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Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas,
first observed in early laboratory beam-plasma experiments as well as in rocket-borne active exper-
iments in space. However, their unequivocal presence was confirmed through computer simulated
experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves
is that while their existence requires nonlinear response, their excitation mechanism and subsequent
early time evolution are governed by essentially linear process. One of the unresolved theoretical is-
sues regards the role of nonlinear wave-particle interaction process over longer evolution time period.
Another outstanding issue is that existing theories for these modes are limited to one-dimensional
space. The present paper carries out two dimensional theoretical analysis of fundamental and
(first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave
is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays
no significant role in the time evolution of the wave spectrum. The numerical solutions of the
two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be
consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

I. INTRODUCTION

In collisionless kinetic theory, plasmas are described
by Maxwell equations for the electric and magnetic fields
and Vlasov equations for the distribution functions of dif-
ferent species of particles contained in the plasma. The
Vlasov-Maxwell system of equations is a complex sys-
tem, frequently discussed in the context of approxima-
tions, such as the linear and quasilinear approximations.
Under the linear approximation, one obtains dispersion
relations which lead to the identification of the modes of
oscillation that are excited and propagate in the plasma
system. For instance, the linear dispersion relations lead
to the identification of high frequency electrostatic waves,
associated with electron oscillations, which are known
as Langmuir waves (L), and also to the identification of
lower frequency electrostatic oscillations in which both
ions and electrons participate, which are known as ion-
acoustic waves (S). For magnetized plasmas, the linear
dispersion relations also lead to a bewildering array of
small-amplitude oscillations, one of the most well-known
example being the low-frequency electromagnetic oscilla-
tions, known as Alfvén wave, for instance.

In addition to information regarding the relationship
between wave number and real frequency, the linear dis-
persion relations also contain information on the imagi-
nary parts of the wave frequencies, which describe damp-
ing or growth of waves due to resonance between waves
and particles. However, the linear approximation does
not have dynamical information concerning the time evo-
lution, for which one must go beyond linear theory, the
lowest order theory being the quasilinear theory. The
next-order theory is known as the weak turbulence the-
ory (WT), developed in the time period between late
1950s to early 1970s, in which important contributions
were made by scientists of the former Soviet Union [1–9].
More recently, the formalism of the WT theory was revis-

ited ab initio [10], initially without considering the effects
of single-particle fluctuations, but later by incorporating
these effects [11]. The formalism was subsequently ex-
tended to include the effects of electromagnetic oscilla-
tions [12, 13]. More recently, the electrostatic part of the
renewed formalism was further extended to incorporate
effects due to binary interactions of particles, leading to
a collisional term in the equations for the particle distri-
butions, and to new terms in the equations for the time
evolution of wave amplitudes, identified with the physical
processes of collisional damping, spontaneous emission of
electrostatic waves by binary particle interactions, and ef-
fects due to binary particle interactions in the processes
of wave scattering [14, 15].

The reformulation of the WT theory, which was pre-
sented in Ref. [10] included the presence of electro-
static waves with frequency close to 2ωpe, where ωpe =

(4πn̂e2/me)
1/2 is the plasma frequency of electrons, n̂ be-

ing the ambient plasma density, e and me being the unit
electric charge and electron mass, respectively. These
waves were identified as the harmonic of L waves, and
the formalism led to a set of coupled equations for de-
scription of the evolution of L waves, fundamental and
harmonic, S waves, and particles [10]. The S waves and L
wave at the fundamental frequency are normal modes of
the plasma, predicted by linear dispersion relations, but
the harmonic of L wave is not a solution to the linear
dispersion relation, but rather, its presence can only be
described if one includes nonlinear correction to the linear
dispersion relation. In subsequent papers, higher order
electrostatic harmonics were also discussed [11, 16–18].
These theoretical developments provided support to the
recognized occurrence of nωpe electrostatic perturbations
as virtual modes excited in weakly turbulent plasmas.

The excitations of such modes were first detected in
early laboratory beam-plasma experiments [19–23], and
also in space-borne rocket active experiment [24]. How-
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ever, the above-referenced early works did not realize
the peculiarity of harmonic electrostatic modes. In-
stead, interpretations tended to regard these excitations
as related to customary nonlinear phenomena such as
wave trapping. The strange behavior associated with
the harmonic L modes did not fully exhibit itself un-
til the phenomenon was observed in computer simulated
experiments [25–31]. Unlike typical nonlinear phenom-
ena, which do not manifest themselves unless the wave
amplitude that drives these phenomena exceeds certain
threshold, the electrostatic harmonics are excited very
early on during the beam-plasma instability process. In
fact, the growth rate of the nth harmonic mode is higher
than the fundamental Lmode growth rate by roughly the
multiple of n. Subsequent time development and satu-
ration are dictated by essentially (quasi) linear theory.
These behaviors are well described by the theory that
interpret these modes as solutions to nonlinear disper-
sion relation, but their dynamics as being governed by
quasilinear theory [16–18].

Space observations show that multiple harmonic elec-
tron plasma frequency fluctuations are often seen in the
Earth’s collisionless bow shock environment and even in
interplanetary type III radio burst source region [32–
36]. While alternative interpretations for the occurrence
of these emissions are possible, more recent simulation
studies confirm the ubiquitous excitations of harmonic L
mode during beam-plasma instability process [37–39].

A hitherto unanswered question concerning the possi-
ble occurrence of both electrostatic and electromagnetic
harmonics was addressed in another paper [40], which
lead to the conclusion that both modes are indepen-
dent solutions [40]. Indeed, in related works in which
two-dimensional electromagnetic particle-in-cell simula-
tion code was employed, Refs. [30] and [43] demonstrate
that both electric and magnetic field fluctuations are
characterized by multiple harmonic spectra.

