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Abstract

Using a variational approach based on a Lagrangian formulation and Gaussian trial functions,

we derive a simple dynamical system that captures the main features of the time-dependent

Schrödinger-Newton equations. With little analytical or numerical effort, the model furnishes

information on the ground state density and energy eigenvalue, the linear frequencies, as well as

the nonlinear long-time behaviour. Our results are in good agreement with those obtained through

analytical estimates or numerical simulations of the full Schrödinger-Newton equations.
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I. INTRODUCTION

In recent years, there has been a renewal of interest in the set of nonlinear equations

known as the Schrödinger-Newton (SN) equations. These consist of the ordinary Schrödinger

equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ+mV (r, t)Ψ, (1)

where the gravitational potential V (r, t), in the Newtonian approximation, is obtained self-

consistently from Poisson’s equation

∆V = 4πGm|Ψ|2, (2)

where m is the mass of the system and G is the gravitational constant. The source term

in Poisson’s equation is provided by a matter density ρ(r, t) = m|Ψ|2 that is proportional

to the probability density as given by the wavefunction Ψ(r, t). The resulting equations are

therefore nonlinear.

SN-type equations have been proposed in various areas of physics and astrophysics. For

instance, it has been suggested that gravitation, unlike other forces, may not be quantized at

all [1]. In that case, the stress-energy tensor Tµν in Einstein’s equations should be replaced

by its quantum-mechanical average 〈Tµν〉. The SN equations can thus be viewed as the

nonrelativistic (c → ∞) and Newtonian (G → 0) limit of the modified Einstein’s equations

Gµν = (8πG/c4)〈Tµν〉. More formally, Giulini and Großardt [2] recently showed that the SN

equations can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon

and Einstein-Dirac system.

In another context, the SN equations have been proposed as a fundamental modification

of the Schrödinger equation due to gravitational effects. Penrose [3, 4] and Diosi [5] postu-

lated that gravity might be at the origin of the spontaneous collapse of the wavefunction

and proposed the (stationary) SN equations as a possible candidate for an approximate

description of such gravitationally-induced collapse.

Finally, the SN equations have been used in an astrophysical context to study self-

gravitating objects such as boson stars [6, 7] or to describe dark matter by means of a

scalar field [8].

Whatever their present theoretical status and possible applications, the SN equations

represent a minimal model in which nonrelativistic quantum mechanics is coupled self-
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consistently to Newtonian gravity. As such, they are worth investigating in some detail,

both for their static and their dynamical properties.

Many theoretical results on the SN equations were obtained in the past, using either

analytical or numerical approaches [9]. For instance, the energy eigenvalues (all negative)

have been determined numerically with good precision [10] and some analytical estimates

exist on the lower bound for the ground state energy [11]. The linear stability properties of

the ground state were also investigated [10].

In the time-dependent and fully nonlinear regime, virtually all results are numerical, with

few exceptions whose validity is restricted to short time scales [12]. An unexpected result was

published a few years ago by Salzman and Carlip [13]. In numerical simulations of spherically

symmetric systems, these authors observed that, for masses above a certain critical value, the

wavefunction “collapsed” at the origin, at least within the accuracy of their simulations[22].

The most astonishing feature of these results was that the critical mass was far smaller than

what could be expected from simple order-of-magnitude calculations. However, more recent

calculations [12, 14] disagree with the results of Salzman and Carlip and set the critical

mass at a value that is several order of magnitudes larger and consistent with analytical

estimates.

In this work, we revisit the SN equations using a Lagrangian variational method [15, 16].

With this approach, one can arrive at a single ordinary differential equation that describes

the evolution of the width of the mass density. This method reproduces all the main results

on the ground state and linear dynamics derived previously. In addition, this approach is

not restricted to linear theory and can be used to investigate nonlinear oscillations or the

long-time dynamics. Finally, the mathematical simplicity of the governing equation makes

it easy to intuit at a glance the salient features of the solutions.

II. DERIVATION OF THE MODEL

A. Normalization

Let us first rewrite the SN equations (1)-(2) in dimensionless form, using the analog

of atomic units for the gravitational interaction. Thus, lengths are measured in units of

the gravitational “Bohr radius” aG = h̄2/(Gm3), energy is measured in units of EG =
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m5G2/h̄2 (the gravitational equivalent of the Hartree), and time in units of tG = h̄/EG. To

ensure conservation of the wavefunction norm, one also needs to normalize Ψ to a
−3/2
G . The

dimensionless SN equations then read as

i
∂Ψ

∂t
= −1

2
∆Ψ + V (r, t)Ψ, (3)

∆V = 4π|Ψ|2, (4)

with the normalization condition
∫ |Ψ|2dr = 1. Notice that Eqs. (3)-(4) are now free of all

parameters. The evolution of the system is then entirely determined by its initial condition.

