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Two dimensional kinetic analysis of electrostatic harmonic plasma waves
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Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas,
first observed in early laboratory beam-plasma experiments as well as in rocket-borne active exper-
iments in space. However, their unequivocal presence was confirmed through computer simulated
experiments and subsequently theoretically explained. The peculiarity of hgk

early time evolution are governed by essentially linear process. One of theoretical is-

onic Langmuir waves
is that while their existence requires nonlinear response, their excitation mechanism and subsequent
‘esolv

sues regards the role of nonlinear wave-particle interaction process over
Another outstanding issue is that existing theories for these mode
The present paper carries out two dimensional theoretical
(first) harmonic Langmuir waves for the first time. The result
is essentially governed by (quasi)linear process and that non

space.

I. INTRODUCTION

In collisionless kinetic theory, plasmas are describe

by Maxwell equations for the electric and magnetic ﬁéﬁ'\
dif-

and Vlasov equations for the distribution functionsof
ferent species of particles contained in the plasma.

Vlasov-Maxwell system of equations is a co

tem, frequently discussed in the context of appro ac

tions, such as the linear and quasilinear approximagions.
Under the linear approximation, one obtains di i

relations which lead to the identificati s of
oscillation that are excited and propaga lasma
system. For instance, the linear dispersion rélations lead

to the identification of high freq ctrostatic waves,
associated with electron oscillati Z,‘Lijijch are known
as Langmuir waves (L), and/lso towghe jdentification of
lower frequency electrosta
ions and electrons partigipate
acoustic waves (5). F neti
dispersion relations lead“to a bewildering array of
small-amplitude oséillations, one*of the most well-known
example being t requency electromagnetic oscilla-
tions, known vén e, for instance.

In addition to% (ogrm ion regarding the relationship
and real frequency, the linear dis-

in which both

e wave frequencies, which describe damp-
aves due to resonance between waves

mical information concerning the time evo-
) which one must go beyond linear theory, the
order theory being the quasilinear theory. The
next-order theory is known as the weak turbulence the-
ory (WT), developed in the time period between late
1950s to early 1970s, in which important contributions
were made by scientists of the former Soviet Union [1-9].
More recently, the formalism of the WT theory was revis-

e ir§
1gey'evolution time period.

ye-particle interaction plays
haemmerical solutions of the

waves are also found to be

nigio [10], initially without considering the effects

{ single-particle fluctuations, but later by incorporating
these effects [11]. The formalism was subsequently ex-
tended to include the effects of electromagnetic oscilla-
[12, 13]. More recently, the electrostatic part of the

Nnewed formalism was further extended to incorporate

effects due to binary interactions of particles, leading to
a collisional term in the equations for the particle distri-
butions, and to new terms in the equations for the time
evolution of wave amplitudes, identified with the physical
processes of collisional damping, spontaneous emission of
electrostatic waves by binary particle interactions, and ef-
fects due to binary particle interactions in the processes
of wave scattering [14, 15].

The reformulation of the WT theory, which was pre-
sented in Ref. [10] included the presence of electro-
static waves with frequency close to 2w,., where w,, =
(4mie? /me)'/? is the plasma frequency of electrons, 7 be-
ing the ambient plasma density, e and m, being the unit
electric charge and electron mass, respectively. These
waves were identified as the harmonic of L waves, and
the formalism led to a set of coupled equations for de-
scription of the evolution of L waves, fundamental and
harmonic, S waves, and particles [10]. The S waves and L
wave at the fundamental frequency are normal modes of
the plasma, predicted by linear dispersion relations, but
the harmonic of L wave is not a solution to the linear
dispersion relation, but rather, its presence can only be
described if one includes nonlinear correction to the linear
dispersion relation. In subsequent papers, higher order
electrostatic harmonics were also discussed [11, 16-18].
These theoretical developments provided support to the
recognized occurrence of nwy, electrostatic perturbations
as virtual modes excited in weakly turbulent plasmas.

The excitations of such modes were first detected in
early laboratory beam-plasma experiments [19-23], and
also in space-borne rocket active experiment [24]. How-
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‘ s I:P the above-referenced early works did not realize

fie peculiarity of harmonic electrostatic modes. In-

PUbI|§ (ﬂgt terpretations tended to regard these excitations

as related to customary nonlinear phenomena such as
wave trapping. The strange behavior associated with
the harmonic L modes did not fully exhibit itself un-
til the phenomenon was observed in computer simulated
experiments [25-31]. Unlike typical nonlinear phenom-
ena, which do not manifest themselves unless the wave
amplitude that drives these phenomena exceeds certain
threshold, the electrostatic harmonics are excited very
early on during the beam-plasma instability process. In
fact, the growth rate of the nth harmonic mode is higher
than the fundamental L mode growth rate by roughly the
multiple of n. Subsequent time development and satu-
ration are dictated by essentially (quasi) linear theory.
These behaviors are well described by the theory that
interpret these modes as solutions to nonlinear disper-
sion relation, but their dynamics as being governed by
quasilinear theory [16-18].

