of the isotropic
(
w∥ = w⊥ = w

)
distribu-

tion adopted by Refs. 5 and 6. In these works, it was shown how adequate choices of the

parameters α and w reproduce and formally unify seemingly different (kappa) velocity dis-

tribution functions employed in the literature. Now, in the anisotropic case, if we set α = 1

and

w2
∥,⊥ = θ2

∥,⊥ =
(

1 − 3
2κ

)(2T∥,⊥

m

)
,
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the function (1) reduces to the “bi-Lorentzian” distribution introduced by Summers &

Thorne7 (see Table I. See also Eqs. 12a,b of Ref. 4). This distribution will be named

here the ST91 model and in all expressions obtained below one can simply drop the param-

eter α, should the ST91 model be chosen from the start.

However, the parameter α can also be useful when the function f (α)
s

(
v∥, v⊥

)
describes

(isotropic) one-particle distribution functions with an arbitrary number of degrees of free-

dom. If (1) describes the probability distribution function of a particle with f degrees of

freedom, one can set κ = κ0, where κ0 is the invariant kappa parameter introduced by Li-

vadiotis & McComas1, α = 1 + f/2, w2 = θ2 = 2T/m, v2 = ∑f
i=1 v

2
i , and the normalization

constant is A(f) = Γ (κ0 + 1 + f/2) (πκ0θ
2)−f/2

/Γ (κ0 + 1), thereby obtaining Eq. (22c) of

Ref. 1.

Particular forms of the bi-kappa VDF (1) or its bi-Maxwellian limiting case (when

κs → ∞) have been frequently employed in the literature in order to study temperature-

anisotropy-driven instabilities that amplify parallel- or oblique-propagating eigenmodes in

a magnetized plasma. Of particular importance for the present work are the effects of fi-

nite particle gyroradius (or Larmor radius) on the dispersion and amplification/damping of

oblique-propagating modes. For instance, Yoon et al.8 discovered the oblique Firehose in-

stability, which is a non-propagating instability excited in a high-beta bi-Maxwellian plasma

when the ions display temperature anisotropy (with T∥i > T⊥i) and which is continuously

connected to the left-handed branch of the Alfvén waves when the ion gyroradius tends to

zero. The same instability was later rediscovered by Hellinger & Matsumoto.9

Other studies subsequently considered the excitation of low-frequency instabilities at

arbitrary angles in bi-Maxwellian plasmas for other situations, such as low-beta plasmas,10

or with additional free energy sources such as electronic temperature anisotropy,11 field-

aligned currents,12 loss-cones,13 and density inhomogeneities14 (see also reviews by Refs.

15–17).

In comparison, similar studies employing anisotropic superthermal distributions are rare.

Summers et al.18 obtained the first expressions for the general dielectric tensor of a bi-

kappa (bi-Lorentzian) plasma. However, their final expressions are not written in a closed

form, i.e., for each component of the tensor, there remains a final integral along v⊥ (the

perpendicular component of the particle’s velocity) that should be numerically evaluated.

A similar approach was later adopted by Basu,19 Liu et al.20 and Astfalk et al.21
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In order to circumvent the mathematical difficulties involved in the integration along v⊥,

Cattaert et al.22 derived the dielectric tensor and considered some simple cases of oblique

waves propagating in a kappa-Maxwellian plasma. More recently, Sugiyama et al.23 em-

ployed the same VDF in a first systematic study of the propagation of electromagnetic

ion-cyclotron waves in the Earth’s magnetosphere.

Closed-form expressions for the components of the dielectric tensor of a superthermal

plasma were for the first time obtained by Gaelzer & Ziebell,5,6 still for the particular case

of isotropic
(
w∥s = w⊥s

)
distributions. Here, we will obtain the dielectric tensor for the

bi-kappa VDF given by (1).

The general form of the dielectric tensor can be written as6

εij (k, ω) =δij +
∑

s

χ
(s)
ij (k, ω) , (2a)

χ
(s)
ij (k, ω) =

ω2
ps

ω2

[ ∞∑
n→−∞

∫
d3v

v⊥ (Ξns)i (Ξ∗
ns)j Lfs

ω − nΩs − k∥v∥

+δizδjz

∫
d3v

v∥

v⊥
Lfs

]
(2b)

where χ(s)
ij is the susceptibility tensor associated with particle species s, the set {i, j} =

{x, y, z} identifies the Cartesian (in the E3 space) components of the tensors, with {x̂, ŷ, ẑ}

being the basis in E3, Ξns = nϱ−1
s Jn (ϱs) x̂ − iJ ′

n (ϱs) ŷ +
(
v∥/v⊥

)
Jn (ϱs) ẑ, where Jn (z)

is the Bessel function of the first kind,24,25 ϱs = k⊥v⊥/Ωs, Lfs = v⊥∂fs/∂v∥ − v∥∂fs/∂v⊥,

Lfs = ω∂fs/∂v⊥ + k∥Lfs. Also, ω2
ps = 4πnsq

2
s/ms and Ωs = qsB0/msc are the plasma and

cyclotron frequencies of species s, respectively, ω and k = k⊥x̂+k∥ẑ are the wave frequency

and wavenumber, B0 = B0ẑ (B0 > 0) is the ambient magnetic induction field and the

symbols ∥ (⊥) denote the usual parallel (perpendicular) components of vectors/tensors,

respective to B0.

Inserting the function (1) into (2b) we obtain the desired susceptibility tensor for a bi-

kappa plasma. More details on the derivation of the components of χij are given in Appendix

A. Here we will presently show the final, closed-form expressions, given by

χ(s)
xx =

ω2
ps

ω2

∞∑
n→−∞

n2

µs

[
ξ0sZ(αs,2)

n,κs
(µs, ξns)

+1
2
As∂ξnsZ(αs,1)

n,κs
(µs, ξns)

]
(3a)

χ(s)
xy = i

ω2
ps

ω2

∞∑
n→−∞

n
[
ξ0s∂µsZ(αs,2)

n,κs
(µs, ξns)
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+1
2
As∂

2
µs,ξns

Z(αs,1)
n,κs

(µs, ξns)
]

(3b)

χ(s)
xz = −

ω2
ps

ω2
w∥s

w⊥s

∞∑
n→−∞

nΩs

k⊥w⊥s

(ξ0s − Asξns)

× ∂ξnsZ(αs,1)
n,κs

(µs, ξns) (3c)

χ(s)
yy =

ω2
ps

ω2

∞∑
n→−∞

[
ξ0sW(αs,2)

n,κs
(µs, ξns)

+1
2
As∂ξnsW(αs,1)

n,κs
(µs, ξns)

]
(3d)

χ(s)
yz = i

ω2
ps

ω2
w∥s

w⊥s

k⊥w⊥s

2Ωs

∞∑
n→−∞

(ξ0s − Asξns)

× ∂2
µs,ξns

Z(αs,1)
n,κs

(µs, ξns) (3e)

χ(s)
zz = −

ω2
ps

ω2

w2
∥s

w2
⊥s

∞∑
n→−∞

(ξ0s − Asξns)

× ξns∂ξnsZ(αs,1)
n,κs

(µs, ξns) , (3f)

where

W (α,β)
n,κ (µ, ξ) = n2

µ
Z(α,β)

n,κ (µ, ξ) − 2µY(α,β)
n,κ (µ, ξ) .

Notice that the off-diagonal components of χij obey the symmetry relations χxy = −χyx,

χxz = χzx, and χyz = −χyz.

In (3a-f) we have defined the parameters µs = k2
⊥ρ

2
s, ρ2

s = w2
⊥s/2Ω2

s, and ξns =

(ω − nΩs) /k∥w∥s. The parameter ρs is the (kappa modified) gyroradius (or Larmor radius)

of particle s. Hence, µs is the normalized gyroradius, proportional to the ratio between ρs

and λ⊥, the perpendicular projection of the wavelength. The magnitude of µs quantifies

the finite Larmor radii effects on wave propagation. On the other hand, the parameter

ξns quantifies the linear wave-particle interactions in a finite-temperature plasma. Also in

(3a-f), the quantity

As = 1 − w⊥s

w∥s

is the anisotropy parameter, which quantifies the effects of the VDF’s departure from

an isotropic distribution, due to the temperature anisotropy. The symbol ∂n
z1,...,zn

=

∂n/ (∂z1 · · · ∂zn) is the n-th order partial derivative, relative to z1, . . . , zn.