For instance, if the initial condition is spherically symmetric and Gaussian (as will be the

case in the rest of this paper), the only relevant dimensionless parameter is the width of the

initial Gaussian measured in units of aG.

B. Lagrangian approach

In this section, we will follow the derivation described in Refs. [15, 16] in the context

of atomic or condensed matter physics, where the relevant interaction is Coulombian rather

than gravitational.

The SN equations (3)-(4) can be written in a hydrodynamical form by using the Madelung

transformation Ψ =
√
ρ exp(iS), where

√
ρ is the amplitude and S(r, t) is the phase of the

wavefunction [17]. The hydrodynamical continuity and momentum equations read as:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (5)

∂u

∂t
+ u · ∇u = −∇V +

1

2
∇
(

∇2√ρ
√
ρ

)

, (6)

and the velocity is defined as the gradient of the phase, u = ∇S.

It can be shown that the above hydrodynamic equations (5)-(6), together with Poisson’s

equation (4), can be derived from the following Lagrangian density L [16]:

L(ρ, S, V ) =
ρ

2
(∇S)2 + ρ

∂S

∂t
+

(∇ρ)2

8ρ
+

(∇V )2

8π
+ ρV . (7)

So far, no approximation was made. The purpose is now to derive a set of evolution equations

for a small number of macroscopic quantities that characterize the matter density profile.
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With this aim in mind, let us assume that the system is spherically symmetric and that the

density profile is Gaussian:

ρ(r, t) =
1

π3/2R3(t)
exp

(

− r2

R2(t)

)

, (8)

where r = |r| and R(t) is the time-dependent size of the density. For the above density

profile, the exact solution of Poisson’s equation (4) is

V (r, t) = −1

r
erf

(

r

R(t)

)

, (9)

where erf(x) is the error function. In addition, the continuity equation (5) is exactly solved

by the following velocity field: u = (Ṙ/R)r, which stems from the phase function S =

(Ṙ/2R)r2. The dot denotes derivation with respect to time.

We can now compute the Lagrangian by plugging Eq. (8) and the above solutions for V

and S into Eq. (7), and integrating over all space, i.e., L = −2
3

∫ L dr, where the multiplica-

tive factor was introduced for convenience of notation. The result is

L(R, Ṙ) =
Ṙ2

2
− 1

2R2
+

C

R
, (10)

where C = 2/(3
√
2π). The corresponding equations of motion are obtained from the Euler-

Lagrange equations
d

dt

∂L

∂Ṙ
− ∂L

∂R
= 0 , (11)

which yield:
d2R

dt2
=

1

R3
− C

R2
. (12)

Equation (12) is equivalent to the Hamiltonian equation of motion of a pointlike particle

evolving in the external potential U(R) = 1/(2R2) − C/R (see Fig. 1). The first term is

repulsive and represents kinetic energy due to velocity dispersion (uncertainty principle),

whereas the second term is attractive and represents self-gravity.

Note that this result was obtained from a rigorous development based on a Lagrangian

variational principle. In particular, no assumptions of linear response were made in the

derivation, so that Eq. (12) can be used to extract information on the nonlinear regime

of the time-dependent SN equations. We also stress that the evolution obtained with the

variational method is by construction unitary, since the trial Gaussian density [Eq. (8)]

automatically satisfies:
∫

ρ dr =
∫ |Ψ|2dr = 1 for all times.
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FIG. 1: Radial profile of the pseudo-potential U(R) = 1/(2R2)− C/R.

III. RESULTS

The pseudo-potential U(R) is plotted in Fig. 1. It goes to infinity for R → 0 and goes

to zero as R−1 for R → ∞. It crosses the horizontal axis at a point R0 such that U(R0) = 0

and has a single minimum at R1, where U ′(R1) = 0. The values of these two points are

easily determined and yield:

R0 =
1

2C
=

3

4

√
2π ≈ 1.88 ; R1 = 2R0 =

3

2

√
2π ≈ 3.76. (13)

A. Ground state

The matter density profile in the ground state is given by Eq. (8), with R = R1, corre-

sponding to the minimum of U . This profile is shown in Fig. 2 (dashed line), together with

the ground state density obtained from a numerical solution of the stationary SN equations

(solid line). The agreement is very good.

Stationary solutions of the SN equations must satisfy the virial theorem, which states

that the potential energy (in absolute value) is twice the kinetic energy. We can verify that

this is the case using the wavefunction Ψ =
√
ρ from Eq. (8) and the potential of Eq. (9).

