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A B S T R A C T   

Charge trapping is studied in the context of random telegraph noise (RTN) and low-frequency noise (1/f noise), 
aiming unified statistical modeling. Analytical formulations for 1/f noise (frequency domain) and RTN (time 
domain) have been derived, using a single modeling framework, where model parameters are the same in fre
quency and time domain. The modeling addresses the time dependent variability in the electrical behavior of 
MOSFETs, discussing the variability due to a single trap and the ensemble of traps. In the work here presented we 
detail the role of the observation window, in both time and frequency domain. We discuss how it impacts the 
variance of drain current (or threshold voltage) measured over time, and the number of observable traps in a 
given time window or frequency window. Besides analytical modeling, experimental results are presented and 
discussed.   

1. Introduction 

In MOSFETs, the capture and emission of charge carriers by electri
cally active defects (charge traps) produces fluctuations of the drain 
current ID, which may, likewise, be observed as fluctuations of the 
threshold voltage VT [1–14]. In time domain, these switching events 
cause ID (or VT) to vary randomly over time, leading to a statistical 
variance in the observed ID, as seen in Fig. 1. This randomly varying ID – 
or a randomly varying VT, may cause jitter of signals (time dependent 
variability). In frequency domain, the spectral density of a single trap 
has a Lorentzian-like spectrum. The superposition of multiple Lor
entzians yields the 1/f noise [1,2,7]. Similarly, in time domain, the 
collective contribution of multiple traps leads to a logarithmic increase 
of ID variance with time window, as shown in section II below. 

To statistically model the RTN fluctuations following assumptions 
are done [1–4]: i) Charge trapping and de-trapping are stochastic events 
governed by characteristic time constants. The characteristic time con
stant of a trap is a random variable assumed to be uniformly distributed 
on a log scale. In frequency domain it leads to the corner frequencies of 
the Lorentzians to be uniformly distributed on log scale [2,7]. ii) The 
number of traps in a given device is a random variable, assumed to be 
Poisson distributed. iii) The noise contribution A of a single trap is a 
random variable related to the trap impact on the drain current (or 
threshold voltage) and the trap occupancy, as discussed in detail in 
[1–4,7,15,20–22], among other works in the literature. In the work here 

presented no assumption is done regarding the statistical distribution of 
trap noise contribution A. 

Since trap characteristic time constants are log-uniformly spread 
over several orders of magnitude, it is not adequate to use the total 
number of traps that may exist in a device as the modeling parameter. In 
our modeling work, trap density per frequency – or time – decade (Ndec) 
is used instead of the total number of traps [1–4]. Both parameters – Ndec 
and A – are employed in the frequency and time domain modeling of 
charge trapping produced noise. Hence, the model parameters in both 
frequency and time domain are the same: Ndec and A. 

Experimentally, Ndec can be estimated from both the time and fre
quency domain data, provided the number of active traps in the obser
vation window is determined. By increasing the time (or frequency) 
window, the number of observed (active) traps is expected to increase, 
while the other modeling parameter (A, the average amplitude of the 
trap contribution) is not expected to depend on the time (or frequency) 
window [1–4,7,15]. 

Thus, reporting solely the number of measured active traps is inad
equate, as reporting the observation time window and sampling rate is 
critical for proper modeling of the RTN. Similarly, in frequency domain, 
when reporting number of traps observed, it is important to report the 
observation frequency window. Time and frequency windows are not 
related only to measurement duration, but also to parameters such as 
bandwidth, sampling rate or integration time, as discussed in this work. 

In the next section it will be shown that the variance of the drain 
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current (or threshold voltage) evaluated over a time window is expected 
to increase when the time window increases, similarly to the increase of 
integrated noise power when the integration frequency window in
creases. First, we discuss the case of a single trap, and then extend the 
discussion for the case of multiple traps. In section III we study the role 
of the observation window in detail, showing how changing its upper or 
lower boundaries affects the observed behavior. The observation win
dow determines the number of traps that contribute to the observed 
stochastic fluctuations. In both sections II and III, the discussion is 
complemented by comparison of model equations to experimental data. 

2. Electrical modeling of charge trapping 

2.1. Single trap 

In MOSFETs, switching traps randomly capture and emit charge 
carries from the channel region, causing the drain current ID to randomly 
vary over time [1–15]. When a single trap is considered, ID alternates 
between a high current state (when the trap is vacant) and a low current 
state (when the trap is occupied), as seen in Fig. 1. The average time in 
the high current state is τC, while τE is the average time in the low 
current state. The difference (fluctuation) in drain current between 
states is δID. The drain current fluctuations may be related to trap 
induced carrier number fluctuations and/or carrier mobility fluctuations 
[7,22]. Experimentally, RTN fluctuations are usually observed in the 
drain current, which can be translated into a threshold voltage fluctu
ations δVT according to δID = gmδVT [2,7,15]. The transconductance gm 
may also be impacted, which may need to be considered. The conversion 
from drain current fluctuations to gate referred voltage fluctuations is 
discussed, e.g., in the chapter 1 of [22]. 