Finally, the functions Z(α,β)
n,κ (µ, ξ) and Y (α,β)

n,κ (µ, ξ) are the so-called two-variables kappa

plasma functions. Their definitions were first given in Ref. 6 (hereafter called Paper I)

and are repeated in Eqs. (20a)-(20f). Some properties and representations of Z and Y
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were also obtained in Paper I and several new properties and representations will be derived

in Sec. III. The evaluation of the functions Z and Y is determined not only by their

arguments µ (normalized gyroradius) and ξ (wave-particle resonance), but also by a set of

parameters: n (harmonic number), κ (kappa index), and the pair (α, β). Parameter α is the

same real number adopted for the κVDF (1). This parameter can be ignored and removed

from the equations if the distribution model is fixed. On the other hand, the real parameter

β is crucial for the formalism. The value of β is related to the specific dielectric tensor

component, wave polarization and mathematical properties of the kappa plasma functions.

The isotropic limit of χ(s)
ij is obtained from (3a-f) by setting As = 0 (and w⊥s = w∥s = ws).

In this case the susceptibility tensor for each particle species reduces to the form that can

be easily gleaned from the Cartesian components of εij presented in Appendix C of Paper

I. On the other hand, the susceptibility tensor of a bi-Maxwellian plasma is also obtained

from (3a-f) by the process called the Maxwellian limit, i.e., the result of taking the limit

κs → ∞, for any species s. The Maxwellian limit of χ(s)
ij is given by Eqs. (A1a-f).

Equations (2-3) show the general form for the dielectric tensor of a bi-Kappa plasma.

These expressions, along with the representations of the kappa plasma functions derived in

Paper I and in Sec. III, contain sufficient information for a methodical study of the properties

of wave propagation and emission/absorption in an anisotropic, superthermal plasma. Fu-

ture works will implement an analysis of temperature-anisotropy-driven instabilities excited

in low-frequency parallel- and oblique-propagating electromagnetic eigenmodes.

III. NEW EXPRESSIONS FOR THE KAPPA PLASMA SPECIAL

FUNCTIONS

A. The superthermal plasma gyroradius function

The function H(α,β)
n,κ (z) quantifies the physical effects on wave propagation due to the

particles’s finite gyroradii when their probability distribution function is described by a

kappa VDF. For this reason, it was named by Paper I as the (kappa) plasma gyroradius

function (κPGF). The basic definition of this function was given in Eq. (I.20) (i.e., Eq. 20

of Paper I) and is repeated here,

H(α,β)
n,κ (z) = 2

∫ ∞

0
dx

xJ2
n (yx)

(1 + x2/κ)λ−1 ,
(
y2 = 2z

)
, (4)
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where λ = κ+ α + β.

The Maxwellian limit of this function is the well-know representation in terms of the

modified Bessel function,24

lim
κ→∞

H(α,β)
n,κ (z) = Hn (z) = e−zIn (z) . (5)

Sections III.B and A.2 of Paper I contain several mathematical properties of H(α,β)
n,κ (z)

and most of them will not be shown here, with a few important exceptions. One of the

exceptions is its general, closed-form representation in terms of the Meijer G-function, as

shown in Eq. (I.22). Namely,

H(α,β)
n,κ (z) = π−1/2κ

Γ (λ− 1)
G2,1

1,3

[
2κz

∣∣∣∣∣ 1/2

λ− 2, n,−n

]
(6a)

= π−1/2κ

Γ (λ− 1)
G1,2

3,1

[
1

2κz

∣∣∣∣∣3 − λ, 1 − n, 1 + n
1/2

]
. (6b)

Representation (6b) was obtained employing the symmetry property of the G-function given

by Eq. (I.11a).

The definition and some properties of the G-function can be found in Sec. B.2 of Paper I

and in the cited literature. Some additional properties, employed in the present paper, are

given in Appendix B.

Additional mathematical properties of the H-function, that were not included in Paper

I, will be presented here.

1. Derivatives

Equations (I.25a)-(I.25d) show recurrence relations for the H-function that involve its first

derivative and that in the Maxwellian limit reduce to the respective relations for Hn (z),

easily obtained from the properties of the modified Bessel function.

It is also possible to obtain closed-form representations for the derivatives of H(α,β)
n,κ (z)

in any order. Applying the operator Dk ≡ dk/dzk (k = 0, 1, 2, . . . ) on (6a) and employing

identity (B1a), we obtain

H(α,β)(k)
n,κ (z)
(−z)−k = π−1/2κ

Γ (λ− 1)
G3,1

2,4

[
2κz

∣∣∣∣∣ 1/2, 0
k, λ− 2, n,−n

]
, (7a)

where H(k) = dkH/dzk.
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Formula (7a) is valid for any z and k, but the value of H at the origin must be treated

separately. Applying the operator Dk on the definition (4), we can employ the power series

expansion of J2
n (yx) given by Eq. (10.8.3) of Ref. 24 in order to evaluate the integral in the

limit y → 0, thereby obtaining

H(α,β)(k)
n,κ (0)
(2k)!κ

=
(−κ

2

)k (λ− 2)−k

λ− 2

k∑
ℓ=0

(−)ℓ δ|n|,ℓ

(k + ℓ)! (k − ℓ)!
,

which is valid for λ > 2 + k. Here, δn,m is the Kronecker delta and (a)ℓ = Γ (a+ ℓ) /Γ (a) is

the Pochhammer symbol. One can easily verify that the case k = 0 reduces to Eq. (I.21).

As it happens with H(α,β)
n,κ (z), its derivative in any order has two different representations

in terms of more usual functions, depending on whether λ is integer or not. These cases will

now be addressed.

Case λ noninteger.

If λ ̸= 2, 3, . . . , then we can employ the representation of the G-function in terms of

generalized hypergeometric functions, given by Eq. (I.B14). Hence, we have

H(α,β)(k)
n,κ (z)
(−z)−k = π−1/2κ

Γ (λ− 1)

[
Γ (n+ 2 − λ) Γ (λ− 3/2)

Γ (λ− 1 + n)
(2 − λ)k (2κz)λ−2

× 2F 3

(
λ− 3/2, λ− 1

λ− 1 − n, λ− 1 + n, λ− 1 − k
; 2κz

)

+Γ (λ− 2 − n) Γ (n+ 1/2)
Γ (2n+ 1)

(−n)k (2κz)n
2F 3

(
n+ 1/2, n+ 1

n+ 3 − λ, 2n+ 1, n+ 1 − k
; 2κz

)]
, (7b)

where 2F 3

(
· · · ; z

)
is another hypergeometric series of class 1, discussed in Sec. B.1 of Paper

I. The case k = 0 reduces to Eq. (I.23).

Case λ integer. Now, writing λ = m + 2 (m = 0, 1, 2, . . . ) in (7a) and looking at the

representation (B4b), we notice that if we choose µ = n− k and ν = n+ k and employ the

differentiation formula (I.B13a), we can write

H(α,β)(k)
n,κ (z) = 2κ (−z)−k (−2κz)m

Γ (m+ 1)

× dm+k

dym+k

[
ykIn−k (√y)Kn+k (√y)

]∣∣∣∣∣
y=2κz

,

where Km (z) is the second modified Bessel function.24 Finally, employing Leibniz formula

for the derivative26 and the identities written just before Eq. (I.24), we obtain
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H(α,β)(k)
n,κ (z) = 2κzk

Γ (m+ 1)

(
κz

2

)(m+k)/2 m+k∑
s=0

(−)s

×
(
m+ k

s

)
Kn−m+s

(√
2κz

)
In−k+s

(√
2κz

)
. (7c)

As expected, for k = 0 this result reduces to (I.24).

2. Asymptotic expansion

The representation of the H-function given by (6b) is formally exact for any z and the

function could be formally expressed in terms of the 3F 0 (· · · ; z) hypergeometric series, after

using Eq. (I.B14). However, as explained in Sec. B.1 of Paper I, the 3F 0 belongs to class

3, whose series are everywhere divergent, except at z = 0. Hence, the representation of

H(α,β)
n,κ (z) in terms of 3F 0 only makes sense when one is looking for an asymptotic expansion

of H, which provides a finite number of correct digits when z ≫ 1 if only a finite numbers

of terms in the series expansion is kept.