To the best of our knowledge, numerical analysis of
the generalized WT theory including the effect of elec-
trostatic harmonics have been made only in the context
of one-dimensional analysis (1D). The first published ap-
plication that made use of the formalism presented in
Ref. [10] appeared in the year 2002, with the discussion
of the time evolution of beam-plasma instability, taking
into account fundamental and harmonics L waves and
S waves, and by incorporating quasilinear effect of in-
duced emission and the nonlinear effects of three-wave
decay and scattering [41]. Reference [41] did not take
into account spontaneous effects, included in the general
formalism after Ref. [11], but only collective nonlinear ef-
fects. Shortly after Ref. [11], discrete-particle effects were
incorporated in Ref. [42], but the analysis still pertained
to 1D approximation.

On the other hand, a two-dimensional (2D) formula-
tion has been used by some of us for the analysis of differ-
ent aspects of the beam-plasma interaction, but always
focusing on the time evolution of the particle distribu-
tion functions and of the amplitudes of normal modes

predicted by linear theory. We have started these 2D
analysis in the year 2008, discussing the evolution of the
electrostatic modes [44, 45], and have continued with the
subject along subsequent years. In some of the more
recent works, we have also considered electromagnetic
waves into the WT analysis, and discussed the emission of
electromagnetic waves by nonlinear processes, consider-
ing the paradigmatic case of the plasma emission [46, 47],
and also the possibility of emission without the presence
of a beam [48, 49].

The 2D analysis provides information and insights that
are not immediately available with 1D analysis. There
are certain features such as the time scales of different
nonlinear processes, which may be adequately addressed
by 1D analysis, other features such as the angular distri-
bution of the radiation by plasma emission, for instance,
can be learned only through a 2D formulation. Another
example may be the isotropization of L waves in 2D k
space, which could not have been predicted by 1D anal-
ysis [44, 45].

The purpose of the present paper is to perform 2D
analysis of the beam-plasma instability process including
the nonlinear eigenmode, i.e., the first harmonic L mode,
or 2ωpe electrostatic mode, for the first time. The present
investigation aims to address a specific issue related to
the nonlinear 2ωpe electrostatic mode excitation, but the
general 2D solution is useful in and of itself. For instance,
one may compare the present theory with some simula-
tion results already available in the literature. Specifi-
cally, Ref. [43] contains Figures 3(b) and 3(c) that show
the 2D spectrum of fundamental and second harmonic
electric field fluctuation. Similar result is also found in
Ref. [30]. The present 2D calculation can be directly
compared against such results. The specific issue that
the present paper aims to address concerns a theoretical
conjecture presented in Ref. [11], where it was specu-
lated that the early dynamical evolution of 2ωpe mode
should follow the dictates of quasilinear theory, but for
later times, nonlinear wave-particle interaction process,
that is, induced scattering, should dominate. The present
analysis seeks to test this hypothesis.

In the present paper we present and briefly discuss the
basic equations of WT theory, which will be employed in
order to describe the time evolution of the particle distri-
butions and electrostatic modes, including the harmonics
of the L waves, and obtain the 2D versions of these equa-
tions. These 2D equations will therefore be utilized for
numerical analysis of the beam-plasma instability. For
simplicity of this first analysis, which includes the effect
of L harmonics in 2D, we restrict ourselves to a formula-
tion that does not consider electromagnetic effects, and
also neglect the effects of harmonics higher than n = 2.

The structure of the paper is as follows: In Sec. II
we briefly describe the theoretical formulation and the
setup for the numerical analysis. Section III presents the
results of numerical analysis. We summarize our findings
in Sec. IV.
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II. THEORETICAL FORMULATION AND
NUMERICAL SETUP

For the purpose of the present paper, we start from a
general self-consistent set of equations that include only
the effect of electrostatic waves, as they have appeared
in Ref. [13]. We present here these equations using non-
dimensional variables, which are more suitable for nu-
merical analysis,

z ≡ ω

ωpe
, τ ≡ tωpe, q ≡ kvte

ωpe
, u ≡ v

vte
,

where vte = (2Te/me)
1/2 is electron thermal speed, Te

being the temperature defined in energy unit, and we
also utilize normalized distribution functions and wave
spectra,

Φa(u) = v3teFa(v), Eσα
q =

(2π)2g

mev2te

Iσαk

µα
k

.

Moreover, we define some useful quantities,

µL
q = 1 , µS

q =
q3

23/2

√
me

mi

(
1 +

3Ti

Te

)1/2

,

λ2
De =

Te

4πn̂e2
=

v2te
2ω2

pe

, g =
1

23/2 (4π)2 n̂ λ3
De

.

In the above λDe = [Te/(4πn̂e
2)]1/2 is the Debye length

such that 1/(n̂λ3
De) represents the plasma parameter.