Space observations show that multiple harmonic elec-
tron plasma frequency fluctuations are often seen in the
Earth’s collisionless bow shock environment and even in

36]. While alternative interpretations for the occurr

predicted by linear theory. We have started these 2D
analysis in the year 2008, discussing the evolution of the
electrostatic modes [44, 45], and have continued with the
subject along subsequent years. In some of the more
recent works, we have also considered electromagnetic
waves into the WT analysis, and discussed the emission of
electromagnetic waves by nonlinear processes, consider-
ing the paradigmatic case of the plasma emission [46, 47],
and also the possibility of emission without the presence
of a beam [48, 49]. /

The 2D analysis providesdnformation and insights that
are not immediatély awailableswith 1D analysis. There
such as the time scales of different

are certain featur

by 1D anal

e radiation“by plasma emission, for instance,
only“through a 2D formulation. Another
example may beythe isotropization of L waves in 2D k
space,‘which ﬁul not have been predicted by 1D anal-

ysis.[44,
Q{le p;gpose of the present paper is to perform 2D

analysis of the beam-plasma instability process including

. electrostatic mode, for the first time. The present
myestigation aims to address a specific issue related to

interplanetary type III radio burst source region [%\ijno}f&near eigenmode, i.e., the first harmonic L mode,
or
ce

of these emissions are possible, more recent simulatio

mode during beam-plasma instability process
A hitherto unanswered question concerning
ble occurrence of both electrostatic and elgttrom
harmonics was addressed in another pape y
lead to the conclusion that both m
dent solutions [40]. Indeed, in relate
two-dimensional electromagnetic particle-1
tion code was employed, Refs. [30] [43] dermonstrate
that both electric and magnetic field *fluctuations are
characterized by multiple ha pectra.

To the best of our kno
uding’ the effect of elec-

the generalized WT theoty 1

trostatic harmonics haye heen madé only in the context
of one-dimensional anal 's)?s{CbQLThe first published ap-
plication that ma u;éof the*formalism presented in
Ref. [10] appeared in“ghé year 2002, with the discussion

of the time evolutio
into account fu

ical analysis of

a of Beam-plasma instability, taking
afmental and harmonics L waves and
rporating quasilinear effect of in-

S waves,

duced emi the nonlinear effects of three-wave
decay and & [41]. Reference [41] did not take
into agccount sp neous effects, included in the general
formalism aftex Ref. [11], but only collective nonlinear ef-

tly dfter Ref. [11], discrete-particle effects were
in ﬁ?ate in Ref. [42], but the analysis still pertained
to 1 p@ximation.

On the other hand, a two-dimensional (2D) formula-
tion has been used by some of us for the analysis of differ-
ent aspects of the beam-plasma interaction, but always
focusing on the time evolution of the particle distribu-
tion functions and of the amplitudes of normal modes

ihg\;e nonlinear 2wy, electrostatic mode excitation, but the

neral 2D solution is useful in and of itself. For instance,
one may compare the present theory with some simula-
tion results already available in the literature. Specifi-
cally, Ref. [43] contains Figures 3(b) and 3(c) that show
the 2D spectrum of fundamental and second harmonic
electric field fluctuation. Similar result is also found in
Ref. [30]. The present 2D calculation can be directly
compared against such results. The specific issue that
the present paper aims to address concerns a theoretical
conjecture presented in Ref. [11], where it was specu-
lated that the early dynamical evolution of 2w,. mode
should follow the dictates of quasilinear theory, but for
later times, nonlinear wave-particle interaction process,
that is, induced scattering, should dominate. The present
analysis seeks to test this hypothesis.

In the present paper we present and briefly discuss the
basic equations of WT theory, which will be employed in
order to describe the time evolution of the particle distri-
butions and electrostatic modes, including the harmonics
of the L waves, and obtain the 2D versions of these equa-
tions. These 2D equations will therefore be utilized for
numerical analysis of the beam-plasma instability. For
simplicity of this first analysis, which includes the effect
of L harmonics in 2D, we restrict ourselves to a formula-
tion that does not consider electromagnetic effects, and
also neglect the effects of harmonics higher than n = 2.