With this caveat in mind, using Eq. (I.B14) in (6b), we obtain

H(α,β)
n,κ (z) = 1√

π

κΓ (λ− 3/2)
Γ (λ− 1)

√
2κz

× 3F 0

(
λ− 3/2, 1/2 + n, 1/2 − n

−
; 1
2κz

)
,

which, as explained, is only valid on the limit z → ∞. Inserting the series (I.B1), we obtain

the asymptotic expansion

H(α,β)
n,κ (z) ≃ 1√

π

κΓ (λ− 3/2)
Γ (λ− 1)

√
2κz

×
∑
k=0

(λ− 3/2)k (1/2 + n)k (1/2 − n)k

k! (2κz)k . (8)

Notice that the upper limit of the sum is absent. This upper limit must be computationally

determined, taking into account the desired number of correct digits in the evaluation of

H(α,β)
n,κ (z).

The Maxwellian limit of (8) renders

Hn (z) ≃ 1√
2πz

∑
k=0

(−)k Γ (n+ k + 1/2)
Γ (n− k + 1/2) k! (2z)k ,

which is exactly the asymptotic expansion of Hn (z) given by Eq. (8.451.5) of Ref. 27.
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3. Sum rule

Sum rules are useful for the numerical evaluation of special functions. If we sum (4) over

all harmonic numbers and use the identity24

∞∑
n→−∞

J2
n (z) = 1, (9)

the remaining integral can be evaluated by the definition of the Beta function,28 resulting
∞∑

n→−∞
H(α,β)

n,κ (z) = κ

λ− 2
. (10)

Several other sum rules for H can be found in the same fashion.

4. The associated gyroradius function

Among the representations for the two-variable functions Z(α,β)
n,κ (µ, ξ) and Y(α,β)

n,κ (µ, ξ),

derived in the section III C 3, the following function appears,

H̃(α,β)
n,k,κ (µ) = π−1/2κ

Γ (λ− 1)
G2,1

1,3

[
2κµ

∣∣∣∣∣ 1/2 − k

λ− 2, n,−n

]
, (11)

which is clearly related to H(α,β)
n,κ (z), differing by the parameter k. For this reason, it is

christened here as the associated plasma gyroradius function.

Some properties of the H̃-function are now presented. A trivial property is H̃(α,β)
n,0,κ (z) =

H(α,β)
n,κ (z).

Relation with H(α,β)
n,κ (z). The associated PGF is related to the H-function and its deriva-

tives. First, due to the differentiation formula (B1c), it is clear that we can write

H̃(α,β)
n,k,κ (µ) = µ1/2 d

k

dµk

[
µk−1/2H(α,β)

n,κ (µ)
]
.

Then, using Leibniz’s formula and the formula for Dmzγ just above (B1c), we obtain

H̃(α,β)
n,k,κ (µ) = Γ

(
k + 1

2

) k∑
ℓ=0

(
k

ℓ

)
µℓH(α,β)(ℓ)

n,κ (µ)
Γ (ℓ+ 1/2)

. (12a)

The reciprocate relation is obtained starting from (7a), which is written in terms of the

Mellin-Barnes integral with the help of (I.B10). Then, we have

H(α,β)(k)
n,κ (µ) = κ (−µ)−k

2π3/2iΓ (λ− 1)
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×
∫

L

Γ (λ− 2 − s) Γ (n− s) Γ (1/2 + s)
Γ (n+ 1 + s) (2κµ)−s (−s)k ds.

On the other hand, from (11) and (I.B10) again, we have

H̃(α,β)
n,k,κ (µ) =

(
2π3/2i

)−1
κ

Γ (λ− 1)

×
∫

L

Γ (λ− 2 − s) Γ (n− s) Γ (1/2 + s)
Γ (1 + n+ s) (2κµ)−s

(1
2

+ s
)

k
ds.

Then, if we employ the identity

(a+ b)n =
n∑

ℓ=0
(−)ℓ

(
n

ℓ

)
(a+ ℓ)n−ℓ (−b)ℓ ,

we can finally write the reciprocate relation

H(α,β)(k)
n,κ (µ)
µ−k

=
k∑

ℓ=0

(
k

ℓ

)(1
2

− k
)

k−ℓ
H̃(α,β)

n,ℓ,κ (µ) . (12b)

Representations. The computation of H̃(α,β)
n,k,κ (µ) can be carried out as follows. For non-

integer λ, it is more efficient to employ identity (I.B14) and evaluate

H̃(α,β)
n,k,κ (z) = π−1/2κ

Γ (λ− 1)

[
Γ (n+ 2 − λ)
Γ (λ− 1 + n)

(2κz)λ−2 hk (z)

+Γ (λ− 2 − n)
Γ (2n+ 1)

(2κz)n gk (z)
]
, (13)

where

hk (z)
Γ (λ− 3/2 + k)

= 1F 2

(
λ− 3/2 + k

λ− 1 − n, λ− 1 + n
; 2κz

)
gk (z)

Γ (n+ 1/2 + k)
= 1F 2

(
n+ 1/2 + k

n+ 3 − λ, 2n+ 1
; 2κz

)
.

On the other hand, for integer λ the only representation found for H̃ similar to (7c)

contains a double sum. Consequently, it is equivalent to simply employ Eqs. (12a) and (7c).

Recurrence relation. The numerical computation of H̃(α,β)
n,k,κ (z) can be carried out using

either Eq. (13) or Eqs. (12a) and (7c) combined. However, since the associate function

appears in series involving the parameter k, if a recurrence relation for H̃(α,β)
n,k,κ (z) ≡ H̃ [k] on

this parameter could be found, it could substantially reduce the computational time required

for the evaluation of the series.
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Such recurrence relation can be found by first considering the particular case of noninteger

λ, given by Eq. (13). We observe that the auxiliary functions hk (z) and gk (z) in (13) and,

consequently, the function H̃ [k] itself, all obey the same four-term recurrence relation, which

can be derived from the corresponding relation for the function 1F 2 (· · · ; z) in the upper

parameter, given by Ref. 29. Namely,

H̃ [k + 3] −
(
λ+ 5

2
+ 3k

)
H̃ [k + 2] +

[
2λ− n2 − 3

4
+ 2

(
λ+ 1 + 3

2
k
)
k − 2κz

]
H̃ [k + 1]

+
(
λ− 3

2
+ k

)(
n+ 1

2
+ k

)(
n− 1

2
− k

)
H̃ [k] = 0. (14)

Although the relation (14) was derived for noninteger λ, it can be easily shown that it

is indeed valid for any λ. Substituting into the functions H̃ [k] in (14) the definition (11)

and then the corresponding representations in terms of Mellin-Barnes integrals (Eq. I.B10),

one can show, by using known properties of the gamma function,28 that the identity (14) is

indeed valid for any real λ.

B. The superthermal plasma dispersion function

The superthermal (or kappa) plasma dispersion function (κPDF) was defined by Eq.

(I.11), and several of its properties were discussed in sections III.A and A.1 of Paper I.

Here, we will merely present a few additional properties, which were not included in Paper

I and are important for the work at hand.

1. Representations in terms of the G-function.

Taking the representations (I.15) for Z(α,β)
κ (ξ) and (I.B15a) for the Gauss function, we

have

Z(α,β)
κ (ξ) = −π1/2κ−β−1ξ

Γ (σ − 3/2)
G1,2

2,2

[
ξ2

κ

∣∣∣∣∣0, 3/2 − λ

0,−1/2

]

+ iπ1/2Γ (λ− 1)
κβ+1/2Γ (σ − 3/2)

(
1 + ξ2

κ

)−(λ−1)

. (15a)

As explained in Paper I, the Maxwellian limit of this representation reduces to the known

expression of the Fried & Conte function in terms of the Kummer confluent hypergeometric

series.
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Another, more compact, representation is obtained if we first modify the limits of the

integral in (I.11) to the interval 0 6 s < ∞, define the new integration variable s =
√
u

and identify the resulting integration with the identity (I.B12). Proceeding in this way, we

obtain the equivalent representation

Z(α,β)
κ (ξ) = π−1/2κ−β−1ξ

Γ (σ − 3/2)
G2,2

2,2

[
−ξ2

κ

∣∣∣∣∣0, 3/2 − λ

0,−1/2

]
. (15b)

Taking the limit κ → ∞ of (15b), and identifying the result with (B4c), we obtain

lim
κ→∞

Z(α,β)
κ (ξ) = ξU

(
1

3/2
; −ξ2

)
,

where U (· · · ; z) is the Tricomi confluent hypergeometric function.30 This is another known

representation of the Fried & Conte function.31

2. The associated plasma dispersion function

The associated plasma dispersion function, defined by

Z̃
(α,β)
k,κ (ξ) .= κ−(k+β+1/2)Γ (λ− 1)√

πΓ (σ − 3/2)

×
∫ ∞

−∞
ds
s2k (1 + s2/κ)−(λ−3/2+k)

s− ξ
, (16)

is another new special function that appears in the series expansions derived in section

III C 3 for the two-variables special functions Z(α,β)
n,κ (µ, ξ) and Y(α,β)

n,κ (µ, ξ). It has the trivial

property

Z̃
(α,β)
0,κ (ξ) = Γ (λ− 1)√

κΓ (λ− 3/2)
Z(α,β−1/2)

κ (ξ) , (17)

and, in the following, alternative representations for the Z̃-function will be derived.