The equation for the time evolution of the fundamental
L wave can be written in dimensionless form as follows:

∂EσL
q

∂τ
=

{
µL
q

π

q2

∫
du δ(σzLq − q · u)

×
(
gΦe(u) + (σzLq ) q · ∂Φe(u)

∂u
EσL
q

)}
Lql

+

2σµL
q zLq

∑
σ′,σ′′=±1

∫
dq′ µ

L
q′ µS

q−q′ (q · q′)2

q2 q′2 |q− q′|2

×
[
σzLq Eσ′L

q′ Eσ′′S
q−q′ −

(
σ′zLq′ Eσ′′S

q−q′

+σ′′zLq−q′ Eσ′L
q′

)
EσL
q

]
× δ(σzLq − σ′zLq′ − σ′′zSq−q′)

}
LdLS

+

{
σzLq

∑
σ′

∫
dq′
∫

du
µL
q µL

q′ (q · q′)2

q2 q′2

× δ[σzLq − σ′zLq′ − (q− q′) · u]

×
[
g
(
σzLq Eσ′L

q′ − σ′zLq′ EσL
q

)
[Φe(u) + Φi(u)]

+
me

mi
Eσ′L
q′ EσL

q (q− q′) · ∂Φi(u)

∂u

]}
LsLL

. (1)

The terms appearing in Eq. (1) can be described as
follows. The first term on the right-hand side, enclosed

within the large curly brackets, is denoted by subscript
Lql. It describes the spontaneous emission and quasilin-
ear (i.e., induced emission) effects for the L mode. The
second term describes the effects of three-wave decay in-
volving L and S mode waves, and is denoted as LdLS.
The third term stands for the scattering process involving
L waves, and its designation is LsLL.

For S mode, the normalized dynamical equation is the
following:

∂EσS
q

∂τ
=

{
µS
q

π

q2

∫
du δ(σzSq − q · u)

×
[
g[Φe(u) + Φi(u)] + (σzLq )

(
q · ∂Φe(u)

∂u

+
me

mi
q · ∂Φi(u)

∂u

)
EσS
q

]}
Sql

+

σzLq
∑
σ′,σ′′

∫
dq′ µ

S
q µL

q′ µL
q−q′ [q′ · (q− q′)]2

q2 q′2 |q− q′|2

×
[
σzLq Eσ′L

q′ Eσ′′L
q−q′ −

(
σ′zLq′ Eσ′′L

q−q′

+σ′′zLq−q′ Eσ′L
q′

)
EσS
q

]
× δ(σzSq − σ′zLq′ − σ′′zLq−q′)

}
SdLL

. (2)

The first term at the right-hand side of Eq. (2) de-
scribes the spontaneous emission and quasilinear effects,
and is denoted as Sql. The second term describes the
three-wave decay process and is designated by SdLL.

For the harmonics of L waves, the time evolution equa-
tion is as follows [11, 42]:

∂ELn
q

∂τ
=

γLn
q + νLn

q

1 + ηLn
q

ELn
q , (3)

where

γLn
q = n2 π

q2

∫
du zLn

q q · ∂Φ(u)
∂u

δ(σzLn
q − q · u), (4)

νLn
q = n3

∫
dq′

anq,q′ µ
L(n−1)
q′

(
zLn
q − z

L(n−1)
q′

)
∣∣∣ϵ(q− q′, zLn

q − z
L(n−1)
q′ )

∣∣∣2
×EL(n−1)

q′

∫
du

q− q′

|q− q′|2
· ∂Φe

∂u

× δ[zLn
q − z

L(n−1)
q′ − (q− q′) · u], (5)

ηLn
q =

n3

π

∫
dq′ anq,q′ µ′L(n−1)

q EL(n−1)
q′

×Re
[
ϵ−2(q− q′, zLn

q − z
L(n−1)
q′ )

]
. (6)

The equation for the evolution of nonlinear modes,
Eq. (3), contains terms associated to quasilinear (induced
emission) and to nonlinear effects. The term with γLn

q

represents the quasilinear effect, and the term with νLn
q

represents the effect of wave-particle scattering [11, 42].
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For the evaluation of various objects defined in Eqs.
(5) and (6), we utilize

anq,q′ =
{
(n− 1)q2 [q′ · (q− q′)] + nq′2 [q · (q− q′)]

+n(n− 1) |q− q′|2 (q · q′)
}2

×
[
n2(n− 1)2qq′ |q− q′|

]−2
, (7)∣∣∣ϵ(q− q′, zLn

q − z
L(n−1)
q′

)∣∣∣2
= 4

[(
zLn
q − z

L(n−1)
q′ − zL1

q−q′

)2
+πξ6q−q′ e

−2ξ2
q−q′

]
, (8)

Re ϵ−2
(
q− q′, zLn

q − z
L(n−1)
q′

)
=

(
zLn
q − z

L(n−1)
q′ − zL1

q−q′

)2
∣∣∣ϵ(q− q′, zLn

q − z
L(n−1)
q′

)∣∣∣2 , (9)

with

ξq−q′ =
zL1
q−q′

|q− q′|
.

In the limit |ξq,q′ | >> 1, Eqs. (8) and (9) are given,
respectively, by∣∣∣ϵ(q− q′, zLn

q − z
L(n−1)
q′

)∣∣∣2
≃ 4

(
zLn
q − z

L(n−1)
q′ − zL1

q−q′

)2
, (10)

Re ϵ−2
(
q− q′, zLn

q − z
L(n−1)
q′

)
≃ 1

4
(
zLn
q − z

L(n−1)
q′ − zL1

q−q′

)2 , (11)

and therefore Eqs. (5) and (6) are given by the approx-
imated expressions that appear as equation (33) in Ref.
[11] and equation (7) in Ref. [42].
The set of equations which has been obtained for the

amplitudes of electrostatics waves in an unmagnetized
plasma, comprising L, S, and harmonic modes, must be
solved along with the dynamical equations for the parti-
cle distribution functions,

∂Φa(u)

∂τ
=

e2a
e2

m2
e

m2
a

∑
σ

∑
α=L,S

∫
dq

(
q

q
· ∂

∂u

)

×µα
q δ(σzαq − q · u)

(
g
ma

me

σzLq
q

Φa(u)

+Eσα
q

q

q
· ∂Φa(u)

∂u

)
. (12)

In the above a = e denote the electrons, and a = i stands
for the ions. The dispersion relations for plasma normal

modes L and S in terms of non-dimensional variables are
given by the following expressions:

zLq =

(
1 +

3

2
q2
)1/2

,

zSq =
q A

(1 + q2/2)1/2
, (13)

where

A =
1√
2

(
me

mi

)1/2(
1 +

3Ti

Te

)1/2

.

