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Abstract

The quantum Zakharov system is described in terms of a La-

grangian formalism. A time-dependent Gaussian trial function ap-

proach for the envelope electric field and the low-frequency part of

the density fluctuation leads to a coupled, nonlinear system of ordi-

nary differential equations. In the semiclassic case, linear stability

analysis of this dynamical system shows a destabilizing rôle played by

quantum effects. Arbitrary value of the quantum effects are also con-

sidered, yielding the ultimate destruction of the localized, Gaussian

trial solution. Numerical simulations are shown both for the semiclas-

sic and the full quantum cases.

1 Introduction

Quantum plasmas have received much attention in recent times, especially
because of the ongoing miniaturization of ultrasmall electronic devices and
micromechanical systems [1] and to the relevance of quantum effects for in-
tense laser-plasmas [2] and for dense astrophysical objects [3]. Frequently,
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the de Broglie wavelength of the charge carriers (electrons, positrons, holes)
of these systems is comparable to the characteristic dimensions of the sys-
tem, making a quantum treatment unavoidable. Advances in the area in-
cludes construction of quantum ion-acoustic waves [4], quantum magnetohy-
drodynamics theories [5], quantum beam instabilities [6]–[8] and shear Alfvén
modes in ultra-cold quantum magnetoplasmas [9]. New quantum collective
excitations have also been identified for ultra-cold dusty plasmas [10]–[15],
where quantum effects can be used for plasma diagnostics. Recently, spin
effects have been included for non relativistic quantum plasmas [16, 17].
Possible decisive applications of spin effects in quantum plasmas can appear
in solid state plasmas as well as in pulsars and magnetars, with very intense
magnetic fields (greater than 108T ). A more detailed review on quantum
plasma models and their range of validity can be found in [18].

The quantum Zakharov equations [19], the subject of the present work,
form a set of coupled, nonlinear partial differential equations for the envelope
electric field and the slow part of the density fluctuation in an electron-ion
electrostatic quantum plasma. It models the interaction between quantum
Langmuir and quantum ion-acoustic waves. Exactly as for the classical Za-
kharov system [20], the derivation of the quantum Zakharov equations comes
from the existence of two time scales, a fast one associated to quantum
Langmuir waves, and a slow one associated to quantum ion-acoustic waves.
Sample applications can be found for quantum decay and four-wave insta-
bilities, with relevant changes of the classical dispersions [19]. The quantum
Zakharov system was also analyzed for the enhancement of modulational in-
stabilities due to combination of partial coherence and quantum corrections
[21]. More recently, the coupling between nonlinear Langmuir waves and
electron holes in Wigner-Poisson quantum plasmas was studied via a two
time scales formalism [22].

The existence of coherent structures, as soliton solutions for instance, is
a relevant issue for any system of evolution equations. As an example from
quantum plasmas, stable vortices and dark solitons have been constructed
for Schrödinger-Poisson quantum electron plasmas [23]. At quantum scales,
the transport of information in ultracold micromechanical systems can be
addressed by means of such nonlinear structures. The basic objective of the
present work is the investigation of the quantum effects for the existence of
localized solutions for the quantum Zakharov system. Unlike the approach
of Yang et al., where exact bright solitons, gray solitons, W-solitons and M-
solitons were found for the quantum Zakharov system [24], here approximate

2



solutions are obtained through a variational formulation and a trial function
method. Exact solutions are of course very relevant, but variational solutions
provides more insight on the rôle of quantum effects. For instance, the clas-
sical Zakharov equations admit the Langmuir soliton solution [25]. Using a
Gaussian ansatz as a trial function extremizing an action functional, one can
get information about the perturbation of the Langmuir soliton by quantum
effects. A priori, one can expect that wave-packet spreading and tunneling
tends to enlarge the width of localized wave solutions. Other possibility is
the appearance of instabilities of pure quantum nature, eventually destroying
any coherent structure. Besides these considerations, the construction of a
variational formulation for the quantum Zakharov equations is important by
itself. Notice that the internal vibrations of solitary waves for the classical
Zakharov system were analyzed by a variational approach using Gaussian
trial functions [26]. The present contribution extends this work to the quan-
tum realm. Similar time-dependent variational methods were also used, for
instance, for the nonlinear pulse propagation in optical fibers [27] and for
Bose-Einstein condensates [28].