Representations. The first expression is valid when λ is half-integer (λ = 5/2, 7/2, . . . ).

In this case, writing m = λ − 3/2 + k (m = 1, 2, . . . ), all singular points in (16), at s = ξ

and s = ±i
√
κ, are poles and thus we are permitted to evaluate Z̃(α,β)

k,κ (ξ) using the residue

theorem, exactly as was done by Summers and Thorne.7

Let us consider the contour integral

IB =
∫

B
ds
s2k (1 + s2/κ)−(λ+k−3/2)

s− ξ
,
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where the contour B is comprised by the semicircle in the lower-half plane of complex s

(with radius S → ∞), which is closed by the integration along the real line of s, deformed

according to the Landau prescription (i.e., circulating around the pole at s = ξ from below).

See, for instance, the contour in Fig. 2 of Ref. 7, but with closing in the lower-half s-plane.

Then, it is easy to show that the contribution along the semicircle of radius S vanishes as

S → ∞ and IB is simply evaluated from the residue at s = −i
√
κ as IB = −2πiRes (−i

√
κ),

since the pole at s = ξ is always outside B.

The residue is evaluated by the usual formula for a pole of order m,32 leading to the

representation

Z̃
(α,β)
k,κ (ξ) = 2

√
πi (−)k Γ (λ− 1)

κβ+1/2Γ (σ − 3/2)

×
M∑

ℓ=0

m−1−ℓ∑
r=0

(−2k)ℓ (m)r (1)m−1−ℓ−r

2m+rΓ (m− ℓ− r) ℓ!r!

×
(

1 − iξ√
κ

)−(m−ℓ−r)

, (18a)

where M = min (m− 1, 2k). One can easily verify in (18a) that for integer κ,

Z̃
(1,3/2)
0,κ (ξ) = Γ (κ+ 3/2)

κ1/2κ!
Z∗

κ (ξ) ,

where Z∗
κ (ξ) is given by Eq. (20) of Ref. 7.

A different expression for the Z̃-function will now be obtained, which is valid for any real

λ. We already know that for k = 0 the Z̃-function is given in terms of the κPDF by (17).

Now, for k > 1, we modify the limits of the integral in (16) to the interval 0 6 s < ∞, define

the new variable s =
√
u and employ identity (I.B12) in order to obtain

Z̃
(α,β)
k,κ (ξ) = iκ−(β+1/2)Γ (λ− 1)√

πΓ (σ − 3/2) Γ (λ+ k − 3/2)

×G2,2
2,2

[
−ξ2

κ

∣∣∣∣∣1/2, 5/2 − λ

k, 1/2

]
, (18b)

which is a G-function representation of the associated PDF. If we now employ formula

(I.B13a), we can write

Z̃
(α,β)
k,κ (ξ) = iκ−(k+β+1/2)Γ (λ− 1)√

πΓ (σ − 3/2) Γ (λ+ k − 3/2)

× ξ2k d
k

dzk
G2,2

2,2

[
z

∣∣∣∣∣1/2, 5/2 − λ

0, 1/2

]
,
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where we have provisionally defined z = −ξ2/κ. This result will now be identified with the

derivatives of Z(α,β)
κ (ξ).

If we take representation (15b) of the κPDF, evaluate the k-th derivative on ξ and employ

the differentiation formula (Eq. 1.1.1.2 of Ref. 33),

dk

dzk

[
f
(√

z
)]

=
k−1∑
ℓ=0

(−)ℓ Γ (k + ℓ)
Γ (k − ℓ) ℓ!

×
(
2
√
z
)−k−ℓ

f (k−ℓ)
(√

z
)
,

which is valid for k > 1, we finally obtain

Z̃
(α,β)
k,κ (ξ) = κ−1/2Γ (λ− 1)

2kΓ (λ− 3/2 + k)

k−1∑
ℓ=0

Γ (k + ℓ)
2ℓΓ (k − ℓ) ℓ!

× (−ξ)k−ℓ Z(α,β−1/2)(k−ℓ)
κ (ξ) . (18c)

A final representation for Z̃(α,β)
k,κ (ξ) will be derived by returning to (16), changing the

integration variable to t, defined as s2 = κt−1 (1 − t), and comparing the resulting integral

with the formula (I.B5). In this way, we obtain

Z̃
(α,β)
k,κ (ξ) = Γ (λ− 1)B (λ− 1, k + 1/2)√

πκβ+1Γ (σ − 3/2)

× ξ 2F 1

(
1, λ− 1

λ− 1/2 + k
; 1 + ξ2

κ

)
, (ℑξ > 0) , (18d)

where B (a, b) = Γ (a) Γ (b) /Γ (a+ b) is the beta function28 and 2F 1 (· · · ; z) is the Gauss

hypergeometric function34 (see also Sec. B.1 of Paper I). It must be pointed out that the

representation (18d) is only valid for the upper-half of the ξ-plane. In order to employ this

expression when ℑξ 6 0, one must evaluate also its analytical continuation, employing the

same technique applied to Eq. (I.13). The resulting expressions for the functions Z and Y

are shown in Eqs. (25d) and (27c).

Recurrence relation. The representation (18d) also allowed us to obtain a recurrence

relation for the associated PDF on the parameter k. Employing the shorthand notation

Z̃
(α,β)
k,κ (ξ) ≡ Z̃ [k], we can write

Z̃ [k] = [Γ (λ− 1)]2√
πκβ+1Γ (σ − 3/2)

ξzk (ξ) ,

zk
.= Γ (k + 1/2)

Γ (λ− 1/2 + k) 2F 1

(
1, λ− 1

λ− 1/2 + k
; 1 + ξ2

κ

)
.
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Hence, if one finds the recurrence relation for the auxiliary function zk (ξ), the same relation

applies to Z̃ [k].

Such a recurrence relation on the lower parameter of the Gauss function is given by Ref.

35. Consequently, we obtain

(
λ− 1

2
+ k

)(
1 + ξ2

κ

)
Z̃ [k + 2]

−
[(
λ− 1

2
+ k

)
ξ2

κ
+
(
k + 1

2

)(
1 + ξ2

κ

)]
Z̃ [k + 1]

+
(
k + 1

2

)
ξ2

κ
Z̃ [k] = 0. (19)

This result can be verified by inserting the definition (16) in the place of Z̃ [k] and then

adequately manipulating the integrand.

The three-term recurrence relation (19) can potentially reduce the computational time for

the evaluation of the functions Z(α,β)
n,κ (µ, ξ) and Y (α,β)

n,κ (µ, ξ), discussed in the next section.

C. The two-variables kappa plasma functions

The dielectric tensor of a superthermal (kappa) plasma is written in terms of the special

functions Z(α,β)
n,κ (µ, ξ) and Y (α,β)

n,κ (µ, ξ), collectively called the two-variables kappa plasma

functions (2VKPs), as can be verified in Eqs. (I.6a-6d), for an isotropic κVDF, or in Eqs.

(3a)-(3f), for a bi-kappa distribution.

The functions Z and Y were defined in Eqs. (I.26a-26b) in terms of a single integral

involving the superthermal plasma dispersion function (κPDF) Z(α,β)
κ (ξ) (see Sec. III.A of

Paper I). These definitions will be repeated below. We will include equivalent definitions in

terms of double integrals, which will also be used in this work.

Hence, we define

Z(α,β)
n,κ (µ, ξ) = 2

∫ ∞

0
dx

xJ2
n (νx)

(1 + x2/κ)λ−1Z
(α,β)
κ

 ξ√
1 + x2/κ

 (20a)

= 2
π1/2κ1/2+β

Γ (λ− 1)
Γ (σ − 3/2)

∫ ∞

0
dx

∫ ∞

−∞
ds
xJ2

n (νx)
s− ξ

(
1 + x2

κ
+ s2

κ

)−(λ−1)

, (20b)

Y (α,β)
n,κ (µ, ξ) = 2

µ

∫ ∞

0
dx

x3Jn−1 (νx) Jn+1 (νx)
(1 + x2/κ)λ−1 Z(α,β)

κ

 ξ√
1 + x2/κ

 (20c)
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= 2
π1/2κ1/2+βµ

Γ (λ− 1)
Γ (σ − 3/2)

∫ ∞

0
dx

∫ ∞

−∞
ds
x3Jn−1 (νx) Jn+1 (νx)

s− ξ

(
1 + x2

κ
+ s2

κ

)−(λ−1)

,

(20d)

where ν2 = 2µ and, as usual, σ = κ+ α and λ = σ + β.