For the harmonic waves, the dispersion relation may be
written as follows [11, 16]:

zLn
q =

(
n+ εnq +

3

4
q2 +

3θnq
εnq

λ2
De

)
, (14)

where

εnq =
1

8π

n2

(n− 1)

∫
d3q′ anq,q′ µ

L(n−1)
q′ EL(n−1)

q′ .

Taking into account that µLn
q = 1 for n = 1, 2, . . ., and

that ε1q = 0, the following form can be obtained:

εnq =
1

8π

n2

(n− 1)

∫
d3q′ anq,q′ EL(n−1)

q′ , (15)

with the function θnq given in the following form:

λ2
Deθ

n
q =

1

8π

n2

(n− 1)

∫
d3q′ anq,q′ EL(n−1)

q′

×
(
q′2 − q · q′

2
+

θn−1
k′ λ2

De

εn−1
k′

)
. (16)

At this point, some qualitative comments can be made
about the time evolution of harmonic modes. For the
initial stages of the time evolution, when the wave inten-

sity satisfies the condition EL(n−1)
q′ ≪ (zLn

q − z
L(n−1)
q′ −

zL1
q−q′)2, the linear part of kinetic equation (6) must be

dominant [11],

∂ELn
q

∂τ
∼ γLn

q ELn
q . (17)

For continued evolution, it was predicted in Ref. [11] that

the system would attain EL(n−1)
q′ ≫ (zLn

q − z
L(n−1)
q′ −

zL1
q−q′)2, so that |ηLn

q | >> 1, and that the effect of scat-
tering would become dominant, so that for late stages in
the time evolution of the system the kinetic equation for
harmonics waves could be approximated as follows:

∂ELn
q

∂τ
≈

νLn
q

ηLn
q

ELn
q

∝ π

∫
du

zLn
q − z

L(n−1)
q′

(q− q′)2
(q− q′) · ∂Φe

∂u

×δ[zLn
q − z

L(n−1)
q′ − (q− q′) · u]Eq. (18)
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The above conjecture is one of the questions that the
present paper seeks to address. In the equation for the
particle distribution functions, the term with g describes
the effects of spontaneous fluctuations, and the term with
the velocity derivative describes the quasilinear diffusion
process. For more details on the derivation of the above
equations, the reader is referred to Refs. [13], [12], and
[11].

III. NUMERICAL ANALYSIS

The objective of the present paper is to investigate the
initial configurations that are such that ions are consid-
ered stationary, and electrons as well as the waves evolve
in time. The ion distribution in 2D velocity space in
dimensionless form is given by

Φi(u) =
1

π

Te

Ti

mi

me
exp

(
−mi

me

Te

Ti
u2

)
. (19)

The initial electron distribution function is assumed to
be made of a Maxwellian background population and a
forward-propagating beam component, with number den-
sity assigned by nf . In 2D and dimensionless variables
the electron distribution is given as follows:

Φe(u, 0) =
1

π

(
1− nf

n0

)
exp

[
−u2

⊥ −
(
u∥ −

v0
vte

)2
]

+
1

π

nf

n0

Te

Tf
exp

{
−Te

Tf

[
u2
⊥ +

(
u∥ −

vf
vtf

)2
]}

.

(20)

Here, vte = (2Te/me)
1/2 and vtf = (2Tf/me)

1/2 are the
background and forward-beam thermal speeds, respec-
tively, and v0, vf are the drift velocities associated with
the background and the forward beam, respectively. The
drift velocity for the background v0 is chosen in such a
way that it guarantees zero net drift velocity for the total
electron distribution, i.e., v0 = −(nfvf )/(n0 − nf ).
The initial spectra of the normal modes are given by

the following expressions, obtained from the balance be-
tween quasilinear and spontaneous effects, assuming the
initial plasmas at thermodynamic equilibrium,

EσL
q (0) =

g

2 (zLq )
2
,

EσS
q (0) =

g

2zLq zSq

exp
(
−ζ2q

)
+ ρ1/2 exp

(
−ρ ζ2q

)
exp

(
−ζ2q

)
+ (Te/Ti) ρ1/2 exp

(
−ρ ζ2q

) ,
ζ2q =

(zSq )
2

q2
, ρ =

mi

me

Te

Ti
. (21)

For the harmonic waves, the initial spectra can be esti-
mated using the following expression [11]:

ELn
q (0) =

n(9/4 + Γ)

[(n2 − 1)U2 − 3/2]2 + Γ
EσL
q (0), (22)

where Γ = 4πU10e−2U2

, U = V0/v
e
th, with V0 being the

beam velocity. For the present analysis, we will include
only the effect of the harmonic n = 2, and we will use
the notation N to denote the harmonic waves.

The set of equations (1)-(3) for the waves (L, S, andN)
and Eq. (12) for the electrons are solved in 2D wave num-
ber space and 2D velocity space, by employing a splitting
method with fixed time step for the evolution of the dis-
tribution and a Runge-Kutta method with the same fixed
time step for the wave equations. The ion distribution is
assumed to be fixed along all the time evolution of the
system.