The structure of the paper is as follows: In Sec. IT
we briefly describe the theoretical formulation and the
setup for the numerical analysis. Section III presents the
results of numerical analysis. We summarize our findings
in Sec. IV.
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THEORETICAL FORMULATION AND
NUMERICAL SETUP

Al

Publishing

For the purpose of the present paper, we start from a
general self-consistent set of equations that include only
the effect of electrostatic waves, as they have appeared
in Ref. [13]. We present here these equations using non-
dimensional variables, which are more suitable for nu-

within the large curly brackets, is denoted by subscript
Lql. Tt describes the spontaneous emission and quasilin-
ear (i.e., induced emission) effects for the L mode. The
second term describes the effects of three-wave decay in-
volving L and S mode waves, and is denoted as LdLS.
The third term stands for the scattering process involving
L waves, and its designation is LsLL.

For S mode, the normalized dynamical equation is the

merical analysis, following:
w k’Ute v 85"5 m {
= =t = = — a4 _ S - S_q-
‘ Wpe7 T “per 4 Wpe U 'Ute7 or Ha q2 S q ll)
where vy, = (2Te/me)1/2 is electron thermal speed, T, % { £o,u) + (ng) (q- 0% (u)
being the temperature defined in energy unit, and we du
also utilize normalized distribution functions and wave ) 803}}
spectra, q Sal
2 2 Joo
D, (u) = v, Fu(v), &E5%= ( W)Qg%. do py pl ph o ld - (a—a))?
MeVie Hi ?q?%|la—d?
Moreover, we define some useful quantities, a
go-”L/ - <U/ZL/ go’” ’
. < e e 3T 1/2 q—q qa’ “a—q
Ha =1 Ma = 35m o, (1 T ) 7 ’,L) 533}
T. v2, 1
Abe = Anie? 2w; ’ ~ 932 (Am)2 AN, X 6(022 - Ulzé’ - U//chf—q’)} . (2)
pe \ SdLL

L wave can be written in dimensionless for

The equation for the time evolution of th$m<ia

or

Lql

Mg (a-d)?

?q?|q—q?
//S
q’ gg—q'
LdLS
. uq pé (a-q')?
q* ¢

6[}25 -0 z —(q—d) -]
S S {g (ng Sg,L — o'z SgL) [®o(u) + D, (u)]
Smeegret )-S5 L )

The terms appearing in Eq. (1) can be described as
follows. The first term on the right-hand side, enclosed

The first term at the right-hand side of Eq. (2) de-
scribes the spontaneous emission and quasilinear effects,
and is denoted as Sql. The second term describes the
three-wave decay process and is designated by SdLL.

For the harmonics of L waves, the time evolution equa-
tion is as follows [11, 42]:

Ln Ln Ln
agq — ’y‘l + Vq ELn (3)
or L4nkn 4 ’
where
In _ 27T Ln 0®(u) Ln
Vg = n Z duzy"q- Tu §(o2g" —q-u),(4)
L(n—1) n L(n—-1)
.9’ Nq/ (Zé — Zq/ )

an
Ln __ 3 /
vyt =mn /dq

2
‘ (q q an_Zé’/("*I))’
(n=1) /d a-4q 0%
la—q'> Ou
e e CE O RRV (5)
" = */dq al o pk = ghln =
xRe [e_ (q—q’,zé" —Zé,(nfl))] (6)

The equation for the evolution of nonlinear modes,
Eq. (3), contains terms associated to quasilinear (induced
emission) and to nonlinear effects. The term with 'yé”
represents the quasilinear effect, and the term with vt"
represents the effect of wave-particle scattering [11, 42].


http://dx.doi.org/10.1063/1.4953898

| This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

tlie evaluation of various objects defined in Egs.

I ) and (6), we utilize

Publishing
Ugq ={(n =1 (@a—a)] +n¢*[a-(qa—d)]
+n(n—1)]a—d|*(q- q’)}2
x [n2(n—1)%qq |[a —q'] 7, (7)
¢ (q —q, 2k - ZL,(”—”) ‘2

2
=4 [(z(’;‘” — zL/("_l) — 2Lt )

q q—q’

2
+mES_ o e_%q*q’} ) (8)

_9 /L L(n—1)
Ree (qfq,zq"fzq, )

with

L1
q—q’

S la—d|

z

gq*q’

In the limit |4,/ >> 1, Egs. (8) and (9) are
respectively, by

rin_ Ln-1)\|?
e(q_q’zqn_z‘l' )‘ \
N L L(n—1) 2
_4(zq”—zq, -z ,

Ree 2 (q —q, zé’"

and therefore Egs. (5) fl (
a

imated expressions th
[11] and equation (
The set of equa

In the above a = e denote the electrons, and a = ¢ stands
for the ions. The dispersion relations for plasma normal

modes L and S in terms of non-dimensional variables are
given by the following expressions:

. 32 1/2
Zq:<1+2q) )

s qA
S e — 1
K ErTrE "

where /
1/2 N 1/2
A= LAy (3
\[ i Te

veés, the dispersion relation may be
6):