Other definitions in terms of a single integral can be obtained, which are the counterparts

of Eqs. (20a) and (20c). If we change the order of the integrations in (20b) and (20d) and

define a new integration variable by x = √
χt, where χ = 1 + s2/κ, the integral in t can be

identified with (4) and we can write

Z(α,β)
n,κ (µ, ξ) = π−1/2

κβ+1/2
Γ (λ− 1)

Γ (σ − 3/2)

∫ ∞

−∞
ds

(1 + s2/κ)−(λ−2)

s− ξ
H(α,β)

n,κ

[
µ

(
1 + s2

κ

)]
(20e)

Y(α,β)
n,κ (µ, ξ) = π−1/2

κβ−1/2
Γ (λ− 2)

Γ (σ − 3/2)

∫ ∞

−∞
ds

(1 + s2/κ)−(λ−4)

s− ξ
H(α,β−1)′

n,κ

[
µ

(
1 + s2

κ

)]
. (20f)

The Maxwellian limits of the 2VKPs was already obtained in Eq. (I.7) and are

lim
κ→∞

Z(α,β)
n,κ (µ, ξ) = Hn (µ)Z (ξ)

lim
κ→∞

Y(α,β)
n,κ (µ, ξ) = H ′

n(µ)Z (ξ) ,
(21)

where the function Hn (µ) is given by (5) and Z (ξ) is the usual Fried & Conte function,

given, for instance, by Eq. (I.10).

Some new properties and representations of the functions Z and Y that were not included

in Paper I will now be discussed.

1. Derivatives of Z(α,β)
n,κ (µ, ξ)

As can be seen in Eqs. (3a)-(3f), almost all tensor components are given in terms of

partial derivatives of the function Z(α,β)
n,κ (µ, ξ). These derivatives can be easily computed

from the direct function, if one uses relations derived from the definitions (20).

We need the partial derivatives ∂ξZ, ∂µZ, and the mixed derivative ∂2
ξ,µZ. Applying ∂ξ

on (20a) and using Eq. (I.18a), we can identify with (4) and (20a) and write

∂ξZ(α,β)
n,κ (µ, ξ) = −2

[
Γ (λ− 1/2)

κβ+1Γ (σ − 3/2)
H(α,β+1/2)

n,κ (µ)

+ ξZ(α,β+1)
n,κ (µ, ξ)

]
. (22a)
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Now, applying ∂µ on (20b) and integrating by parts the x-integral, the resulting expression

can be manipulated in order to provide the relation between the derivatives

µ∂µZ(α,β)
n,κ (µ, ξ) − 1

2
ξ∂ξZ(α,β)

n,κ (µ, ξ)

= (λ− 2) Z(α,β)
n,κ (µ, ξ) − κZ(α,β+1)

n,κ (µ, ξ) .

Hence, after inserting (22a) there results

µ∂µZ(α,β)
n,κ (µ, ξ) = (λ− 2) Z(α,β)

n,κ (µ, ξ)

− κ

(
1 + ξ2

κ

)
Z(α,β+1)

n,κ (µ, ξ)

− Γ (λ− 1/2)
κβ+1Γ (σ − 3/2)

ξH(α,β+1/2)
n,κ (µ) . (22b)

Finally, the crossed derivative can be obtained from either of the results above, leading

directly to

∂2
ξ,µZ(α,β)

n,κ (µ, ξ) = 2 ξ
µ

[
κ

(
1 + ξ2

κ

)
Z(α,β+2)

n,κ (µ, ξ) − (λ− 1) Z(α,β+1)
n,κ (µ, ξ)

]

+ 2Γ (λ− 1/2)µ−1

κβ+1Γ (σ − 3/2)

[(
λ− 1

2

)(
1 + ξ2

κ

)
H(α,β+3/2)

n,κ (µ) −
(
λ− 3

2

)
H(α,β+1/2)

n,κ (µ)
]
. (22c)

2. Values at ξ = 0 or µ = 0

From the definitions (4, 20b, 20d), and (I.11), we obtain the following limiting expressions,

Z(α,β)
n,κ (0, ξ) = Z(α,β−1)

κ (ξ) δn0 (23a)

Z(α,β)
n,κ (µ, 0) = i

√
πΓ (λ− 1)

κβ+1/2Γ (σ − 3/2)
H(α,β)

n,κ (µ) (23b)

Y(α,β)
n,κ (µ, 0) = i

√
πΓ (λ− 2)

κβ−1/2Γ (σ − 3/2)
H(α,β−1)′

n,κ (µ) (23c)

Y(α,β)
n,κ (0, ξ) = −

(
δn,0 − 1

2
δ|n|,1

)
Z(α,β−3)

κ (ξ) (23d)

∂ξZ(α,β)
n,κ (0, ξ) = Z(α,β−1)′

κ (ξ) δn0 (23e)

∂µZ(α,β)
n,κ (µ, 0) = i

√
πΓ (λ− 1)

κβ+1/2Γ (σ − 3/2)
H(α,β)′

n,κ (µ) . (23f)

3. Series representations

In Paper I, we have obtained representations for the functions Z(α,β)
n,κ (µ, ξ) and Y(α,β)

n,κ (µ, ξ)

in terms of series involving the κPGF H(α,β)
n,κ (µ) and derivatives of the κPDF Z(α,β)

κ (ξ).
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These representations are given by Eqs. (I.28a-28b). Subsequent applications have shown

that these expansions start to converge slower when ξi → −1
2
√
κ (ξi: imaginary part of

ξ) and may diverge when ξi > −1
2
√
κ. Consequently, new function representations are

necessary, in order to enlarge the convergence region of the expansions.

In this section, some new expansions for the 2VKPFs are derived. Some of the obtained

expansions are applicable to particular regions of the functions’s domain and some are valid

throughout the domain. However, all representations that have been found have in common

that at least one series expansion is involved, which contains at least one special function.

This is due to the fact that we were not able to factor the functions in two simpler terms,

i.e., Z (µ, ξ) ̸= F1 (µ)F2 (ξ), for instance. Indeed, we believe that the functions Z (µ, ξ) and

Y (µ, ξ) are in fact altogether non-separable.

The transcendental relation between the variables µ (∼ w⊥) and ξ
(
∼ w∥

)
ultimately

stems from the physical nature of the κVDF (1). According to the interpretation of Tsallis’s

entropic principle, one-particle distribution functions such as (1) describe the statistical

distribution of particles in a (almost) noncollisional system, but with a strong correlation

between the different degrees of freedom.1,4 This strong correlation prevents the κVDF (1)

from being separable in the different velocity components. In contrast, a physical system in

thermal equilibrium has an entropy given by the Boltzmann-Gibbs statistical mechanics and

is characterized by short-range Coulombian collisions and absence of correlation between

the degrees of freedom. As a consequence, the equilibrium Maxwell-Boltzmann VDF is

completely separable. Therefore, the non-separable nature of the functions Z (µ, ξ) and

Y (µ, ξ) is a mathematical consequence of the strong correlation between different degrees of

freedom of the particles that compose physical systems statistically described by the κVDF.

It is worth mentioning here that the nonadditive statistical mechanics also admits that

particles without correlations may be statistically described by separable one-particle dis-

tribution functions.4 This is the case of the product-bi-kappa (or product-bi-Lorentzian)

VDF,4,7 of which the kappa-Maxwellian distribution22,36 is a particular case. For such distri-

butions, the functions Z (µ, ξ) and Y (µ, ξ) result completely separable and the mathematical

treatment is much simpler. Future works will also consider this possibility.

The first representation to be derived is a power series in ξ, valid when |ξ| <
√
κ. Starting

from (20a), we introduce the form (I.15) for the κPDF and obtain
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Z(α,β)
n,κ (µ, ξ) = − 4Γ (λ− 1/2) ξ

κβ+1Γ (σ − 3/2)

×
∫ ∞

0
dx

xJ2
n (νx)

(1 + x2/κ)λ−1/2 2F 1

(
1, λ− 1/2

3/2
; − ξ2/κ

1 + x2/κ

)

+ 2iπ1/2Γ (λ− 1)
κβ+1/2Γ (σ − 3/2)

∫ ∞

0
dx

xJ2
n (νx)

(1 + ξ2/κ+ x2/κ)λ−1 .