For all the numerical examples to be discussed subse-
quently, we use the normalized time interval ∆τ = 0.1.
We employ 51×51 grids for q⊥ and q∥, with 0 < q⊥ =
k⊥vte/ωp < 0.6, and 0 < q∥ = k∥vte/ωp < 0.6. For
the velocities, we use a 51×101 grid for the (u⊥, u∥) =
(v⊥/vte, v∥/vte) space, covering the velocity range 0 <
u⊥ = v⊥/vte < 12 and −12 < u∥ = v∥/vte < 12. For
subsequent numerical solutions, we assume the plasma

parameter given by
(
n̂λ3

D

)−1
= 5.0 × 10−3, and assume

that the beam velocity is vf/vte = 5.0, with beam tem-
perature Tf/Te = 1.0 and ratio of electron and ion tem-
perature Te/Ti = 7.0.

Initially, we consider the case in which the relative
density of the beam is nf/ne = 2.0 × 10−4. For this
case, in Figure 1 we present the normalized intensity of
the spectrum of L waves, as a function of the compo-
nents of the normalized wavenumber, q⊥ = k⊥vte/ωp and
q∥ = k∥vte/ωp, in vertical logarithmic scale, taking into
account only spontaneous and induced emission in Eq.
(1). Figure 1(a) shows the spectrum at τ = 500, Fig-
ure 1(b) the case of τ = 1, 000, Figure 1(c) the case of
τ = 2, 000, and Figure 1(d) the case of τ = 4, 000. The
sequence of figures shows the growth of the primary peak
of Langmuir waves, at q∥ ≃ 0.2, which is the position of
the wave-particle resonance with the beam particles. The
peak starts to grow at early time and is seen to grow be-
tween τ = 500 and τ = 1, 000, and appears stabilized
after τ = 1, 000.

In Figure 2 we present the normalized intensity of the
spectrum of N waves, also as a function of the compo-
nents of the normalized wavenumber, q⊥ and q∥, in ver-
tical logarithmic scale. For the evolution of N waves as
shown in Figure 2, we have taken into account only the in-
duced emission term, in Eq. (3). The spectrum ofN wave
at τ = 500 is shown in Figure 2(a), at τ = 1, 000 in Fig-
ure 2(b), at τ = 2, 000 in Figure 2(c), and at τ = 4, 000
in Figure 2(d). The sequence of figures shows the fast
growth of the peak corresponding to harmonic waves, at
q∥ ≃ 0.5, which is the position of the wave-particle res-
onance between the harmonic waves of frequency given
by zNq with the beam particles, and also shows the de-
cay of the initial spectrum in the region adjacent to the
peak, due to Landau damping. It is to be noted that the
region with q∥ < 0 remains unchanged, because we have
not included in the theory the possibility of evolution
of backward propagating harmonic waves, based on the
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fact that backward harmonic waves have not been seen in
numerical simulations [28, 31], or at least the backward
harmonic waves are much more weaker in comparison
with the forward N waves [43]. Since the N mode spec-
tra for negative q∥ do not change from their initial lev-
els, we chose to plot the results only over positive range,
0.2 < q∥ < 1. The peak seems to attain maximum height
between τ = 1, 000 and 2, 000, Figures 2(b) and 2(c),
while the damping continues to occur, with considerable
evolution being noticeable between Figures 2(c) and 2(d).

In Figures 3 and 4 we present results which are similar
to those presented in Figures 1 and 2, with the difference
that in the case of Figures 3 and 4 we add the effect of
the scattering to the equations for wave evolution. The
results are also presented for the values of τ = 500, 1,000,
2,000, and 4,000, corresponding to panels (a), (b), (c),
and (d), respectively.

In Figure 3 we wee the evolution of L waves. Panel (a)
shows the spectrum at τ = 500, with the primary peak
of L waves very well defined, similar to what was seen
in Figure 1(a). At τ = 1, 000, Figure 3(b), one already
notices the presence of backward propagating waves and
formation of a ring-like structure in wavenumber space,
as already reported previously, in studies that did not in-
clude the presence of harmonic waves [45]. These features
become more conspicuous along time evolution, and are
seen fully developed at τ = 4, 000, in panel (d) of Figure
3.

The evolution of the harmonic waves in the presence
of induced emission and scattering is seen in Figure 4.
The four panels of Figure 4 are very similar to the corre-
sponding panels of Figure 2, indicating that, for the case
considered, the scattering has not produced noticeable
effects in the evolution of N waves, even after a time in-
terval, from 0 to 4,000, in which significant effects due to
scattering have been seen in the spectrum of L waves.

In Figure 5 we show results obtained in a case with
higher beam density, by considering nf/ne = 6.0× 10−4.
In Figure 5 top panel we show the spectrum of L waves at
τ = 4, 000, obtained by taking into account only sponta-
neous and induced emission processes in Eq. (1). Despite
the fact that the time evolution of the primary peak of
L waves is faster in the case of higher beam density (not
shown), the comparison between Figure 5 (top) and Fig-
ure 1(d) shows that the peaks obtained at τ = 4, 000
have similar heights. The difference is that the peak is
somewhat wider in the case of higher beam density. The
spectrum of L waves obtained at τ = 4, 000, when scat-
tering effects are also taken into account in the evolution
equation, is seen in Figure 5 (bottom panel). The spec-
trum obtained is similar to that obtained in the case of
lower density beam, Figure 3(d), but in addition to wider
forward peak, the case of higher beam density features
more pronounced peak of backward waves and more pro-
nounced ring-like feature in wavenumber space.