Variational methods can indicate a general tendency of s system for which
no general closed form solution is available. For instance, one can study
the changes of localized or solitonic trial functions under the changes of a
control parameter. The quantum Zakharov equations (see Section II) possess
a single dimensionless quantity H measuring the importance of quantum
perturbations. It is one basic task of this work, to analyze the changes in
Gaussian trial function solutions for the quantum Zakharov system induced
by modifications in H .

This work is organized as follows. In section II, the quantum Zakharov
system is described by a variational formulation. A variational solution in
the form of a Gaussian ansatz is then proposed, in order to reproduce the
main properties of the Langmuir soliton solution admitted in the classical
limit. This time-dependent trial function approach leads to a dynamical sys-
tem which can be analyzed for several parameter regimes. In section III, only
the first-order quantum correction is retained, yielding a set of two coupled,
nonlinear second-order ordinary differential equations for the widths of the
envelope electric field and density perturbation. This nonlinear system is an-
alyzed for its linear stability properties as well as for the existence of bounded
solutions. In section IV, arbitrary strength of the quantum effects is allowed,
resulting in a full system of equations. Further, the ultra-quantum case where
quantum effects are the more relevant influence is analyzed, showing the ulti-
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mate destruction of the Langmuir soliton due to wave-packet spreading and
tunneling. Section V is reserved to the conclusions.

2 Variational formulation

The one-dimensional quantum Zakharov equations reads [19]

i
∂E

∂t
+

∂2E

∂x2
− H2

∂4E

∂x4
= n E , (1)

∂2n

∂t2
− ∂2n

∂x2
+ H2

∂4n

∂x4
=

∂2|E|2
∂x2

, (2)

where E = E(x, t) is the envelope electric field and n = n(x, t) is the density
fluctuation. All quantities are expressed in a convenient dimensionless form.
Further,

H =
h̄ ωi

κB Te
(3)

is a parameter expressing the ratio between the ion plasmon energy and the
electron thermal energy, where h̄ is the scaled Planck constant, κB the Boltz-
mann constant, ωi the ion plasma frequency and Te the electron temperature.
The formal classical limit is obtained for H ≡ 0, yielding the original Za-
kharov system. For more details on the derivation of the system (1–2) as
well as for sample applications, see [19].

The one-dimensional quantum Zakharov equations are derived from the
Lagrangian density

L =
i

2

(

E∗
∂E

∂t
− E

∂E∗

∂t

)

−
∣

∣

∣

∣

∣

∂E

∂x

∣

∣

∣

∣

∣

2

− ∂u

∂x
|E|2 +

1

2

(

∂u

∂t

)2

− 1

2

(

∂u

∂x

)2

− H2

∣

∣

∣

∣

∣

∂2E

∂x2

∣

∣

∣

∣

∣

2

− H2

2

(

∂2u

∂x2

)2

, (4)

where it was introduced the auxiliary variable u so that

n =
∂u

∂x
. (5)

Indeed,

δL
δE

= 0 ⇒ −i
∂E∗

∂t
+

∂2E∗

∂x2
− H2

∂4E∗

∂x4
=

∂u

∂x
E∗ , (6)
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δL
δE∗

= 0 ⇒ i
∂E

∂t
+

∂2E

∂x2
− H2

∂4E

∂x4
=

∂u

∂x
E , (7)

δL
δu

= 0 ⇒ − ∂

∂x
(|E|2 +

∂u

∂x
) +

∂2u

∂t2
+ H2

∂4u

∂x4
= 0 . (8)

The last equation reproduces (2) after differentiation with respect to x.
The classical Zakharov system is not integrable. However, it admits [25]

the exact Langmuir soliton solution

E = E0 sech

(

E0x√
2

)

exp

(

iE2
0t

2

)