The kinetic energy is

K =
1

2

∫

(

dΨ

dr

)2

4πr2dr =
3

4R2
, (14)
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FIG. 2: Ground state density: numerically-computed profile (solid line) and Gaussian profile from

Eq. (8) with R = R1 (dashed line).

whereas the potential energy yields:

P =
1

2

∫

ρV 4πr2dr = − 1√
2πR

. (15)

It is readily checked that, when R = R1, |P | = 2K = 1/3π, so that the virial theorem is

satisfied.

The energy eigenvalue of the ground state (lowest energy state) has been computed

numerically many times and an accepted value is E0 = −0.163 [10, 18]. More accurate

solutions may be obtained using the methods outlined in [19]. In our notation, E0 =

K + 2P = −3K = −1/2π ≈ −0.159, which is rather close to the numerical value (the error

is less than 3%).

Finally, we note that, when R = R0, one obtains P = −K so that the total energy is

zero.

B. Dynamics

One can linearize the equation of motion (12) around the equilibrium, by writing R =

R1 + δR, where δR(t) is a small perturbation. Substituting into Eq. (12) and taking the

Fourier transform in the time variable (i.e., assuming δR(t) ∼ eiΩt) yields the following

oscillation frequency:

|Ω| =
√

3

R4
1

− 2C

R3
1

=
2

9π
≈ 0.0707. (16)
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A perturbation analysis of the full time-dependent SN equations was performed by Har-

rison et al. [10]. The lowest oscillation frequency that these authors find (see Fig. 2 in Ref.

[10]) is close to ΩHarr = 0.035, which is in very good agreement with Eq. (16) (the extra

factor of 2 comes from the fact that Harrison et al. perturb the wavefunction instead of the

density |Ψ|2).
In order to check this result, we solved the spherically symmetric time-dependent SN

equations, using a second-order Crank-Nicolson method with centred differences for the

spatial differentiation. The initial condition is the exact ground state computed numerically

(solid curve in Fig. 2), to which a very small perturbation was added. The root mean square

of the radius
√

〈r2(t)〉 is then computed using the standard quantum average. Its frequency

spectrum is shown in Fig. 3 and displays a clear peak around Ω = 0.067, which is again

very close to Eq. (16).

0.05 0.10 0.15 0.20 0.25
10-4

10-3

10-2

10-1
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itu
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FIG. 3: Frequency spectrum of
√

〈r2(t)〉 for small oscillations around the ground-state equilibrium,

obtained from the full time-dependent SN equations.

For an initial condition that is slightly farther from the exact ground state, we expect

the SN equations to display some nonlinear effects. This is apparent from Fig. 4, where

the Gaussian profile given by Eq. (8) with R(0) = R1 (dashed line in Fig. 2) was used as

an initial condition. The time history of
√

〈r2(t)〉 clearly shows some nonlinear oscillations,

although their frequency is still close to the linear estimate given by Eq. (16).

It is also useful to monitor the evolution of the density ρ(r, t) in order to check that

it stays sufficiently close to a Gaussian function, which is required for the validity of the
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FIG. 4: Evolution of the mean square radius
√

〈r2(t)〉 for the full time-dependent SN equations

with a Gaussian initial condition given by Eq. (8) with R(0) = R1.

variational approach. This is done in Fig. 5, where we plot the mass density obtained from

numerical simulations of the full SN equations (solid lines) and compare it to a Gaussian

density [Eq. (8)] with same width (dashed lines). The left panel refers to the same evolution

as in Fig. 4 at t = 500. The right panel refers to a case where the density is initially

localised near the origin, so that R(0) < R1. In this case, the system expands almost freely

and at t = 200 (corresponding to the plot of Fig. 5) it has attained a considerable size. In

both cases, the numerically-computed density is reasonably close to a Gaussian profile, thus

strengthening our confidence in the present variational approach. We also stress that for

similar problems involving the Coulomb interaction and rather strong nonlinearities (quartic

confinement), the variational procedure appeared to work rather well [15].

Finally, we consider the long-time solutions of Eq. (12). From the shape of the pseudo-

potential U(R) (Fig. 1), it is clear that three different regimes are possible for an initial

condition R(0) > 0, Ṙ(0) = 0:

• If R(0) < R0, the total energy is positive, i.e., kinetic energy dominates over grav-

itational energy. In this case, the wave packet expands indefinitely. Although the

expansion is slowed down initially by the gravitational attraction, the asymptotic evo-

lution (t → ∞) is that of a free particle, i.e., R ∼ t.
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FIG. 5: Numerically-computed density (solid line) and corresponding Gaussian density with same

width (dashed line). Left panel: same case as in Fig. 4 at time t = 500; Right panel: expanding

solution with initial width R(0) = 0.3R1, plotted at time t = 200.