The corresponding spectra obtained for N waves are
superposed in Figures 5 (top), without scattering, and 5
(bottom), with scattering taken into account. As already

noticed in the case of lower density beam, the presence
of scattering has not produced significant effects on the
time evolution of the harmonic waves. Note that Fig.
5 (bottom) compares quite reasonably with Figures 3(b)
and 3(c) of Ref. [43], which show the 2D spectrum of
fundamental and second harmonic electric field.

In Figure 6 we show the spectra of L and N waves
as a function of absolute value of the normalized wave
number, q, obtained after integration over the pitch-angle
in wavenumber space. In all the four panels of Figure
6 one finds plotted curves corresponding to τ = 100,
200, 500, 1,000, 2,000, 3,000, 4,000, 5,000, and 6,000.
The curve for τ = 100 is denoted in green, the curve for
τ = 1, 000 is blue, the case of τ = 3, 000 is depicted using
magenta color, and τ = 6, 000 appears in red. The other
lines corresponding to τ = 200, 500, 2,000, 4,000, and
5,000, are denoted in black.

Figure 6(a) depicts results obtained for the case of
nf/ne = 2.0× 10−4, by taking into account only sponta-
neous and induced emission processes in Eq. (1), and only
induced processes in Eq. (3). The peak in the spectrum
of L waves starts to grow in the region slightly above
q = 0.2, grows regularly until attaining maximum value
near time τ = 3, 000, and then starts a slow decrease,
while undergoing a slight broadening process, as seen in
Figure 1. The peak of N waves appears as broad per-
turbation for τ = 100, but then grows around the value
q ≃ 0.65, attaining maximum value near τ = 4, 000, and
then starting to decrease very slowly. The maximum
height attained by the peak in N waves is seen to be
about 1/20 of the maximum of the L wave peak.

The results obtained for nf/ne = 2.0 × 10−4 when
scattering effects are also taken into account are seen in
Fig. 6(b). The results obtained are very similar to those
obtained when the scattering effects were neglected, ap-
pearing in panel (a). Particularly, the spectra of N waves
can hardly be distinguished, in the scale of the figure. In
the case of L waves, the ring-like structure formed in
wavenumber space by effect of scattering appears as an
enhancement of the spectrum in the region of q ≤ 0.2,
seen in Figure 6(b) and not seen in Figure 6(a).

In Figures 6(c) and 6(d) we show results obtained
considering the case of higher beam density, nf/ne =
6.0 × 10−4. The results appearing in Figure 6(c) we ob-
tained without taking into account scattering effects in
the time evolution of the waves, while those in Figure
6(d) were obtained with scattering effects taken into ac-
count. The comparison between the results appearing in
panels (c) and (d) and those appearing in panels (a) and
(b) show that the time evolution is faster in the case of
higher density beam, so that the late evolution on the
system accumulates considerable difference between the
two cases. Figure 6(c) shows that the maximum in the L
spectrum is attained for τ near the value τ = 1, 000, and
that the peak in the spectrum decreases considerably af-
terwards, up the final time of τ = 6, 000 which has been
shown in the figure.

The comparison between Figure 6(c) and Figure 6(d)
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show that the presence of scattering caused considerable
distortion in the wave spectrum at later times, in addi-
tion to the presence of the ring-like which enhances the
spectrum in the region of small wavenumber. On the
other hand, Figures 6(c) and (d) show that the growth
of N waves is such that they attain maximum height for
τ between 2,000 and 3,000, before decreasing. It is in-
teresting to point out that, for τ ≤ 1, 000, the curves
obtained for N waves without taking into account the
scattering and with scattering are basically the same.
For τ in the range 2, 000 ≤ τ ≤ 5, 000, it is seen from
panels (c) and (d) of Figure 6 that the peak of N waves
obtained with scattering is slightly lower than the peak
obtained without including the effect of scattering. How-
ever, for τ = 6, 000, it is seen that the peak obtained with
scattering, in Figure 6(d), is somewhat higher than the
peak appearing in Figure 6(c), obtained without scatter-
ing. This feature has to be more carefully investigated,
in order to see if it is due to a real physical process, or if
it is due to numerical instability appearing at late stages
of the time evolution.

Figure 6 features two other panels, in which we present
results obtained from the numerical solution of the sys-
tem of coupled equations, including also effects of three-
wave decay in the equation for evolution of L and S
waves. That is, for the results shown in figures 6(e) and
6(f), the evolution of L waves suffers the influence of
spontaneous and induced emission, three wave decay and
scattering, the evolution of S waves the influence of spon-
taneous and induced emission and three-wave decay, and
the evolution of N waves occurs under the influence of
induced emission and scattering. Figure 6(e) shows the
results obtained for L and N waves, for several values of
normalized τ , considering the case of nf/ne = 2.0×10−4.
The comparison with the results shown in figure 6(b), ob-
tained for the same parameters without taking into ac-
count the effect of three-wave decay for L and S waves,
shows that the effect of the three-wave decay term is
barely noticeable in the integrated spectra of L waves.
In figure 6(f) we show similar results, obtained for the
case nf/ne = 6.0 × 10−4. The comparison with figure
6(d), obtained for the same parameters, shows that the
early time evolution is quite similar in both cases, but
for late time it is quite noticeable in figure 6(f) the en-
hancement of the L spectrum which occurs in the case of
addition of three-wave decay and scattering effects.