, (9)

n = −E2

0 sech2

(

E0x√
2

)

, (10)

where E0 is an arbitrary real parameter. Strictly, collisions of Langmuir “soli-
tons” does not simply imply phase shifts between them [25], as expected for
solitonic objects. Nevertheless, it is the interplay between nonlinear and dis-
persive terms in the classical Zakharov system which allows for the existence
of such coherent structures. Physically, the Langmuir soliton represents a
hole in the low frequency part of the electron-ion density maintained self-
consistently by the ponderomotive force. It would be desirable to achieve a
better understanding of the quantum effects for this soliton solution. A priori
one can expect tunneling of electrons trapped in the self-consistent potential,
perturbing the remarkable stability of the Langmuir solitons in the classical
case. Indeed, isolated classical Langmuir solitons do not decay [25].

A variational solution which reproduces the gross features of (9-10) and
is at the same time analytically accessible is the Gaussian ansatz

E = A exp(− x2

2a2
+ iφ + iκx2) , (11)

n = −B exp(−x2

b2
) , (12)

where A, B, a, b, φ and κ are functions of time. We assume A and B positive
to maintain resemblance with (9-10). As for any time-dependent variational
method, notice that a main drawback of the Gaussian ansatz is that it does
not allow for changes in the shape of the solution. The classical Zakharov
system can be treated by a variational approach using a combination of
Jacobi elliptic functions [29], but we use Gaussian functions for the sake of
simplicity.
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In order to calculate the Lagrangian L =
∫

∞

−∞
Ldx corresponding to (11-

12) there is the need of the derivatives ∂u/∂x and ∂u/∂t of the auxiliary
function u. Combining (5) and (12) and introducing M = Bb, it follows that

∂u

∂t
=

Mḃx

b2
exp(−x2

b2
) − Ṁ

b

∫ x

0

exp(−y2

b2
)dy . (13)

Inserting the last expression into the integral for the Lagrangian one con-
cludes that it converges if and only if Ṁ = 0, implying a restriction on the
allowable variational density functions. Indeed, if Ṁ 6= 0, then the proposed
Gaussian ansatz leads to divergence of the Lagrangian.

M being invariant is consistent with the conservation of the low frequency
part of the mass

1√
π

∫

+∞

−∞

ndx = Bb , (14)

the last equality following from the variational solution and with the factor
1/
√

π being introduced for convenience. In addition, we note the existence
of the conservation of the number of high frequency quanta

N =
1√
π

∫

+∞

−∞

|E|2dx = A2a (15)

and of the Hamiltonian

H =
1√
π

∫

∞

−∞

[

∣

∣

∣

∣

∣

∂E

∂x

∣

∣

∣

∣

∣

2

+
∂u

∂x
|E|2 +

1

2

(

∂u

∂t

)2

+
1

2

(

∂u

∂x

)2

+ H2

∣

∣

∣

∣

∣

∂2E

∂x2

∣

∣

∣

∣

∣

2

+
H2

2

(

∂2u

∂x2

)2

] dx

=
N

2

(

1

a2
+ 4κ2a2

)

− MN√
a2 + b2

+
M2

2
√

2b
+

M2ḃ2

8
√

2b
(16)

+
3H2N

4

(

1

a2
+ 4κ2a2

)2

+
H2M2

2
√

2b3
.

The numerical factor 1/
√

π was used for convenience again, in the definitions
of N and H, while the last equalities at (15-16) follows from the proposed
variational solution. The quantum Zakharov equations also preserve a mo-
mentum functional, but this information is useless in the remaining.
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Now we get the effective Lagrangian

L =
√

π [−A2aφ̇ − A2a

2

(

a2 κ̇ +
1

a2
+ 4κ2a2

)

+
MA2a√
a2 + b2

− M2

2
√

2b

+
M2ḃ2

8
√

2b
− 3H2A2a

4

(

1

a2
+ 4κ2a2

)2

− H2M2

2
√

2 b3
] , (17)

depending on the dynamical variables φ, κ, A, a, b and their derivatives. The
last two terms at (17) contains the quantum corrections.