Since RTN is stationary, the statistical properties are independent of 
time t. If considering a time window, the statistical properties are in
dependent of the origin (initial time t) of the window. However, due to 
the autocorrelation of RTN, the statistical properties depend on the size 
(duration, Δt) of the time window. This means that, for instance, if 
performing a measurement of ID over time, the observed variance of ID is 
expected to increase as measurement time progresses. Same applies to 
VT, since the ID fluctuations can be seen as VT fluctuations. 

First, we discuss the correlation of the RTN time series with itself at 
different time points, i.e., the autocorrelation. If considering a single 
trap, the autocorrelation (RI) between values of the RTN at different 
times, as a function of the difference Δt between the two times (the time 
lag), is [16]: 

RI(Δt) = δI2
D

β
(β + 1)2 exp

(
−

Δt
τ

)
(1)  

where β = τC/τE, with τC and τE being the capture and emission time 
constants, respectively. And 1τ = 1

τc
+ 1

τE
. Eq. (1) refers to the case where 

ID fluctuations are considered. An equivalent equation may be written 
for the case where VT fluctuations are considered, by replacing δID2 with 
δVT

2. 
It is seen that at time lags much smaller than τ, the autocorrelation is 

maximum. As the time lag approaches τ the autocorrelation falls expo
nentially, and at a time lag much larger than τ the autocorrelation is 
minimum (negligible). This means that in a time window of duration 
much smaller than τ a negligible ID (or VT) variation is expected, while in 
a time window of duration much larger than τ a noticeable ID variation is 
expected. 

This is illustrated in Fig. 2. It shows the autocorrelation evaluated 
analytically, using Eq. (1), and numerically, from a measured ID time 
series, which has 10,000 points of which 1800 points are shown in Fig. 1. 
The measured nMOSFET has a W/L equal to 800 nm/50 nm, gate bias 
was VGS = 1.6 V and drain bias was VDS = 25 mV. Sampling interval was 
0.1 ms. The measurement spanned 1 s (10000 points were measured). 
Fabrication details are given in [17,18]. This device shows a clear two 
level RTN, indicating that the noise behavior is dominated by a single 
trap. The RTN amplitude δID is obtained from the histogram of the 
measured current amplitudes, with a double-Gaussian fitting, which 
reveals the two discrete current levels. After the two discrete current 
levels were determined, the measured time series was discretized to a 
RTN with only two current levels, and the capture and emission times 
evaluated. Parameter extraction methods are discussed, for instance, in 
[23–27]. For the RTN measured in this device δID is 18.5nA, τC is 10.7 ms 
and τE is 13.1 ms, which leads to τ equal to 5.89 ms. Note that for time 

lags much shorter than τ, it saturates at δI2
Di

βi
(βi+1)2

=

def

A2
Ii, which for this 

particular trap is 8.5e-17 A2. 
It is seen that for time lags much shorter than τ, autocorrelation is 

maximum, meaning that a negligible ID variation (fluctuation) is ex
pected. As the time lag approaches τ, the autocorrelation sharply de
creases. For time lags much longer than τ the autocorrelation is 
minimum, meaning that large ID variations (fluctuation) are expected 

Fig. 1. Drain current variation over time, due to Random Telegraph Noise 
(RTN). If a single trap dominates noise behavior, trap occupancy switching 
leads to discrete fluctuations of amplitude δID, with τC and τE being the capture 
and emission time constants. 

Fig. 2. Autocorrelation (RI) of an RTN. The black circles are the numerical 
evaluation of the autocorrelation of the measured ID(t) time series. The green 
line is from the evaluation of the analytical Eq. (1). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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for observations separated by these time lags. 
The time domain behavior is related to the frequency domain 

behavior. 
In frequency domain, the power spectral density (PSD) of the RTN 

produced by a single trap is [15,16] 

SI(f ) = 4δI2
D

β
(β + 1)2

τ
1 + (2πf τ)2 (2) 

As in the case of Eq. (1), an equivalent equation may be written for 
the case where the gate referred noise is considered, by replacing δID2 

with δVT
2. 