NGl 5 n? P a’ L(n—1) cL(n—1)
' €q = St(n—1) q dq,q Ky a’ :
»

Tak'g}_ nto account that ué" =1forn=1,2,...,and
tha (11 = 0, the following form can be obtained:
n 1 712 3. n L(n-1)
fa= 3= D) /d qagq &y , (15)

\ with the function g given in the following form:
—

1 n2 _
2 n 3 n L(n—1)
e AT
12 o 0n/—1>\2
y (q 2q q kEnlDe>. (16)
k/

At this point, some qualitative comments can be made
about the time evolution of harmonic modes. For the
initial stages of the time evolution, when the wave inten-
sity satisfies the condition 55,("71) < (zé” - zg,(nfl) —

zglq,)z, the linear part of kinetic equation (6) must be

dominant [11],

a(c/’Ln
ol gl (17)

For continued evolution, it was predicted in Ref. [11] that

the system would attain Eé,(nfl) > (zbm - zg,(nfl) -
2l )2, so that [nf™| >> 1, and that the effect of scat-
tering would become dominant, so that for late stages in
the time evolution of the system the kinetic equation for

harmonics waves could be approximated as follows:

agén Z/L"

~ Y4 cin
or ngm 4
Ln L(n—1)
o W/du fa 7 (a—dq) 0%,
(a—a')? du

xé[zgn _ R (a—4q')-ul&q. (18)
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‘ s bpab( ve conjecture is one of the questions that the

Tesent paper seeks to address. In the equation for the

PUb|I§JHI<18 listribution functions, the term with g describes

the eiiects of spontaneous fluctuations, and the term with
the velocity derivative describes the quasilinear diffusion
process. For more details on the derivation of the above
equations, the reader is referred to Refs. [13], [12], and
[11].

III. NUMERICAL ANALYSIS

The objective of the present paper is to investigate the
initial configurations that are such that ions are consid-
ered stationary, and electrons as well as the waves evolve
in time. The ion distribution in 2D velocity space in
dimensionless form is given by

Xp (—miTeu2> . (19)

me 1T;

1T, m;

P. —_e'
1(11) s Tz Me ¢
The initial electron distribution function is assumed to
be made of a Maxwellian background population and a

forward-propagating beam component, with number de

sity assigned by n¢. In 2D and dimensionless variables peragure T, /T; = 7.0.

the electron distribution is given as follows: Initially, we consider the case in which the relative
de

chosen in such a

way that it guarantees t dwift felocity for the total
electron distribution, i.c., vise —(nyvy)/(ng — ny).

GP)he noral modes are given by
ions, obtained from the balance be-
ntaneous effects, assuming the
namic equilibrium,

drift velocity for the b?gr nd vg i
ne

- exp (~C2) + 02 exp (~pG3)
252§ exp (=G3) + (T./T) p72 exp (=p3)’

g\2 _
) p=——. (21)

Yz):\ ¢’ me T

For theyharmonic waves, the initial spectra can be esti-
mated using the following expression [11]:

n(9/4+T1
[(n? — 1§U/2 _+3/)2]2 ¥ =€57(0),  (22)

£4"(0) =

where T' = 47xUe2U" U = Vp /v, with V; being the
beam velocity. For the present analysis, we will include
only the effect of the harmonic n = 2, and we will use
the notation IV to denote the harmonic waves.

The set of equations (1)-(3) for the waves (L, S, and N)
and Eq. (12) for the electrons are solved in 2D wave num-
ber space and 2D velocity space, by employing a splitting
method with fixed time step for the evolution of the dis-
tribution and a Runge-Kutta method with the same fixed
time step for the Waxzzquations. The ion distribution is
assumed to be fixed “alo
system.

For all the nu
quently, we us
We employ

all the time evolution of the

'ia examples to be discussed subse-

515
0.6, an < q) = kjvge/wp, < 0.6. For
the velociti ¢use a 51x101 grid for the (ui,u|) =

(v /vfe, O/ Vee ace, covering the velocity range 0 <
Ul =L/ Ve 12 and —12 < | = v||/vte < 12. For

subsequent numerical solutions, we assume the plasma
%;imeter given by (ﬁ)\?b)fl = 5.0 x 1073, and assume
t the beam velocity is vf/vte = 5.0, with beam tem-

ratute s /T. = 1.0 and ratio of electron and ion tem-

ity of the beam is ns/n. = 2.0 x 107%. For this

\ase, in Figure 1 we present the normalized intensity of

the spectrum of L waves, as a function of the compo-
nents of the normalized wavenumber, ¢, = k, vy /w, and
q| = kjvse/wp, in vertical logarithmic scale, taking into
account only spontaneous and induced emission in Eq.
(1). Figure 1(a) shows the spectrum at 7 = 500, Fig-
ure 1(b) the case of 7 = 1,000, Figure 1(c) the case of
7 = 2,000, and Figure 1(d) the case of 7 = 4,000. The
sequence of figures shows the growth of the primary peak
of Langmuir waves, at ¢ ~ 0.2, which is the position of
the wave-particle resonance with the beam particles. The
peak starts to grow at early time and is seen to grow be-
tween 7 = 500 and 7 = 1,000, and appears stabilized
after 7 = 1, 000.