Variation in φ gives Ṅ = 0, just reproducing the conservation of the high
frequency quanta. Variation in κ, the so-called chirp function, gives

aȧ = 4κa2 + 12H2κ(1 + 4κ2a4) . (18)

In contrast to the classical case where the chirp function is easily derived
from a(t), in the quantum case κ is given in terms of a as the solution of the
third-degree equation (18). Hence, expressing κ in terms of a and ȧ would
give equations too cumbersome to be of any value. A reasonable alternative
in the semiclassic limit is to solve (18) for κ as a power series in H2. Other
possibility is to regard (18) as a dynamical equation to be numerically solved
for a(t). Both approaches will be considered in what follows.

Combining independent variations in a and in A gives

aκ̇ =
1

a3
− 4κ2a − Ma

(a2 + s4)3/2
+

3H2

a5
− 48H2κ4a3 , (19)

while varying b gives

s̈ =
1

s3
− 2

√
2Ns3

M(a2 + s4)3/2
+

3H2

s7
, (20)

where b = s2.
Equations (18-20) form a complete system for the dynamical variables

a, κ and s and are the basis for the conclusions in the following. The system
(18-20) will be studied in the semiclassic limit, both for linear and nonlinear
oscillations, and for arbitrary values of the quantum parameter H .

3 Semiclassic oscillations

It is of considerable interest to investigate the modifications in the Langmuir
soliton induced by small quantum effects. When H is a small parameter,
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(18) can be solved approximately in powers of H2 yielding

κ =
ȧ

4a
− H2

(

3ȧ

4a3
+

3ȧ3

16a

)

, (21)

disregarding higher-order corrections. Then one is left with a coupled, non-
linear system of second-order equations for a and s, namely, (20) and

ä =
4

a3
− 4Ma

(a2 + s4)3/2
+ H2

(

24

a5
+

6ȧ2

a3
− 12M

a(a2 + s4)3/2
− 9Maȧ2

(a2 + s4)3/2

)

.

(22)
Consistently, the energy (16) evaluated using (21),

H =
1

4

(

N(
ȧ2

2
+

2

a2
) +

√
2M2(ṡ2 +

1

s2
) − 4MN√

a2 + s4

)

(23)

+
H2

64

(

48N

a4
− 24Nȧ2

a2
− 9Nȧ4 +

16
√

2M2

s6

)

is approximately constant, dH/dt = O(H4) along trajectories of (20)-(22),
and can be used to check the accuracy of numerical schemes.

It is relevant to check (20)-(22) for the linear stability of fixed points. For
the Langmuir soliton (9-10) one have equal values for M and N . Since we
are mainly interested in the rôle of quantum effects for the Langmuir soliton,
in the rest of the section we set M = N . Since quantum effects are small,
one can search for fixed points for the dynamical system as a power series in
H2. An easy calculation then yields critical points at (a, s) = (a0, s0), with

a0 =
2
√

2

M
+

3H2M√
2

, (24)

s0 =

(

2
√

2

M

)1/2

+
H2M3/2

21/4
, (25)

disregarding O(H4) terms. In terms of the original variables a and b these
fixed points corresponds to Gaussians of same width at the formal classical
limit. Quantum corrections, however, introduce a disturbance: the width a
of the Gaussian for the envelope electric field increases less than the width
b associated to the density. Moreover, both characteristic lengths increase,
pointing for a wave-packet spreading effect.
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Considering small deviations ∼ exp(iωt) from the equilibrium point, one
obtain

ω2 =
M2

128

[

24 + 10M2 − H2M2(18M2 + 33)
]

(26)

± M2

64

[

144 + 24M2 + 25M4 − H2M2(396 + 177M2 + 90M4)
]1/2

.

For consistency one could also expand the square root at (26) up to O(H2)
terms, but this would result in a more cumbersome expression.