Finally, in Figure 7 we present some results concern-
ing the time evolution of the coefficients associated to
the time evolution of the harmonic waves. We present
these coefficients as a function of the absolute value of
the normalized wavenumber, after integration over the
wave vector pitch angle. The coefficient associated to
wave damping or growth by quasilinear processes will be
denominated as γN

q , the coefficient associated to scat-

tering is νNq , and the coefficient which appears at the
denominator of both the quasilinear and the scattering
term in Eq. (3) will be denoted by ηNq . In Fig. 7 these co-
efficients are depicted for several values of the normalized

time, τ = 100, 200, 500, 1,000, 2,000, 3,000, 4,000, 5,000,
and 6,000. We consider two cases of the beam relative
density, with other parameters as in Fig. 1.

Figure 7(a) shows γN
q vs. q, for the case nf/ne =

2.0 × 10−4. The case of τ = 100 is representative of the
early time of wave evolution. It is seen that for small q
there is negligible damping, due to resonance with the
very small population at the tail of the distribution. For
0.3 ≤ q ≤ 0.6 there is more significant damping, at the
far extreme of the beam, and for 0, 6 ≤ q ≤ 0.9 the
positive value of γN

q indicates wave growth. For larger
values of q, the damping becomes again very significant,
due to resonance with particles of the Maxwellian part of
the distribution. Figure 7(a) shows that along the time
evolution the peak of wave growth is displaced toward
smaller values of q. Between τ = 500 and τ = 1, 000 the
wave growth starts to decrease, as indicated by the lines
blue and magenta, respectively. This is due to formation
of a plateau in the distribution function. Shortly after
that, the peak of harmonic starts to be reabsorbed by
the particles, as indicated by the negative values of γ for
all values of q, in the curves depicting the situation at
τ = 2, 000, and beyond. This is because the flat plateau
is seen in the 1D projection of the distribution function,
along parallel direction. In 2D space, there is always
regions of negative derivatives around the position of the
beam in velocity space, which dominate the evolution
after the positive derivatives in the region of the beam
are flattened out.

In Figure 7(b) we have information about the time evo-
lution of γN

q vs. q, in the case of higher beam density,

nf/ne = 6.0× 10−4. It is seen that qualitatively the re-
sults are similar to those appearing in Figure 7(a), except
that the maximum growth or damping rates are larger,
and the time evolution is faster. The maximum growth
coefficient is seen to occur for τ ≃ 200 in Figure 7(b),
with significant reduction of the growth already seen in
the case of τ = 500, as depicted by the blue line.

The evolution of νNq , the coefficient associated to scat-
tering, is seen in Figures 7(c) and 7(d). It is seen that
the scattering coefficient is negative for all values of q, in-
dicating that the scattering effect contributes to deplete
the peak of harmonic waves, spreading the wave intensity.
However, it is seen that the effect is weak, as compared
to the quasilinear effect (|ηNq /γL

q | ∼ 10−2). In the case
of lower beam density, in Figure 7(c), it is seen that the
maximum absolute value of γN

a is attained for τ ≃ 3, 000,
approximately the time of the maximum of the spectrum
of N waves, and that this maximum absolute value is
smaller than the maximum absolute value of γN

q at cor-
responding time. Similar comments can be made about
the results obtained in the case of higher density beam,
as depicted in Fig. 7(d).

The values of the coefficient ηNq , vs. q, for several val-
ues of τ , appear in Figure 7(e) and 7(f). For the case of
nf/ne = 2.0×10−4, seen in Figure 7(e), it is seen that the
quantity η features a peak which coincides with the lo-
cation of the peak of N waves in wavenumber space, and
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that the maximum value is attained for τ ≃ 3, 000, about
the time of the maximum value of the wave spectra. For
τ ≤ 500, it is seen that the absolute value of ηNq is in-
deed very small, which, together with the corresponding
small value of |νNq |, confirms the conjecture presented in
Eq. (17). However, Figure 7(e) shows that the maximum
value of ηNq never surpasses the value 4.5 × 10−3, which
means that the numerical analysis made in two dimen-
sions has not confirmed the conjecture made in Ref. [11]
and presented in Eq. (18). Comments which are qual-
itatively similar can be made for higher beam density,
except that the evolution is faster and the maximum at-
tained by γN

q is larger, being about 1.8×10−2 in the case

of nf/ne = 6.0× 10−4, shown in Figure 7(f).
Hence, we conclude that the main saturation mecha-

nism for the nonlinear eigenmode is the quasilinear pro-
cess of plateau formation in the electron distribution
function, with the consequent arrest of the weak-beam
instability.

IV. SUMMARY

In the present paper we have presented results of nu-
merical analysis of the generalized weak turbulence the-
ory in two dimensional space, taking into account the
normal electrostatic modes, which are Langmuir and
ion-acoustic waves, and also the occurrence of harmonic
waves with frequency which is about twice the frequency
of fundamental Langmuir waves. The wave equations
were solved along with the equation for time evolution
of the electron distribution function, providing what is
possibly the first examples of self-consistent evolution of
electrostatic waves, including the harmonic of Langmuir
waves, in more than one dimension. The equation which
has been derived for the evolution of harmonic waves
contains the effect which is known as induced emission
and the nonlinear effect which is denominated as scatter-
ing, or nonlinear Landau damping. We have also taken
into account the mechanisms of scattering and induced
emission, along with the spontaneous emission effect, in
the equation for the evolution of fundamental Langmuir
waves, and the spontaneous and induced emission effects

in the equation for ion-acoustic waves, where the scatter-
ing effect is regarded as negligible.