The second integral can be evaluated. If we initially assume that ξ is real and define a

new integration variable by x =
√
ψt, where ψ = 1+ξ2/κ, then we can identify the resulting

integral with (4) and write
∫ ∞

0

xJ2
n (νx) dx

(1 + ξ2/κ+ x2/κ)λ−1 =
H(α,β)

n,κ [µ (1 + ξ2/κ)]
2 (1 + ξ2/κ)λ−2 . (24)

Identity (24) can be analytically continued to the complex plane of ξ as long as it stays

within the principal branch of H(α,β)
n,κ (z) (i.e., of the G-function). Since the origin is a branch

point of the G-function and the infinity is an essential singularity,37 the complex-valued H-

function in (24) has branch cuts along the lines (−i∞,−i
√
κ] and [i

√
κ, i∞). Hence, we can

employ result (24) when |ξ| <
√
κ.

On the other hand, if the Gauss function in the above expression for Z is substituted by

its power series (I.B4), the series will also converge if |ξ| <
√
κ, and we are then allowed to

integrate term by term and obtain

Z(α,β)
n,κ (µ, ξ) = − 2Γ (λ− 1/2) ξ

κβ+1Γ (σ − 3/2)

×
∞∑

k=0

(λ− 1/2)k

(3/2)k

(
−ξ2

κ

)k

H(α,β+k+1/2)
n,κ (µ)

+ iπ1/2Γ (λ− 1)
κβ+1/2Γ (σ − 3/2)

H(α,β)
n,κ [µ (1 + ξ2/κ)]
(1 + ξ2/κ)λ−2 . (25a)

For the next series expansions, we will consider the H-function in (20e). Since 1+s2/κ >
1, we can use the multiplication theorem (B2) to write

H(α,β)
n,κ

[
µ

(
1 + s2

κ

)]
=
(

1 + s2

κ

)− 1
2

×
∞∑

k=0

1
k!

(
s2

κ

)k (
1 + s2

κ

)−k

H̃(α,β)
n,k,κ (µ) , (25b)

In this result, the function H̃(α,β)
n,k,κ (µ) is the associated plasma gyroradius function, defined

by (11).
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In this way, the Z-function can be written in the generic (and compact) form

Z(α,β)
n,κ (µ, ξ) =

∞∑
k=0

1
k!

H̃(α,β)
n,k,κ (µ) Z̃(α,β)

k,κ (ξ) , (25c)

where, accordingly, the function Z̃
(α,β)
k,κ (ξ) is the associated plasma dispersion function, de-

fined by (16).

Therefore, we can evaluate the function Z(α,β)
n,κ (µ, ξ) using for H̃(α,β)

n,k,κ (µ) the representa-

tions (12a) or (13), and for Z̃(α,β)
k,κ (ξ) the representations (18a-18c).

For the Z̃-function, we can also employ representation (18d); however, in this case, as was

then mentioned, we also need to include the analytical continuation when ξi = ℑξ 6 0. The

necessary expressions can be gleaned from the discussion concerning the related continuation

of Eq. (I.13). In this process, one would have to include the continuation of the Gauss

function. Alternatively, one can start anew from Eq. (20b) and introduce the adequate

continuation for the s-integration. In this way, one would end up with an additional term,

which is proportional to Eq. (24). Proceeding in this way, the last series expansion for the

Z-function is finally

Z(α,β)
n,κ (µ, ξ) =

∞∑
k=0

1
k!

H̃(α,β)
n,k,κ (µ) Z̃(β)

(18d)
(ξ)

+ 2
√
πiΓ (λ− 1) Θ (−ξi)
κβ+1/2Γ (σ − 3/2)

(
1 + ξ2

κ

)−(λ−2)

× H(α,β)
n,κ

[
µ

(
1 + ξ2

κ

)]
, (25d)

where we have used the shorthand notation Z̃
(β)
(18d)

(ξ) ≡ Z̃
(α,β)
k,κ (ξ; Eq.18d). We have also

employed the Heaviside function Θ (x) = +1 (if x > 0) or Θ (x) = 0 (if x < 0).

The series expansions for the function Y(α,β)
n,κ (µ, ξ) follow the same methodologies and

their derivations will not be repeated. The only intermediate result shown here is the

identity

∫ ∞

0
dx

x3Jn−1 (νx) Jn+1 (νx)
(1 + ξ2/κ+ x2/κ)−(λ−1) = 1

2
κµ

λ− 2

×
(

1 + ξ2

κ

)−(λ−4)

H(α,β−1)′
n,κ

[
µ

(
1 + ξ2

κ

)]
, (26)

which is derived similarly to Eq. (24) and to which apply the same considerations about

the analiticity domain.
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Without further ado, the series expansions for Y (α,β)
n,κ (µ, ξ) are:

Y (α,β)
n,κ (µ, ξ) = −2Γ (λ− 3/2) ξ

κβΓ (σ − 3/2)

∞∑
k=0

(λ− 3/2)k

(3/2)k

× H(α,β+k−1/2)′
n,κ (µ)

(
−ξ2

κ

)k

+ iπ1/2Γ (λ− 2)
κβ−1/2Γ (σ − 3/2)

×
H(α,β−1)′

n,κ [µ (1 + ξ2/κ)]
(1 + ξ2/κ)λ−4 , (27a)

valid for |ξ| <
√
κ,

Y(α,β)
n,κ (µ, ξ) =

∞∑
k=0

1
k!

H̃(α,β−1)′
n,k,κ (µ) Z̃(α,β−1)

k,κ (ξ) , (27b)

valid for any ξ, and

Y (α,β)
n,κ (µ, ξ) =

∞∑
k=0

1
k!

H̃(α,β−1)′
n,k,κ (µ) Z̃(β−1)

(18d)
(ξ)

+ 2
√
πiΘ (−ξi) Γ (λ− 2)
κβ−1/2Γ (σ − 3/2)

(
1 + ξ2

κ

)−(λ−4)

× H(α,β−1)′
n,κ

[
µ

(
1 + ξ2

κ

)]
, (27c)

also valid for any ξ.

The series expansions and the other properties derived in this section and in Paper I

are sufficient to enable a computational implementation of the functions Z(α,β)
n,κ (µ, ξ) and

Y(α,β)
n,κ (µ, ξ), and hence for the evaluation of the dielectric tensor (2a) for a bi-kappa plasma.

The numerical evaluation of the series can be substantially accelerated if one also employs

the recurrence relations (14) and (19). However, we must point out that so far no analysis

of the stability of these relations for forward recursion has been made. It is possible that

for a given set of parameters either or both relations are only stable for backward recursion,

and so different strategies must be implemented.

4. Asymptotic expansions

Here we will derive expressions valid for either |ξ| ≫ 1 or µ ≫ 1. Starting with ξ,

the expansion we want to derive is not the ordinary series representation for |ξ| >
√
κ.

Although such a series can be easily obtained from the expressions already shown, they

would be unnecessarily complicated, as it was hinted by the derivation of the representation

23

http://dx.doi.org/10.1063/1.4953430


(I.16) for the κPDF. Instead, we want to derive an expansion valid for |ξ| ≫
√
κ, convenient

for a fluid approximation of the dielectric tensor.

Accordingly, in the s-integrals of Eqs. (20b) and (20d) we will approximate

1
s− ξ

≃ −1
ξ

(
1 + s

ξ
+ s2

ξ2 + · · ·
)

= −1
ξ

∑
ℓ=0

sℓ

ξℓ
,

i.e., we ignore the high-energy particles at the tail of the VDF and the kinetic effect of the

pole at s = ξ. Notice also that we have not written the upper limit of the sum above, since

such expansion is only meaningful for a finite number of terms. Inserting this expansion

into the s-integrals, all the terms with ℓ odd vanish and the others can be easily evaluated.

However, these integrals only exist if the additional condition λ > k+ 3/2 (k = 0, 1, 2, . . . ) is

satisfied.