Unstable linear oscillations corresponds to solutions with Im(ω) < 0.
A straightforward algebra shows that such instabilities are impossible in the
formal classical limit H ≡ 0. In the quantum case, however, a careful analysis
of (26) shows that instabilities are possible when

H2 > f(M2) ≡ 144 + 24M2 + 25M4

M2(396 + 177M2 + 90M4)
. (27)

This instability condition can be satisfied for small values of H . For instance,
for M > 0.6, f(M2) < 1 at (27). Further increasing M allows for smaller
values of H . For M = 5, one has H > 1/10 for instability, an inequality
which can be satisfied within the present semiclassic context. In terms of
the Langmuir soliton (9-10), M = 2

√
2E0, showing that large amplitude

solitons are more influenced by quantum instabilities. Figure 1 shows the
curve H2 = f(M2) separating stable-unstable regions.

The existence of quantum instabilities not present for the classical system
is a remarkable fact. It shows that the classical localized solution eventually
is smeared out, since the width of the Gaussian is continuously increasing in
time. This is a signature of wave-packet spreading and tunneling, because
the classical Langmuir soliton is produced by particle trapping in the self-
consistent electrostatic potential. Notice, however, that nonlinear effects can
suppress the linear quantum instability.

Unlike the classical case [26], the system (20)-(22) seems to be not de-
scribed by a pseudo-potential function. This is due to the velocity depen-
dence on the dynamical equation for a(t). Nevertheless, using the energy
integral H one can get a rough estimate for an escape velocity. In the limit
situation where the particle escapes, one has ȧ = ṡ = 0 when a → ∞ and
s → ∞. From (23) it gives H = 0. Now supposing an initial condition at
the fixed point (24-25) and taking ȧ(0) = ȧ0 = 0 for simplicity, one finds a
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0.5

1

1.5

H2

Figure 1: The curve H2 = f(M2) for the instability condition (27). Instabil-
ity occurs for H2 > f(M2)

escape velocity ṡ(0) = ṡ0 such that (for M = N)

ṡ2

0 =
M

4
√

2
− 7H2M3

64
√

2
. (28)

Once again, quantum effects act in a tunneling-like manner. Indeed, (28)
shows that a sufficiently large value of H can produce escaping of the par-
ticle, no matter the value of the initial velocity ṡ0. The limiting value
H = (4/

√
7)M−1 for which ṡ0 = 0 can be achieved even for the semiclassic

case for sufficiently high M . For instance, when M = 10, the particle even-
tually escapes for H > 0.15, a moderate value. A nonzero value of ȧ0 tends
to produce even smaller values of H for escaping.

Figures 2, 3 and 4 shows typical oscillations for the dynamical system
(20)-(22), with M = N = 3, H = 0.3. The initial condition is at the fixed
point and ȧ(0) = 0. Also, ṡ0 = 0.62. For such parameters, simulations shows
unbounded motion for ṡ0 = 0.64, which is much less than the classical escape
velocity, ṡ0 = 0.73, and in good agreement with the critical value 0.59 arising
from the crude estimate (28). The Hamiltonian H remains approximately
constant at the value −0.10 along the run. Observe the different time-scales
for a(t) and s(t). Taking a smaller value of ṡ0 gives a more regular, quasi-
periodic oscillation pattern, similar to the classical oscillations [26]. However,
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a

Figure 2: Simulation for the semiclassic system (20)-(22) showing a(t). Pa-
rameters, M = N = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) =
(1.52, 1.36, 0, 0.62).

notice that quantum effects leads to complicated trajectories even for equal
values of the invariants M and N , approaching the critical value of ṡ0 for
unbounded motion (see figure 4). Several other runs shows that increasing
the value of ṡ0 increases the period and the amplitude of the oscillations.
Direct comparison between the present simulations and those of the original
quantum Zakharov system will be reported in a future work.

