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Temporal dynamics in the one-dimensional quantum Zakharov equations for plasmas

A. P. Misra,1, ∗ S. Banerjee,2, 3, † F. Haas,4, ‡ P. K. Shukla,5, § and L. P. G. Assis6, ¶

1Department of Physics, Ume̊a University, SE-901 87 Ume̊a, Sweden.
2Department of Mathematics, Politecnico di Torino, Turin, Italy.
3Micro and Nanotechnology Unit, Techfab s.r.l., Chivasso, Italy.

4Department of Physics, Ume̊a University, SE-901 87 Ume̊a, Sweden.
5Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
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Abstract
The temporal dynamics of the quantum Zakharov equations (QZEs) in one spatial dimension, which describes the nonlinear

interaction of quantum Langmuir waves (QLWs) and quantum ion-acoustic waves (QIAWs) is revisited by considering their
solution as a superposition of three interacting wave modes in Fourier space. Previous results in the literature are modified
and rectified. Periodic, chaotic as well as hyperchaotic behaviors of the Fourier-mode amplitudes are identified by the analysis
of Lyapunov exponent spectra and the power spectrum. The periodic route to chaos is explained through an one-parameter
bifurcation analysis. The system is shown to be destabilized via a supercritical Hopf-bifurcation. The adiabatic limits of the
fully spatio-temporal and reduced systems are compared from the viewpoint of integrability properties.

PACS numbers: 52.25.Gj; 05.45.Mt; 52.35.Mw.

I. INTRODUCTION

The Zakharov equations (ZEs) are one of the most
important models in plasma physics community [1], in
which high-frequency Langmuir waves (LWs) are nonlin-
early coupled with the low-frequency ion-acoustic waves
(IAWs). In this context, the quantum Zakharov equa-
tions (QZEs) are the modified version of the classical
ZEs, including a quantum correction associated with the
Bohm potential [2]. Such QZEs are also deduced from a
multiple time-scale technique applied to a set of quantum
hydrodynamic (QHD) equations under the quasineutral-
ity assumption. Recent works (see e.g. Refs. [3–6]) in-
dicate that much attention has been paid to investigate
the dynamics of such one-dimensional (1D) QZEs. Very
recently, a more comprehensive work on the dynamics of
LWs has been studied by Haas and Shukla in a three-
dimensional quantum Zakharov system [7]. The arrest
of Langmuir wave collapse by quantum effects, predicted
by a variational approach in Ref. [7], was later confirmed
with rigorous estimates and systematic asymptotic ex-
pansions by Simpson et al [8].

In contrast to classical ZEs, the QZEs can not be re-
duced, in the adiabatic limit, to a nonlinear Schrödinger
equation (NLSE) [2]. Rather, it follows a coupled system
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for the envelope electric field and the density fluctuation,
whose complete integrability is not assured. However,
the system can be decoupled in the adiabatic as well
as semiclassical limit [2, 6], where the solitons can be
found to be more stable than in fully degenerate cases
[6]. Other recent developments on the QZEs can be
found in the literature [3–7, 9–11]. Marklund [3] studied
the kinetic theory of LWs interacting with quantum ion-
acoustic waves (QIAWs), where it was shown that the
combined effects of partial coherence and quantum cor-
rection tend to enhance the modulational instability (MI)
growth rate [3]. The temporal dynamics of the QZEs has
been studied by Haas by means of a variational approach
[4]. It has been found that the quantum coupling param-
eter plays a destabilizing role on localized structures, or
Langmuir wave packets. More mathematical treatments
on the QZEs are the analysis of the underlying Lie sym-
metry group [9] and the derivation of some exact solu-
tions [10, 11]. A Galerkin-type approximation was used
by Misra et al. [5] to reduce the QZEs to a set of ordinary
differential equations (ODEs) for the temporal dynam-
ics. This system was shown to exhibit hyperchaos (more
than one positive Lyapunov exponent). However, while
qualitatively correct, unfortunately the reduced model
considered in this work was flawed by some algebraic in-
consistencies.

The primary goal of the present work is to revisit
the temporal behavior of the QZEs as a superposition
of three interacting wave modes in Fourier space and to
rectify the previous results [5]. In addition, the evidence
for the existence of periodic limit cycles, chaotic as well
as hyperchaotic attractors of the Fourier-mode ampli-
tudes are presented through the analysis of bifurcation
diagram, power spectra as well as the Lyapunov expo-
nents. There are relevant differences of the respective

1

http://arxiv.org/abs/1002.3300v1
mailto:apmisra@visva-bharati.ac.in
mailto:santo.banerjee@polito.it
mailto:ferhaas@unisinos.br
mailto:ps@tp4.rub.de.
mailto:lpgassis@ufrrj.br


periodic, chaotic and hyperchaotic regimes in parame-
ter space. Our findings thus extend both qualitatively
and quantitatively the previous results as well as exhibit
some new features not reported in the earlier investiga-
tions [4, 5].