Identifying the remaining x-integrals with (4) and (26), we obtain

Z(α,β)
n,κ (µ, ξ) ≃ − π−1/2κ−β

Γ (σ − 3/2)
1
ξ

∑
k=0

Γ
(
λ− k − 3

2

)

× Γ
(
k + 1

2

)
κk

ξ2k
H(α,β−k−1/2)

n,κ (µ) (28a)

Y(α,β)
n,κ (µ, ξ) ≃ − π−1/2κ1−β

Γ (σ − 3/2)
1
ξ

∑
k=0

Γ
(
λ− k − 5

2

)

× Γ
(
k + 1

2

)
κk

ξ2k
H(α,β−k−3/2)′

n,κ (µ) . (28b)

Now, the large gyroradius expansion (µ ≫ 1) is obtained if we start from (20e, 20f) and

introduce the expansion (8). The resulting integrals can be identified with the definition of

the κPDF in (I.11). Hence, we obtain

Z(α,β)
n,κ (µ, ξ) ≃ 1√

2πµ
∑
k=0

(1/2 + n)k (1/2 − n)k

k! (2µ)k

× Z(α,β+k−1/2)
κ (ξ) (28c)

Y(α,β)
n,κ (µ, ξ) ≃ −1√

2πµ3

∑
k=0

(1/2 + n)k (1/2 − n)k (k + 1/2)
k! (2µ)k

× Z(α,β+k−3/2)
κ (ξ) . (28d)

5. A closed-form expression for Z(α,β)
n,κ (µ, ξ)

Since Z(α,β)
n,κ (µ, ξ) and Y(α,β)

n,κ (µ, ξ) are non-separable functions of two variables, it is a

relevant question whether they can be represented by some special function discussed in the
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literature. Here, we will show for Z(α,β)
n,κ (µ, ξ) that indeed it can be represented in closed,

compact form by the relatively newly-defined Meijer G-function of two variables, introduced

in section B 2.

Returning to the definition (20b) and defining the new integration variables x =
√
κu

and s =
√
κv, the double integral can be written as

I2 =
√
κ

4

∫ ∞

0
du

∫ ∞

0
dv v−1/2J2

n

(√
2κµu

) (1 + u+ v)−(λ−1)

v − ξ2/κ
.

Introducing now the function representations (B4a), (I.B15c), and (B9), and then expressing

the last in terms of the double Mellin-Barnes integral (B5), one obtains

I2 = − κ3/2ξ−2

4
√
πΓ (λ− 1)

1
(2πi)2

∫
Ls

∫
Lt

dsdtΓ (λ− 1 − s− t) Γ (s) Γ (t)

×
{∫ ∞

0
du u−sG1,1

1,3

[
2κµu

∣∣∣∣∣ 1/2

n,−n, 0

]}{∫ ∞

0
dv v−t−1/2G1,1

1,1

[
−κv

ξ2

∣∣∣∣00
]}

,

where we have also interchanged the order of integrations.

The u- and v-integrations can now be performed by means of the Mellin transform (B3),

resulting

I2 =
√
κ (2κµ)−1

4
√
πΓ (λ− 1)

(
− κ

ξ2

)1/2 1
(2πi)2

∫
Ls

∫
Lt

dsdtΓ (λ− 1 − s− t)

× Γ (−1/2 + s) Γ (n+ 1 − s)
Γ (n+ s)

Γ (t) Γ
(1

2
+ t

)
Γ
(1

2
− t

) [
(2κµ)−1

]−s
(

−ξ2

κ

)−t

. (29)

This result can be compared with (B5), in which case we obtain finally

Z(α,β)
n,κ (µ, ξ) = − π−1κ1−β

Γ (σ − 3/2) ξ
G0,1:1,1:2,1

1,0:2,1:1,2

[
(2κµ)−1

−ξ2/κ

∣∣∣∣∣7/2 − λ : 1 − n, 1 + n : 1
− : 1/2 : 1/2, 1

]
. (30)

The final expression for the Z-function in (30) was obtained after employing also the trans-

lation property (B7).

The Maxwellian limit of (30) can be obtained. Expressing again the G(2)-function in (30)

in terms of the definition (B5), and applying the limit κ → ∞ on the resulting expression,

one can evaluate the limit using Stirling’s formula.28 As a result, the s- and t-integrations

factor out, and the remaining integrals can be identified with G-functions from the definition

(I.B10), which in turn can be identified with representations (I.B15d) and (B4c). After

employing properties (I.B11a), one finally obtains

lim
κ→∞

Z(α,β)
n,κ (µ, ξ) = e−µIn (µ) ξU

(
1

3/2
; −ξ2

)
= Hn (µ)Z (ξ) ,
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as expected.

Formula (30) is the more compact representation of the function Z(α,β)
n,κ (µ, ξ) that we

have obtained. However, despite of being a closed-form for Z, this representation is not yet

very useful, since there is no known computational implementation that evaluates the G(2)-

function, contrary to the one-variable G, which is implemented by some Computer Algebra

Software and also by the python library mpmath.38 Nevertheless, we find it important to

include the derivation of formula (30) in order to stress the necessity of further development

on the numerical evaluation of these special functions and also to present to the plasma

physics community the techniques involved with Meijer’s G- and G(2)-functions and Mellin-

Barnes integrals in general, since we believe that as more complex aspects of the physics

of plasmas are considered, such as more general VDFs and dusty plasmas, for instance, the

techniques employed in this work and in Paper I have the potential to provide mathematical

answers to the challenges that will appear.

IV. CONCLUSIONS

In this paper we have presented two major developments for the study of waves with

arbitrary frequency and direction of propagation in anisotropic superthermal plasmas. First,

we have derived the dielectric tensor of a bi-kappa plasma. This tensor will be employed

in future studies concerning wave propagation and amplification/damping in anisotropic

superthermal plasmas.

The tensor components were written in terms of the kappa plasma special functions,

which must be numerically evaluated for practical applications. To this end, we have derived

in the present paper (and in Paper I) several mathematical properties and representations

for these functions. With the development presented here and in Paper I, we believe that

all the necessary framework for a systematic study of electromagnetic/electrostatic waves

propagating at arbitrary angles in a bi-kappa plasma has been obtained. In future studies

we will apply this formalism to specific problems concerning temperature-driven-instabilities

in kappa plasmas.
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Appendix A: Derivation of the susceptibility tensor

The derivation of χ(s)
ij for a bi-kappa plasma (or for any VDF, for that matter) is sim-

plified if one observes that all tensor components have common factors. First, inserting the

function (1) into the tensor (2b), all components contain the derivatives Lfs and Lfs. Using

these derivatives, one can proceed with the evaluation of the integrals. Using a cylindrical

coordinate system and defining the nondimensional integration variables t = v⊥/w⊥s and

u = v∥/w∥s, one obtains, after some straightforward algebra, the unified form

χ
(s)
ij = 2

ω2
ps

ω2
σsg (κs, αs)
π1/2κs

∞∑
n→−∞

×
∫ ∞

0
dt
∫ ∞

−∞
du I

(s)
ij,n

(
1 + u2

κs

+ t2

κs

)−σs−1

,

where

I
(s)
ij,n = (ξ0s − Asu) J (s)

ij,n, I
(s)
iz,n = (ξ0s − Asξns)K(s)

ij,n,

J (s)
xx,n = n2

µs

tJ2
n (νst)

u− ξns

J (s)
xy,n =

√
2i n
µs

t2Jn (νst) J ′
n (νst)

u− ξns

J (s)
yy,s = 2

n2

2µs
tJ2

n (νst) − t3Jn−1 (νst) Jn+1 (νst)
u− ξns

K(s)
xz,n =

√
2
w∥s

w⊥s

n

µs

tuJ2
n (νst)

u− ξns

K(s)
yz,n = −2i

w∥s

w⊥s

t2uJn (νst) J ′
n (νst)

u− ξns

K(s)
zz,n = 2

w2
∥s

w2
⊥s

ξns
tuJ2

n (νst)
u− ξns

,
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with g (κs, αs) = κ−3/2
s Γ (σs) /Γ (σs − 3/2), νs = k⊥w⊥s/Ωs, and where the anisotropy param-

eter As = 1 − w2
⊥s/w

2
∥s appears for the first time. These results were obtained using the

identity (9) and the recurrence relations of the Bessel functions.

The remaining integrals in the Js and Ks can now be identified with the definitions of

the two-variables kappa plasma functions Z(α,β)
n,κ (µ, ξ) and Y (α,β)

n,κ (µ, ξ) and their derivatives,

given by Eqs. (20) and (22). In this way, one arrives at the final expressions shown in Eqs.

(3a-3f).