In Figure 2 we present the normalized intensity of the
spectrum of N waves, also as a function of the compo-
nents of the normalized wavenumber, ¢, and g, in ver-
tical logarithmic scale. For the evolution of N waves as
shown in Figure 2, we have taken into account only the in-
duced emission term, in Eq. (3). The spectrum of N wave
at 7 = 500 is shown in Figure 2(a), at 7 = 1,000 in Fig-
ure 2(b), at 7 = 2,000 in Figure 2(c), and at 7 = 4,000
in Figure 2(d). The sequence of figures shows the fast
growth of the peak corresponding to harmonic waves, at
q == 0.5, which is the position of the wave-particle res-
onance between the harmonic waves of frequency given
by zc]lv with the beam particles, and also shows the de-
cay of the initial spectrum in the region adjacent to the
peak, due to Landau damping. It is to be noted that the
region with ¢ < 0 remains unchanged, because we have
not included in the theory the possibility of evolution
of backward propagating harmonic waves, based on the
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|S at backward harmonic waves have not been seen in
gmerical simulations [28, 31], or at least the backward

PUb“l§" hﬂgi: waves are much more weaker in comparison

with the forward N waves [43]. Since the N mode spec-
tra for negative ¢ do not change from their initial lev-
els, we chose to plot the results only over positive range,
0.2 < g < 1. The peak seems to attain maximum height
between 7 = 1,000 and 2,000, Figures 2(b) and 2(c),
while the damping continues to occur, with considerable
evolution being noticeable between Figures 2(c) and 2(d).

In Figures 3 and 4 we present results which are similar
to those presented in Figures 1 and 2, with the difference
that in the case of Figures 3 and 4 we add the effect of
the scattering to the equations for wave evolution. The
results are also presented for the values of 7 = 500, 1,000,
2,000, and 4,000, corresponding to panels (a), (b), (c),
and (d), respectively.

In Figure 3 we wee the evolution of L waves. Panel (a)
shows the spectrum at 7 = 500, with the primary peak
of L waves very well defined, similar to what was seen
in Figure 1(a). At 7 = 1,000, Figure 3(b), one already
notices the presence of backward propagating waves and
formation of a ring-like structure in wavenumber space,
as already reported previously, in studies that did not i

clude the presence of harmonic waves [45]. These featt&i\
ar

become more conspicuous along time evolution, and
seen fully developed at 7 = 4,000, in panel (d) of
3.

The evolution of the harmonic waves in the }?me
of induced emission and scattering is seenfin Figure 4=
The four panels of Figure 4 are very similar %o“he corre-
sponding panels of Figure 2, indicatingsthat, for the case
considered, the scattering has not produce ticeable
effects in the evolution of IV waves, even after a time in-
terval, from 0 to 4,000, in which gignificant effects due to
scattering have been seen in théspectrum of L waves.

In Figure 5 we show res 1
higher beam density, by co
In Figure 5 top panel we show the spegtrum of L waves at
7 = 4,000, obtained byftaking in
neous and induced e i

igsion processes in Eq. (1). Despite
e evolution“of the primary peak of
ase of higher beam density (not
tween Figure 5 (top) and Fig-
thepeaks obtained at 7 = 4,000
The difference is that the peak is
/ider ingthe“case of higher beam density. The

wav& obtained at 7 = 4,000, when scat-
0 taken into account in the evolution
, is séen in Figure 5 (bottom panel). The spec-
ined’is similar to that obtained in the case of
r density beam, Figure 3(d), but in addition to wider
forway p@k, the case of higher beam density features
onounced peak of backward waves and more pro-
nounced ring-like feature in wavenumber space.

The corresponding spectra obtained for N waves are
superposed in Figures 5 (top), without scattering, and 5
(bottom), with scattering taken into account. As already

ure 1(d) shows
have simil
somewhat

noticed in the case of lower density beam, the presence
of scattering has not produced significant effects on the
time evolution of the harmonic waves. Note that Fig.
5 (bottom) compares quite reasonably with Figures 3(b)
and 3(c) of Ref. [43], which show the 2D spectrum of
fundamental and second harmonic electric field.