For a single trap, the noise power integrated over the circuit band
width of interest is given by the integration of (2) from fL to fH, which are 
the lower and upper boundaries of the bandwidth of interest [10]: 

npBWi(fL, fH) =

∫ fH

fL
S(f )df = δI2

D
β

(β + 1)2
2
π

[

tan− 1
(

fH

fi

)

− tan− 1
(

fL

fi

)]

(3)  

where fi = 1/(2πτ). 
Now we discuss the variance of the RTN time series, evaluated over a 

given observation interval Δt. The observation interval is called time 
window. It is 

Vari[ΔIDi(Δt) ] = npBWi(fL, fH) (4)  

where fL is related to the duration – the maximum time (tmax) – of the 
time window, and fH is related to the minimum time of the window (tmin) 
– usually the measurement time step, as discussed below. The index i is 
used because here we refer to the RTN generated by a single trap, the i-th 
trap, while in the next section we deal with multiple traps. 

The noise power integrated over the bandwidth (npBWi) is equivalent 
to the expected ID variance, Vari[ΔIDi(Δt)] evaluated over the time in
terval Δt, with limits tmin and tmax. Note that Vari[ΔIDi(Δt)] is related to 
autocorrelation RI(Δt). However, it is not the same, since the autocor
relation captures the expected autocorrelation between points separated 
by Δt, while Vari[ΔIDi(Δt)] captures the variance taken over all points in an 
interval (time window) Δt. 

Fig. 3 shows the variance of the measured ID over time at different 
time windows (slices of the time series with different sizes). The 
analytical result from (4) is also shown. Data is from the same RTN for 

which the autocorrelation was shown in Fig. 2. The integrated noise 
power is evaluated analytically using Eqs. (3) and (4), with parameters 
δID, τC and τE as reported above. Note that for time intervals Δt much 
longer than τ, it goes to the limit value of δI2

Di
βi

(βi+1)2
= A2

Ii, where the 

amplitude contribution AIi 
2 of the ith trap to the variance of ID is the 

same as its contribution to low-frequency noise [1,2]. This is similar to 
the Lorentzian seen in frequency domain, which at low frequencies 
saturates (shows a plateau) which is proportional to A2

Ii. The time and 
frequency windows (bandwidth) are related, as discussed in detail 
below. 

2.2. Multiple traps 

The value of the ID deviation due to all active traps, here called ΔID, is 
then the sum of the contribution of all NtrTW traps found in a device and 
that are active in the time window. Assuming that the different traps are 
not correlated, the variance of the drain current evaluated over time is 
[1] 

Var[ΔID] =
∑NtrTW

i=1
Vari[ΔIDi] (5) 

Due to the stochastic trap activity, the drain current may be different 
at each time instant. This drain current variability over time may be 
interpreted as a drain current jitter. The expected variance of the drain 
current taken over a time window is related to the time constants of the 
fastest and slowest trap that are active in the time window. These time 
constants are here called tmin,eff and tmax,eff, respectively, and discussed in 
detail below. The expected variance of the drain current taken over time 
is evaluated as [1] 

Var[ΔID
(
tmin,eff , tmax,eff

)]
= E[AIi

2]E[NtrTW ] (6)  

where E[NtrTW] is the expected (mean) number of traps per device active 
in the time window, and E[AIi

2] is the expected (mean) noise contribution 
of a trap [1,2]. Here too an equivalent equation may be written for the 
case where VT fluctuations are considered, by replacing AIi

2 with AVi
2 [1]. 

The number of traps expected to be active in the time window is [1] 

E[NtrTW ] = NdecWLlog
(

tmax,eff

tmin,eff

)

(7)  

where Ndec is the trap density per unit area and time decade [1]. W and L 
are device width and length, respectively. tmin,eff and tmax,eff are the time 
constants of the fastest and slowest trap that are active in the time 
window of interest, respectively. The subscript eff is used to emphasize 
that we refer to the observable traps in the time window of interest, and 
not to all traps that may exist in the device. The time constant tmin,eff of 
the fastest observable trap may be limited by the bandwidth of the 
measurement equipment, sampling time or integration time. The time 
constant tmax,eff of the slowest observable trap is typically limited by the 
measurement duration. 