4 Non perturbative full system

When H is not a small parameter, one is not allowed to solve (18) retaining
only the first-order quantum correction. Therefore, one is left with the full
system (18)-(20), for which some conclusions can be obtained. Even for the
balanced case when M = N , it is not possible to get a closed-form solution
for the fixed points, making difficult to derive general statements about lin-
ear stability. However, simulations can be made for different values of H ,
starting from a fixed point numerically calculated. For M = N = 1, H = 5,
an equilibrium is found for (κ, a, s) = (0, 9.15, 3.53). Figure 5 shows a typical
trajectory starting at this initial condition, with ṡ0 = 0.2. Under the same
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0 200 400 600 800 100012001400
t

0

1

2

3
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6

s

Figure 3: Simulation for the semiclassic system (20)-(22) showing s(t). Pa-
rameters, M = N = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) =
(1.52, 1.36, 0, 0.62).

0 10 20 30
a

0

1

2

3

4

5

6

s

Figure 4: Trajectory for (20)-(22) in configuration space. Parameters, M =
N = 3, H = 0.3. Initial condition, (a0, s0, ȧ0, ṡ0) = (1.52, 1.36, 0, 0.62).
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Figure 5: Simulation for the full dynamical system (18)-(20) showing a and
s. Parameters, M = N = 1, H = 5. Initial condition at (κ, a, s, ṡ) =
(0, 9.15, 3.53, 0.20).

parameters but with a smaller initial velocity produces quasi-periodic motion,
as shown in figure 6, where ṡ0 = 0.05. Similar simulations shows that for
increasing H it becomes more difficult to get regular, quasi-periodic trajec-
tories, pointing for instabilities of quantum nature. In addition, unbounded
motion appears for smaller values of the initial velocity.

Further results on the rôle of quantum effects can be obtained for the
ultra-quantum case where we can neglect all terms at the right-hand sides of
(18)-(20) not containing H2. In such case where H2 is large enough, one get
the system

ȧ = 12H2κ(1 + 4κ2a4)/a , (29)

κ̇ = 3H2(1 − 16κ4a8)/a6 , (30)

s̈ = 3H2/s7 . (31)

Equations (29-30) can be solved yielding

a2 = a2

0 +
36H4(t − t0)

2

a6
0

, κ2 =
9a4

0H
4(t − t0)

2

(a8
0 + 36H4(t − t0)2)2

, (32)

where a0 and t0 are numerical constants. From (32) the conclusion is that the
width a of the envelope electric field tends to increase without bound in the
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Figure 6: Simulation for the full dynamical system (18)-(20) showing a and
s. Parameters, M = N = 1, H = 5. Initial condition at (κ, a, s, ṡ) =
(0, 9.15, 3.53, 0.05).

ultra-quantum limit, while the chirp function κ approaches zero. Similarly,
inspection of (31) shows that the width b = s2 of the density fluctuation
increases without bound, since s̈ = −∂V/∂s for a pseudo-potential V =
H2/2s6 having no bound-states. The results at the end of this section comes
from the rough procedure of disregarding all terms not containing H2 in
the right-hand sides of (18)-(20). They are consistent with the previous
simulations, showing the destabilizing rôle of quantum effects.

5 Conclusion

The quantum Zakharov system was analyzed through a time-dependent Gaus-
sian trial function method for an associated Lagrangian formalism. This
extends to the quantum plasmas realm the results obtained for the classi-
cal Zakharov system by a similar approach [26]. In contrast to the classical
case, complicated trajectories and instabilities can be found even for the bal-
anced case of equal values of the invariants M and N , corresponding to the
low-frequency part of the mass and the number of high frequency quanta,
respectively. Quantum effects plays a destabilizing rôle, yielding the ulti-
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mate decaying of the Langmuir soliton whose properties are simulated by
the time-dependent Gaussian ansatz. This is a signature of quantum effects
(wave-packet spreading, tunneling), making more difficult the existence of
coherent, localized solutions in quantum plasmas. Direct comparison be-
tween the variational solutions of this work and numerical simulations of the
original Zakharov system remains an open question.
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