In Figure 6 we show the spectra of L and N waves
as a function of absolute value of the normalized wave
number, g, obtained after integration over the pitch-angle
in wavenumber spac{ In all the four panels of Figure
6 one finds plotted ‘eur
200, 500, 1,000,
The curve for 7 =

corresponding to 7 = 100,
3,000,,4,000, 5,000, and 6,000.
004s denoted in green, the curve for

000 appears in red. The other
7 = 200, 500, 2,000, 4,000, and

nyg/ne= 2.0 x40
neous ang induced emission processes in Eq. (1), and only
i@‘ced processes in Eq. (3). The peak in the spectrum
0 waves starts to grow in the region slightly above
= 0.2, grows regularly until attaining maximum value
time 7 = 3,000, and then starts a slow decrease,
whilg undergoing a slight broadening process, as seen in

re 1. The peak of N waves appears as broad per-
turbation for 7 = 100, but then grows around the value
q ~ 0.65, attaining maximum value near 7 = 4,000, and
then starting to decrease very slowly. The maximum
height attained by the peak in N waves is seen to be
about 1/20 of the maximum of the L wave peak.

The results obtained for ns/n. = 2.0 x 107% when
scattering effects are also taken into account are seen in
Fig. 6(b). The results obtained are very similar to those
obtained when the scattering effects were neglected, ap-
pearing in panel (a). Particularly, the spectra of N waves
can hardly be distinguished, in the scale of the figure. In
the case of L waves, the ring-like structure formed in
wavenumber space by effect of scattering appears as an
enhancement of the spectrum in the region of ¢ < 0.2,
seen in Figure 6(b) and not seen in Figure 6(a).

, by taking into account only sponta-

In Figures 6(c) and 6(d) we show results obtained
considering the case of higher beam density, nys/n. =
6.0 x 10~*. The results appearing in Figure 6(c) we ob-
tained without taking into account scattering effects in
the time evolution of the waves, while those in Figure
6(d) were obtained with scattering effects taken into ac-
count. The comparison between the results appearing in
panels (c¢) and (d) and those appearing in panels (a) and
(b) show that the time evolution is faster in the case of
higher density beam, so that the late evolution on the
system accumulates considerable difference between the
two cases. Figure 6(c) shows that the maximum in the L
spectrum is attained for 7 near the value 7 = 1,000, and
that the peak in the spectrum decreases considerably af-
terwards, up the final time of 7 = 6,000 which has been
shown in the figure.

The comparison between Figure 6(c) and Figure 6(d)
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‘ s E]Pth 't the presence of scattering caused considerable
3t,

ortion in the wave spectrum at later times, in addi-

Publ |§(th he presence of the ring-like which enhances the

spectrum in the region of small wavenumber. On the
other hand, Figures 6(c) and (d) show that the growth
of N waves is such that they attain maximum height for
7 between 2,000 and 3,000, before decreasing. It is in-
teresting to point out that, for 7 < 1,000, the curves
obtained for N waves without taking into account the
scattering and with scattering are basically the same.
For 7 in the range 2,000 < 7 < 5,000, it is seen from
panels (c) and (d) of Figure 6 that the peak of N waves
obtained with scattering is slightly lower than the peak
obtained without including the effect of scattering. How-
ever, for 7 = 6,000, it is seen that the peak obtained with
scattering, in Figure 6(d), is somewhat higher than the
peak appearing in Figure 6(c), obtained without scatter-
ing. This feature has to be more carefully investigated,
in order to see if it is due to a real physical process, or if
it is due to numerical instability appearing at late stages
of the time evolution.

Figure 6 features two other panels, in which we present
results obtained from the numerical solution of the sys-
tem of coupled equations, including also effects of thre
wave decay in the equation for evolution of L an
waves. That is, for the results shown in figures 6(

6(f), the evolution of L waves suffers the 1nﬂu
spontaneous and induced emission, three wave decay a
scattering, the evolution of S waves the influence,o on—

taneous and induced emission and three-wage dec anﬁ\
the evolution of N waves occurs under theyinfluenee of
induced emission and scattering. Figure 6(e)\shows the
results obtained for L and N waves, for sev values of
normalized 7, considering the case of ny/n. 1074,

The comparison with the results 1in figure'6(b), ob-
tained for the same parameters_without, taking into ac-
count the effect of three-wavg' decay for L and S waves,
shows that the effect of t e three-wayé decay term is
barely noticeable in the dted s 1f>ec’51ra of L waves.