Var[ΔID
(
tmin,eff , tmax,eff

)]
is related to npBW(fL, fH), the expected noise 

power integrated over a frequency bandwidth (frequency window 
delimited by frequencies fH and fL). Var[ΔID

(
tmin,eff , tmax,eff

)]
is propor

tional to the expected (average) number of traps active in the time 
window, and npBW(fL, fH)is proportional to the expected (average) 
number of traps in the frequency window. From (8) in [2] and (13) in 
[1]: 

npBW(fL, fH) =

∫ fH

fL
S(f )df = E[Ai

2]NdecWLlog
(

fH

fL

)

Writing 

E[NtrBW ] = NdecWLlog
(

fH

fL

)

Leads to 

Fig. 3. Variance of the drain current ID taken over time. The black circles are 
the numerical evaluation of the variance of the measured ID(t) time series. The 
green line is the result from the analytical Eq. (4). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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npBW(fL, fH) = E[Ai
2]E[NtrBW ] (8)  

where fH and fL are the lower and upper boundaries of the frequency 
window (bandwidth). Var[ΔID

(
tmin,eff , tmax,eff

)]
increases as the time 

window increases, while npBW(fL, fH) increases as the frequency window 
increases. In the next section, the role of the observation window is 
discussed in detail. 

3. Observation window 

In frequency domain, the size of the observation window depends on 
both fH and fL. These frequencies are not the frequencies of the fastest 
and slowest trap present in the device, but of the fastest and slowest 
observable ones. For instance, these frequencies may be set by the 
measurement instrumentation or by the bandwidth of the circuit, or by 
the choice of the integration limits. In time domain, the size of the time 
window depends on both tmin,eff and tmax,eff. These time constants are not 
the time constants of the fastest and slowest trap present in the device, 
but of the fastest and slowest observable ones. If performing RTN elec
trical characterization, sampling time must be much shorter than the 
time constant (τ) of the fastest trap to be analyzed, and a large number of 
transitions (trap state switching events) needs to be measured, 
demanding a measurement time much larger than the τ of the slowest 
trap to be analyzed [12,13]. In frequency domain, to properly charac
terize the Lorentzian PSD due to a trap, the measurement bandwidth 
must also be adequate: fL must be much lower than fi, and fH must be 
much higher than fi. Hence, the observation window determines the 
number of observable traps, in both time and frequency domain. 

Please note that since RTN is stationary, the result does not depend 
on the starting time of the time window, but only on its size. When 
performing a measurement, the observed variance does not depend on 
the clock time of measurement start, but it depends on the duration of 
the measurement. It is usually assumed that the time window starts at 
the first measured point. But any point of the measurement time series 
can be used as the starting point of the time window. In the results re
ported and discussed here, this feature was explored. When analyzing a 
time window that is smaller than the measured time series, the result 
presented is the average of the number of windows that fit in the 
measured time series. For instance, if the time series is twice the window 
of interest, two windows can be accommodated in the time series, the 
first covering the first half of the time series, and the second covering the 
other half. If the time series is 10 times the window of interest, ten 
windows can be accommodated in the time series, the first covering the 
first tenth of the time series, the second covering the second tenth, and 
so on. When evaluating the variance, this may be seen as a moving 
variance, where the time window moves over the available time series. 
Besides helping to confirm behavior, it also helps reducing statistical 
uncertainty. Similar approach can be used in frequency domain, where 
different windows of same size (same number of frequency decades) can 
be integrated, spanning the whole available frequency range. 

In time domain, the slowest and fastest observable traps depend on 
the time window boundaries, tmin,eff and tmax,eff, which are usually 
related to the total measurement time and sampling rate. First, we vary 
the time window by changing the total measurement time while keeping 
the sampling rate constant. 

Fig. 4 shows experimental results for the variance of the drain cur
rent as a function of the time window (tmax,eff/tmin,eff), where the x-axis is 
in log scale. The measured nMOSFET has a W/L equal to 6 μm/50 nm, 
gate bias was VGS = 1.1 V and drain bias was VDS = 25 mV. Fabrication 
details are given in [17,18]. For this device, no clear RTN levels or 
discrete current jumps are visible. In the time domain measurement, the 
sampling interval was 1 ms, which is assumed to be tmin,eff. The mea
surement spanned approx. 10 s (about 10,000 points were measured). 
Hence, the length of the time window, tmax,eff could be varied by 
choosing the number of subsequent measurement time points used to 

evaluate the variance. In other words, the observation window could be 
varied by varying tmax,eff, while tmin,eff is constant. It is seen that the 
variance of drain current increases almost logarithmically with the time 
window, as modeled by Eqs. (6) and (7) above. Please note that the 
results shown in Fig. 4 also correspond well to the experimental data 
from other groups, as for instance the results reported in Figs. 7 and 12 of 
[5]. 