• If R(0) > R0, the total energy is negative, i.e., gravitational energy dominates over

kinetic energy. The wave packet oscillates at a nonlinear frequency that can in principle

be computed from the expression of U(R) (it reduces to the linear frequency Ω when

R(0) ≈ R1).

• If R(0) = R0, the total energy is exactly zero. The wave packet still expands, but at

a rate slower than R ∼ t. The first term on the right-hand side of Eq. (12) becomes

negligible for long times. Matching the remaining two terms shows that the expansion

should go like R ∼ t2/3.

The three regimes described above are neatly reproduced in numerical simulations of Eq.

(12), shown in Fig. 6. It is also worth to note that in cosmology these regimes correspond

respectively to an open, closed, and Einstein-de Sitter universe (which expands as t2/3).

Of course, the full evolution of the wavefunction according to the SN equations can be

much richer than this simple picture. For large masses, the wavepacket can break down into

two parts, with some mass being ejected to infinity while the rest remains confined [12, 14].

This behaviour cannot be captured by our variational approach, which postulates that the

density remains close to a Gaussian profile for all times. One could nevertheless extend

the present model by considering more complicated trial functions involving more than one

variational parameter. This would result in a set of coupled nonlinear differential equations
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FIG. 6: Solutions of the equations of motion (12) for three initial conditions: R(0) < R0 (red solid

line), R(0) > R0 (blue line), and R(0) = R0 (black solid line). The dashed straight lines represent

the curves R ∼ t (red) and R ∼ t2/3 (black).

that generalize Eq. (12).

IV. DISCUSSION

The main interest of the method outlined in this paper is that it relies on a rigorous

development based on a variational principle, while at the same time yielding results that are

simple and intuitive. The very shape of the pseudo-potential U(R) (Fig. 1) informs us on the

type of motions that are to be expected. For instance, it is clear that wavepacket dispersion

occurs if R < R0, whereas it is inhibited if R > R0. Further, if R > R1 ≈ 3.76h̄2/(Gm3) the

wavepacket should start to contract right from the beginning of the evolution (for clarity,

we restore dimensional units in this section).

Now, we want to compare the above estimations with the numerical results of Giulini et

al. [12], who considered a system of initial size R = 0.707µm (a = 0.5µm in their notation).

They observed a contracting wavepacket for masses greater than 7 × 109amu (atomic mass

units), which is rather close to the value m = 5.74 × 109amu predicted by our formula

Rm3 = 3.76 h̄2/G. The results of other simulations [14] are also consistent with these

findings.

It is clear that the importance of self-gravitational effects in the SN equations depends

on both the size R and the mass m of the object under consideration. Therefore, it is useful
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to plot a mass-radius diagram on a log-log scale (Fig. 7), where these two quantities appear

explicitly. Gravitational effects should play a significant role for objects that fall in the

region above the curve defined by Rm3 = const. = 3.76 h̄2/G (solid line).

FIG. 7: Mass-radius diagram. Gravitationally induced effects should be important in the region

above the solid line, which corresponds to the curve Rm3 > 3.76 h̄2/G. The dashed curve corre-

sponds to a constant density: m[amu]/R3 = 5× 1028m−3 (typical solid-state density).

Experiments aimed at detecting the role of gravity on quantum decoherence will probably

involve studying the interference fringes of solid-state mesoscopic objects, which should be

light enough for quantum coherence to be observable but also heavy enough for gravitational

effects to play a measurable role. Interferometry experiments on small silica spheres [20] and

gold clusters [21] are possible candidates for such studies.

In order to fix ideas, let us focus on the case of gold or other metal clusters, for which

the number density is typically ngold ≈ 5 × 1028m−3. The dashed line on Fig. 7 represents

the curve at constant density m[amu]/R3 = ngold. The intersection of the dashed line with

the the solid line Rm3 = 3.76h̄2/G yields the minimum mass and radius that gold clusters

should possess for gravitational effects to play a significant role. This turns out to be of

the order of a few microns in size and about 5 × 109 in atomic mass units. The same

calculation performed for other metal clusters or the silica spheres mentioned above yields

similar results.

The experimental challenge will be to perform quantum interference experiments on such

massive objects and to control other non-gravitational sources of decoherence. In practice,
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one may perform different experiments for increasing values of the cluster mass, thus moving

from left to right on the dashed line in Fig. 7. When crossing the solid line, gravitational

effects should be detected, perhaps as a reduction in the contrast of the interference fringes.
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