The Maxwellian limit of the partial susceptibility tensor is obtained by the process κs →

∞. Upon applying this limit, one must replace w∥(⊥) → vT ∥(⊥) =
√

2T∥(⊥)/m and the kappa

plasma functions are replaced by their limiting representations (21). In this way, one arrives

at

χ(s)
xx =

ω2
ps

ω2

∞∑
n→−∞

n2

µs

Hn (µs)
[
ξ0sZ (ξns) + 1

2
AsZ

′ (ξns)
]

(A1a)

χ(s)
xy = i

ω2
ps

ω2

∞∑
n→−∞

nH ′
n (µs)

[
ξ0sZ (ξns) + 1

2
AsZ

′ (ξns)
]

(A1b)

χ(s)
xz = −

ω2
ps

ω2
vT ∥s

vT ⊥s

∞∑
n→−∞

nΩs

k⊥vT ⊥s

(ξ0s − Asξns)

× Hn (µs)Z ′ (ξns) (A1c)

χ(s)
yy =

ω2
ps

ω2

∞∑
n→−∞

[
n2

µs

Hn (µs) − 2µsH
′

n (µs)
]

×
[
ξ0sZ (ξns) + 1

2
AsZ

′ (ξns)
]

(A1d)

χ(s)
yz = i

ω2
ps

ω2
vT ∥s

vT ⊥s

k⊥vT ⊥s

2Ωs

∞∑
n→−∞

(ξ0s − Asξns)

× H ′
n (µs)Z ′ (ξns) (A1e)

χ(s)
zz = −

ω2
ps

ω2

v2
T ∥s

v2
T ⊥s

∞∑
n→−∞

(ξ0s − Asξns)

× ξnsHn (µs)Z ′ (ξns) . (A1f)

These results agree with expressions that can be found in the literature. See, e.g., Eq. (20)

of Ref. 22.
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Appendix B: The one- and two-variables Meijer G-functions

1. The G-function

The definition and some properties of the G-function are given in Sec. B.2 of Paper I.

All identities shown there and in the following can be found in Refs. 37 and 39, except when

explicitly mentioned.

a. Derivatives

We have
dk

dzk
Gm,n

p,q

[
z

∣∣∣∣∣(ap)
(bq)

]
= (−z)−k Gm+1,n

p+1,q+1

[
z

∣∣∣∣∣(ap) , 0
k, (bq)

]
. (B1a)

We will now derive a formula that is not usually found in the literature. If n > 1, we

can employ the definition of the G-function in terms of a Mellin-Barnes integral, given by

(I.B10), and evaluate, for k = 0, 1, 2, . . . ,

dk

dzk

{
zk−a1Gm,n

p,q

[
z

∣∣∣∣∣a1, . . . , ap

(bq)

]}

= 1
2πi

∫
L

∏m
j=1 Γ (bj − s)∏n

j=1 Γ (1 − aj + s)∏q
j=m+1 Γ (1 − bj + s)∏p

j=n+1 Γ (aj − s)
Γ (1 − a1 + k + s)

Γ (1 − a1 + s)
z−a1+sds, (B1b)

since Dmzγ = Γ (γ + 1) zγ−m/Γ (γ + 1 −m). Consequently, we obtain the differentiation

formula

dk

dzk

{
zk−a1Gm,n

p,q

[
z

∣∣∣∣∣a1, . . . , ap

(bq)

]}
= z−a1Gm,n

p,q

[
z

∣∣∣∣∣a1 − k, . . . , ap

(bq)

]
(n > 1) . (B1c)

b. Multiplication theorems

If ℜw > 1/2 and n > 0,

Gm,n
p,q

[
zw

∣∣∣∣∣(ap)
(bq)

]
= wa1−1

×
∞∑

k=0

(1 − 1/w)k

k!
Gm,n

p,q

[
z

∣∣∣∣∣a1 − k, a2, . . . , ap

(bq)

]
. (B2)
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c. Mellin transform

The Mellin transform of the G-function is

∫ ∞

0
ys−1Gm,n

p,q

[
ηy

∣∣∣∣∣(ap)
(bq)

]
dy

=
∏m

j=1 Γ (bj + s)∏n
j=1 Γ (1 − aj − s) η−s∏q

j=m+1 Γ (1 − bj − s)∏p
j=n+1 Γ (aj + s)

. (B3)

d. Function representations

A short list of function representations is:

(1 + x)−ρ = 1
Γ (ρ)

G1,1
1,1

[
x

∣∣∣∣1 − ρ

0

]
(B4a)

Iµ (
√
z)Kν (

√
z)

(2
√
π)−1 = G2,2

2,4

[
z

∣∣∣∣∣ 0, 1/2
µ+ν

2 , µ−ν
2 ,−µ−ν

2 ,−µ+ν
2

]
(B4b)

Γ (a)U
(

a
b
; z
)

[Γ (a− b+ 1)]−1 = G2,1
1,2

[
z

∣∣∣∣∣ 1 − a

0, 1 − b

]
. (B4c)

2. The two-variables Meijer function

The logical extension of Meijer’s G-function for two variables was first proposed by

Agarwal40 in 1965. Subsequent publications proposed slightly different definitions for the

same extension.41–43 In this work, we will adopt the definition by Hai and Yakubovich (Eq.

13.1 of Ref. 43),

Gm1,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

x
y

∣∣∣∣∣∣
(
a(1)

p1

)
:
(
a(2)

p2

)
:
(
a(3)

p3

)
(
b

(1)
q1

)
:
(
b

(2)
q2

)
:
(
b

(3)
q3

)
 = 1

(2πi)2

∫
Ls

∫
Lt

Ψ1 (s+ t) Ψ2 (s) Ψ3 (t) x−sy−tdsdt,

(B5)

where, for k = 1, 2, 3,

Ψk (r) =
∏mk

j=1 Γ
(
b

(k)
j + r

)∏nk
j=1 Γ

(
1 − a

(k)
j − r

)
∏pk

j=nk+1 Γ
(
a

(k)
j + r

)∏qk
j=mk+1 Γ

(
1 − b

(k)
j − r

) .
The Reader is referred to Sec. II.13 of Ref. 43 for explanation on the notation and a

discussion on the general conditions on the validity of (B5). Whenever convenient and

unambiguous, we will refer to the two-variables Meijer function as the G(2)-function.
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We list some elementary properties of the G(2)-function, some of which are employed in

this work. The symmetry property

Gm1,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

x
y

∣∣∣∣∣∣
(
a(1)

p1

)
:
(
a(2)

p2

)
:
(
a(3)

p3

)
(
b

(1)
q1

)
:
(
b

(2)
q2

)
:
(
b

(3)
q3

)


= Gn1,m1:n2,m2:n3,m3
q1,p1:q2,p2:q3,p3

x−1

y−1

∣∣∣∣∣∣
1 −

(
b(1)

q1

)
: 1 −

(
b(2)

q2

)
: 1 −

(
b(3)

q3

)
1 −

(
a

(1)
p1

)
: 1 −

(
a

(2)
p2

)
: 1 −

(
a

(3)
p3

)
 , (B6)

and the translation property

xαyβGm1,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

x
y

∣∣∣∣∣∣
(
a(1)

p1

)
:
(
a(2)

p2

)
:
(
a(3)

p3

)
(
b

(1)
q1

)
:
(
b

(2)
q2

)
:
(
b

(3)
q3

)


= Gm1,n1:m2,n2:m3,n3
p1,q1:p2,q2:p3,q3

x
y

∣∣∣∣∣∣
(
a(1)

p1

)
+ α + β :

(
a(2)

p2

)
+ α :

(
a(3)

p3

)
+ β(

b
(1)
q1

)
+ α + β :

(
b

(2)
q2

)
+ α :

(
b

(3)
q3

)
+ β

 . (B7)

A product of two G-functions can be written as a single G(2)-function as

G0,0:m2,n2:m3,n3
0,0:p2,q2:p3,q3

x
y

∣∣∣∣∣∣
− :

(
a(2)

p2

)
:
(
a(3)

p3

)
− :

(
b

(2)
q2

)
:
(
b

(3)
q3

)
 = Gm2,n2

p2,q2

x
∣∣∣∣∣∣
(
a(2)

p2

)
(
b

(2)
q2

)
Gm3,n3

p3,q3

y
∣∣∣∣∣∣
(
a(3)

p3

)
(
b

(3)
q3

)
 . (B8)

We will also use the function representation

(1 + x+ y)−α = 1
Γ (α)

G1,0:0,1:0,1
0,1:1,0:1,0

[
x

y

∣∣∣∣ − : 1 : 1
α : − : −

]
. (B9)

Properties (B6)-(B8) can be inferred from the definition (B5). The identity (B9) is given

in Sec. II.13 of Ref. 43.
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