Fig. 5 shows the RTN times series measured on the same device for 
which the variance is reported in Fig. 4. Besides the measured time se
ries, it also shows an envelope proportional to four times the standard 
deviation measured over the time window. From the figure we can see 
that the standard deviation of the RTN over a time window is dependent 
on the size of the window, increasing as the time window increases, as 
predicted by the model equations. The greater the observed time in
terval, the greater the expected ID variation (for larger time windows, 
larger ID fluctuations are expected). This is similar to the behavior re
ported for 1/f noise [2]. In the context of 1/f, this is due to the fact that 
traps with frequencies below the measurement frequency window are 
filtered out. In the context of RTN, this is explained by the fact that traps 
slower than the measurement window will hardly change its state during 

Fig. 4. Measured variance of the drain current fluctuation Var[ΔID(t)] versus 
(tmax,eff/tmin,eff). The variance is seen to increase almost linearly with log(tmax, 

eff/tmin,eff), as predicted by the model. 

Fig. 5. The increase of the ID fluctuations with time window. The black squares 
and line show the experimental data. The blue triangles show an envelope equal 
± four times the standard deviation, evaluated from the measured time series. 
The standard deviation of RTN depends on the size of the observation window 
as predicted by the analytical model. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

G. Wirth                                                                                                                                                                                                                                          



Solid State Electronics 186 (2021) 108140

5

the observation. Referring to Fig. 3, this corresponds to the situation of 
short time scales in the x-axis, where the ID variance due to the trap is 
negligible. But as time goes by, more traps are expected to become active 
and switch state. 

The results shown in Fig. 5 also correspond well to the experimental 
RTN results reported by other groups, as for instance in Figs. 2 and 5 of 
[5], and Fig. 10 of [6]. The authors in [5,6] characterized this behavior 
using the concept of envelope, where the envelope is the difference 
between the maximum and minimum values found in the time window. 
However, this concept of envelope, when used to characterize RTN, may 
also capture a statistical bias that may exist by considering different 
number of measured data points [19]. As more measurements are 
considered in larger windows, the probability to find a large fluctuation 
is increased. Instead of using an envelope defined by the extreme values 
observed, the envelope may be assumed to be proportional to the 
standard deviation of RTN, as here proposed. By evaluating the variance 
over the time window, as done in this work, the RTN can be charac
terized without this statistical bias. 

The time window can also be varied by changing the sampling in
terval (the time interval between successive measurements), related to 
tmin,eff, while keeping the measurement time, related to tmax,eff, fixed. For 
traps that are faster than the sampling rate of the measurement, 
switching events will be missed; if a trap switches faster than the inte
gration time of the measurement equipment, an average value will be 
measured, and not the discrete values related to the different trap states. 
Hence, if the sampling interval is decreased, and the integration time is 
decreased accordingly as usually done in the experiments, the size of the 
time window is changed. Sampling interval is the inverse of sampling 
rate. Increasing sampling rate while keeping the measured time interval 
constant increases the time window (tmax,eff/tmin,eff), by decreasing tmin, 

eff. It may increase the number of traps that are observed to switch state. 
This can be obtained, for instance, measuring the device over a fixed 
time using different sampling rates, e.g., as done experimentally in the 
literature in [5,6]. If measurement time is kept fixed and sampling rate is 
increased, a larger number of points is measured, corresponding to a 
larger time window. In this case, the time window – and number of 
measured data points – is increased by decreasing the time interval 
between successive measurements. See, for instance, the behavior seen 
in Fig. 6 of [5]. To illustrate this behavior, we run Monte Carlo simu
lations, and show the results in Fig. 6, together with the analytical model 
results. In evaluating the analytical values and running Monte Carlo 
simulations, sampling rate range like the one reported for Fig. 6 of [5] is 
used. Again, our analytical model corresponds well to the experimental 
results reported in [5,6]. The Monte Carlo simulations were run using 
the methodology described in [1], which assumes that charge trapping 
and de-trapping are stochastic events governed by characteristic time 
constants which are uniformly distributed on a log scale, and that the 
average amplitude contribution of a trap (A) does not depended on the 
time window (does not depend on sampling rate). After running the 
Monte Carlo simulations, the standard deviation of the simulated time 
window is evaluated. The envelope is assumed to be proportional to the 
evaluated standard deviation. The analytical results are obtained from 
(6) assuming that E[AIi

2] does not depend on the time window and that 
E[NtrTW] is related to the time window as given by (7). 

4. Conclusions 

The dependence of the RTN statistical parameters on the observation 
window was studied by analytical modeling and analysis of experi
mental results. First, the noise produced by a single trap is discussed, 
starting by the study of its autocorrelation. Then, the noise generated by 
multiple traps is studied. Increasing the observation window increases 
the number of observable traps. The size of the observation window was 
varied, by changing its upper and lower boundaries, and the observed 
behavior discussed in detail, relating it to trap density. This discussion 

was illustrated by presenting experimental results. The discussions done 
here help to better interpret and present experimental results. 
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