Reference [43] contains a Figure that shows the 2D
spectrum of L and N modes, where while L mode and
N mode spectra are similar in overall shape, N mode
spectra occupy a broader range of k space. Such a fea-
ture has not been theoretically explained. The results
obtained show the growth of a peak of harmonic electro-
static waves, with width in wavenumber which is com-
parable to the width of the primary peak of Langmuir
waves. Such a 2D spectral feature cannot be discussed
in the one-dimensional approximation, and is consistent
with results obtained with direct numerical simulation
result reported in Ref. [43].

The main purpose of the present investigation had
been to test the hypothesis put forth in Ref. [11], in which
it was speculated that early dynamical evolution of N
mode should follow quasilinear theory, but for later times,
nonlinear scattering should dominate. According to the
present finding, the effect of scattering has been seen to
be very small in the case of harmonic waves, whose evo-
lution is dominated by the induced emission effect. This
finding contradicts the speculation in Ref. [11].
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FIG. 1: Normalized L wave intensity, vs q⊥ = k⊥vte/ωp and
q∥ = k∥vte/ωp, in vertical logarithmic scale, taking into ac-
count only spontaneous and induced emission in the equa-
tion for L wave evolution. (a) τ = 500; (b) τ = 1, 000;
(c) τ = 2, 000; (d) τ = 4, 000. Input parameters are
nf/ne = 2.0× 10−4, vf/vte = 5.0, Tf/Te = 1.0, Te/Ti = 7.0,(
n̂λ3

D

)−1
= 5.0× 10−3.

FIG. 2: Normalized N wave intensity, vs q⊥ = k⊥vte/ωp and
q∥ = k∥vte/ωp, in vertical logarithmic scale, taking into ac-
count only induced emission in the equation for N wave evo-
lution. (a) τ = 500; (b) τ = 1, 000; (c) τ = 2, 000; (d)
τ = 4, 000. Input parameters are the same as in Figure 1.

FIG. 3: Normalized L wave intensity, vs q⊥ = k⊥vte/ωp and
q∥ = k∥vte/ωp, in vertical logarithmic scale, taking into ac-
count spontaneous and induced emission and scattering in
the equation for evolution of the L wave. (a) τ = 500; (b)
τ = 1, 000; (c) τ = 2, 000; (d) τ = 4, 000. Input parameters
are the same as in Figure 1.
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FIG. 4: Normalized N wave intensity, vs q⊥ = k⊥vte/ωp and
q∥ = k∥vte/ωp, in vertical logarithmic scale, taking into ac-
count spontaneous and induced emission and scattering in
the equation for evolution of the N wave. (a) τ = 500; (b)
τ = 1, 000; (c) τ = 2, 000; (d) τ = 4, 000. Input parameters
are the same as in Figure 1.

FIG. 5: Contour plots for normalized wave intensities, vs
q⊥ = k⊥vte/ωp and q∥ = k∥vte/ωp, at τ = 4, 000. The beam

density is such that nf/ne = 6.0 × 10−4, and other param-
eters are as in Figure 1. (top) L wave, obtained taking into
account only spontaneous and induced emission in the equa-
tion for L wave evolution, and N wave, obtained taking into
account only the effect of induced emission in the equation for
N wave evolution. (bottom) L wave, obtained taking into ac-
count spontaneous and induced emission and wave scattering
in the equation for L wave evolution, and N wave, obtained
taking into account induced emission and wave scattering in
the equation for N wave evolution.
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FIG. 6: Normalized L and N wave intensities vs. q, in vertical
logarithmic scale, for several values of τ (100, 200, 500, 1,000,
2,000, 3,000, 4,000, 5,000, 6,000). Green lines: τ = 100; blue
lines: τ = 1, 000; magenta lines: τ = 3, 000; red lines: τ =
6, 000. The results corresponding to 200, 500, 2,000, 4,000,
and 5,000, are depicted by black lines. Except where explicitly
indicated, the parameters are the same as in Figure 1. (a)
Obtained taking into account only spontaneous and induced
emission in the equation for L waves and induced emission
in the equation for N waves. (b) Spontaneous and induced
emission and wave scattering in the equation for L waves, and
induced emission and scattering in the equation for N waves.
(c) Spontaneous and induced emission in the equation for L
waves and induced emission in the equation for N waves, with
nf/n0 = 6.0 × 10−4. (d) Spontaneous and induced emission
and wave scattering in the equation for L waves, and induced
emission and scattering in the equation for N waves, with
nf/n0 = 6.0 × 10−4. (e) Spontaneous and induced emission,
wave scattering, and three-wave decay, in the equation for L
waves, and induced emission and scattering in the equation
for N waves, with nf/n0 = 2.0× 10−4. (f) Spontaneous and
induced emission, wave scattering, and three-wave decay, in
the equation for L waves, and induced emission and scattering
in the equation for N waves, with nf/n0 = 6.0× 10−4.
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FIG. 7: Normalized coefficients associated to the time evolu-
tion of harmonic waves, as described by Eq. (3), vs. normal-
ized wavenumber, for several values of τ (100, 200, 500, 1,000,
2,000, 3,000, 4,000, 5,000, 6,000). (a) γN

q vs. q, nf/ne =

2.0 × 10−4; (b) γN
q vs. q, nf/ne = 6.0 × 10−4; (c) νN

q vs. q,

nf/ne = 2.0×10−4; (d) νN
q vs. q, nf/ne = 6.0×10−4; (e) ηN

q

vs. q, nf/ne = 2.0× 10−4; (f) ηN
q vs. q, nf/ne = 6.0× 10−4.

Other parameters are as in Figure 1.
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