In figure 6(f) we show nlar uls, obtained for the
\{)ﬁco parison with figure
1e parameters, shows that the

case ny/ne = 6.0 x 10
6(d), obtained for
early time evolutio 1te similar in both cases, but
for late time itds quite*moticeable in figure 6(f) the en-
hancement of L#pectrum which occurs in the case of
addition of ghxge- dgcay and scattering effects.

e present bome results concern—

of the harmonic waves. We present
efficients as a function of the absolute value of
ized wavenumber, after integration over the
ctor pitch angle. The coefficient associated to
m\l‘ng or growth by quasilinear processes will be
denom 1ated as Wév , the coeflicient associated to scat-

tering is Z/q , and the coefficient which appears at the
denominator of both the quasilinear and the scattering
term in Eq. (3) will be denoted by név. In Fig. 7 these co-

efficients are depicted for several values of the normalized

time, 7 = 100, 200, 500, 1,000, 2,000, 3,000, 4,000, 5,000,
and 6,000. We consider two cases of the beam relative
density, with other parameters as in Fig. 1.

Figure 7(a) shows 7)Y vs. ¢, for the case ns/n. =
2.0 x 1072, The case of 7 = 100 is representative of the
early time of wave evolution. It is seen that for small ¢
there is negligible damping, due to resonance with the
very small population at the tail of the distribution. For
0.3 < ¢ < 0.6 there is more significant damping, at the

&

far extreme of the béam, and for 0,6 < ¢ < 0.9 the
i tes wave growth. For larger
' becomies again very significant,

N

b
ith particles of the Maxwellian part of
Figuge 7(a) shows that along the time
f wave growth is displaced toward
q. ween 7 = 500 and 7 = 1,000 the

positive value of =,
values of ¢, the d
due to resonance
the distributio

evolution t

th dlstrlbutlon function. Shortly after
of harmonic starts to be reabsorbed by
s indicated by the negative values of v for
lues of q, in the curves depicting the situation at
— & and beyond. This is because the flat plateau
n in the 1D projection of the distribution function,
len parallel direction. In 2D space, there is always
ns of negative derivatives around the position of the
beam in velocity space, which dominate the evolution
after the positive derivatives in the region of the beam
are flattened out.

In Figure 7(b) we have information about the time evo-
lution of 7q vs. ¢, in the case of higher beam density,
nf/ne = 6.0 x 1074, It is seen that qualitatively the re-
sults are similar to those appearing in Figure 7(a), except
that the maximum growth or damping rates are larger,
and the time evolution is faster. The maximum growth
coefficient is seen to occur for 7 ~ 200 in Figure 7(b),
with significant reduction of the growth already seen in
the case of 7 = 500, as depicted by the blue line.

The evolution of v, the coefficient associated to scat-
tering, is seen in Figures 7(c) and 7(d). It is seen that
the scattering coefficient is negative for all values of ¢, in-
dicating that the scattering effect contributes to deplete
the peak of harmonic waves, spreading the wave intensity.
However, it is seen that the effect is weak, as compared
to the quasﬂlnear effect (|2 /~vE| ~ 10~ ) In the case
of lower beam density, in Figure 7(c), it is seen that the
maximum absolute value of v is attained for 7 ~ 3, 000,
approximately the time of the maximum of the spectrum
of N waves, and that this maximum absolute value is
smaller than the maximum absolute value of ’yév at cor-
responding time. Similar comments can be made about
the results obtained in the case of higher density beam,
as depicted in Fig. 7(d).

The values of the coefficient név , vs. q, for several val-
ues of 7, appear in Figure 7(e) and 7(f). For the case of
nf/ne = 2.0x107%, seen in Figure 7(e), it is seen that the
quantity 7 features a peak which coincides with the lo-
cation of the peak of N waves in wavenumber space, and
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'he maximum value is attained for 7 ~ 3,000, about

.thie time of the maximum value of the wave spectra. For
PUb“’S‘hd @& it is seen that the absolute value of név is in-
deed very small, which, together with the corresponding
small value of |Vév [, confirms the conjecture presented in
Eq. (17). However, Figure 7(e) shows that the maximum
value of 77,]1\’ never surpasses the value 4.5 x 1073, which
means that the numerical analysis made in two dimen-
sions has not confirmed the conjecture made in Ref. [11]
and presented in Eq. (18). Comments which are qual-
itatively similar can be made for higher beam density,
except that the evolution is faster and the maximum at-
tained by 'yév is larger, being about 1.8 x 1072 in the case
of ng/n. = 6.0 x 107, shown in Figure 7(f).

Hence, we conclude that the main saturation mecha-
nism for the nonlinear eigenmode is the quasilinear pro-
cess of plateau formation in the electron distribution
function, with the consequent arrest of the weak-beam
instability.

Al

IV. SUMMARY

In the present paper we have presented results of n
merical analysis of the generalized weak turbulence

normal electrostatic modes, which are Langmuil
ion-acoustic waves, and also the occurrence of fharmo
waves with frequency which is about twice the
of fundamental Langmuir waves. The wave equg
were solved along with the equation for ti VO
of the electron distribution function, providi at is
possibly the first examples of self-consis lution of

ory in two dimensional space, taking into accou tbthl&
Q\
Cy

ing, or nonlinear Landaudda
into account the mechahi attering and induced

ns o

emission, along with the %eous emission effect, in

the equation for t e\%?tion fundamental Langmuir
ntane

waves, and the s us and induced emission effects

/

i

in the equation for ion-acoustic waves, where the scatter-
ing effect is regarded as negligible.

Reference [43] contains a Figure that shows the 2D
spectrum of L and N modes, where while I mode and
N mode spectra are similar in overall shape, N mode
spectra occupy a broader range of k space. Such a fea-
ture has not been theoretically explained. The results
obtained show the growth of a peak of harmonic electro-
static waves, with width in wavenumber which is com-
parable to the widtlﬁ?the primary peak of Langmuir
waves. Such a 2D spectral feature cannot be discussed
in the one-dimen: 'oxﬂjfrxppr imation, and is consistent
with results obtaimed svith direct numerical simulation

urpose of “the present investigation had
tlé\ypot sis put forth in Ref. [11], in which
ed“that early dynamical evolution of N
ring should dominate. According to the

. the effect of scattering has been seen to

e very small'in the case of harmonic waves, whose evo-

luti is‘y)minated by the induced emission effect. This
\glig_ontradicts the speculation in Ref. [11].
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AIEIG. 1: Normalized L wave intensity, vs ¢. = k1 v /wp and

Pub“(gh'ﬂfgzrte /wp, in vertical logarithmic scale, taking into ac-

connt &rly spontaneous and induced emission in the equa-
tion for L wave evolution. (a) 7 = 500; (b) = = 1,000;
(¢) 7 = 2,000; (d) 7 = 4,000. Input parameters are
ng/ne = 2.0 x 107%, vy /ve = 5.0, Ty /T. = 1.0, T./T; = 7.0,
(Axg) ' =5.0x 1072,

FIG. 2: Normalized N wave intensity, vs g1 = k1 v¢e/wp and
q| = k|Vte/wp, in vertical logarithmic scale, taking into ac-
count only induced emission in the equation for N wave evo-
lution. (a) 7 = 500; (b) 7 = 1,000; (c) 7 = 2,000; (d)
7 = 4,000. Input parameters are the same as in Figure 1.

FIG. 3: Normalized L wave intensity, vs ¢1 = ki v¢e/wp and
q| = k|Vte/wp, in vertical logarithmic scale, taking into ac-
count spontaneous and induced emission and scattering in
the equation for evolution of the L wave. (a) 7 = 500; (b)
7 =1,000; (c) 7 = 2,000; (d) 7 = 4,000. Input parameters
are the same as in Figure 1.


http://dx.doi.org/10.1063/1.4953898

11

| This manuscript was accepted by Phys. Plasmas. Click here to see the version of record. |

AIEEIG. 4: Normalized N wave intensity, vs g1 = k1 v¢e /wp and

Publizgh:'ﬂfgzrbe /wp, in vertical logarithmic scale, taking into ac-

connt Shontaneous and induced emission and scattering in
the equation for evolution of the N wave. (a) 7 = 500; (b)
7 =1,000; (c) 7 = 2,000; (d) 7 = 4,000. Input parameters
are the same as in Figure 1.

FIG. 5: Contour plots for normalized wave intemsities, vs
g1 = kivie/wp and q = kjvie/w 4,000. The beam
density is such that ny/n. = 6 0~*, and other param-
eters are as in Figure 1. (top){L wavejsgbtdined taking into

account only spontaneous a: 'ndpéed emission in the equa-
tion for L wave evolutio%d ave,/obtained taking into
n

account only the effect o ced e 1on in the equation for
N obtained taking into ac-
iﬁ%ced entission and wave scattering
vé evolution, and N wave, obtained
emission and wave scattering in

N wave evolution. (bo,
count spontaneous
in the equation fo
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s, as described by Eq. (3), vs. normal-

3, for several values of 7 (100, 200, 500, 1,000,
2,000, 3 00, 5,000, 6,000). (a) 7Y vs. q, ny/n. =
9 . N _ -4, N

. Vg VS. 4, ng/ne = 6.0 x 107% (c) v, vs. q,

2.0 107 % (d) vy vs. q, ny/ne = 6.0x107%; (e) nY
vs. q, Ry /ne = 2.0 x 1074 (£) n) vs. q, ng/ne = 6.0 x 107,
Other parameters are as in Figure 1.
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