II. SIMPLIFIED MODEL

The 1D QZEs read [2]

i
∂E

∂t
+

∂2E

∂x2
−H2 ∂

4E

∂x4
= nE , (1)

∂2n

∂t2
− ∂2n

∂x2
+H2 ∂

4n

∂x4
=

∂2|E|2
∂x2

, (2)

where E = E(x, t) is the envelope electric field and
n = n(x, t) is the plasma density fluctuation (measured
from its equilibrium value). In Eqs. (1–2), the same set of
dimensionless quantities of Ref. [2] is employed. In par-
ticular, H = ~ωi/κB Te is a quantum coupling parameter
expressing the ratio between the ion plasmon energy and
the electron thermal energy, where ~ is Planck’s constant
divided by 2π, ωi is the ion plasma frequency, κB is the
Boltzmann constant and Te is the electron fluid tempera-
ture. The formal classical limit H → 0 yields the original
Zakharov system [1].

The finite-dimensional temporal dynamics of the QZEs
was studied in Ref. [5]. In this investigation, the ap-
pearance of hyperchaos was established by means of the
derivation of two positive Lyapunov exponents and the
analysis of the Kaplan-Yorke dimension. The dynamics
of this (low-dimensional) simplified system was conside-
red for a wide parameter range of the system, including
the quantum coupling parameter H . However, in the
derivation of this simplified model the change of variables
in Eqs. (7) and (8) of this work is not fully consistent.
Indeed, Eq. (3b) of this paper implies ȧ = −4n1 sinφ,
while Eq. (3c) would imply ȧ = −2n1 sinφ, using the
notations of Ref. [5]. The reason for the contradiction
is that the transformations [Eqs. (7), (8) of [5]] do not
respect the conservation of plasmon number as given by
Eq. (5) of the cited paper. Similar difficulties also ap-
pear in the literature about the classical Zakharov system
[12, 13], in the derivation of reduced ordinary differen-
tial equations simulating the classical (H = 0) temporal
as well as spatio-temporal system. Hence, in this Sec-
tion we will rederive the basic set of equations assuming
a truncated expansion scheme and produce the correct
simplified model. The resulting system is then shown nu-
merically to be compatible with the existence of chaotic
as well as hyperchaotic attractors, in qualitative agree-
ment with the conclusions in Ref. [5]. In order to access
the low-dimensional dynamical behavior derivable from
Eqs. (1–2), we follow Refs. [5] and [13] considering a
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FIG. 1: Hamiltonian function H in Eq. (19), showing distinct
qualitative properties for different values of the parameter µ:
µ =

√

0.5 (upper panel), µ =
√

3 (lower panel).

few-modes expansion through the ansatz

E =
√
N sin

(a

2

)

exp(iθ0) +
√
2N cos

(a

2

)

cos(kx) exp(iθ1) ,

(3)

n = N + n1 cos(kx) , (4)

where N is the conserved plasmon number, k is the fixed
wave-number of the excitation and a = a(t), θ0 = θ0(t),
θ1 = θ1(t) and n1 = n1(t) are real time-dependent quan-
tities. It is important to notice that Eq. (3) implies
|E|2 = N+oscillatory terms, in agreement with the con-
servation of plasmon number.

Inserting Eqs. (3–4) into Eqs. (1–2) and computing
the zero wave-number term and the coefficient of the
term proportional to cos(kx) yields four equations, cor-
responding to the real and imaginary parts. Further,
the higher-order harmonics proportional to cos(2kx) are
disregarded, in the spirit of the present few modes ap-
proximation. The real and the imaginary parts of the
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independent term gives

ȧ = −
√
2n1 sinϕ , (5)

θ̇0 = −N −
√
2

2
n1 cosϕ cot

(a

2

)

, (6)

where the ‘dot’ represents derivative with respect to time
t and

ϕ = θ0 − θ1 . (7)

Now, considering the real part of the coefficient of the
term proportional to cos(kx) we get

θ̇1 = −N − k2(1 +H2k2)−
√
2

2
n1 cosϕ tan

(a

2

)

. (8)

The imaginary part of the coefficient or the term propor-
tional to cos(kx) provides no further information. The
combination of Eqs. (6–8) gives

ϕ̇ = k2(1 +H2k2)−
√
2n1 cosϕ cot a . (9)

To close the system, it is necessary to substitute the
ansatz of Eqs. (3–4) also into Eq. (2). Ignoring again
higher-order harmonics yields

n̈1 + k2(1 +H2k2)n1 = −
√
2Nk2 cosϕ sin a . (10)

The system of Eqs. (5),(9) and (10) provides a finite-
dimensional closed set of ordinary differential equations
for a, ϕ and n1, whose properties will be analyzed nu-
merically in the next Section.
Of particular interest is the case where the density fluc-

tuations respond adiabatically to excitations. In this si-
tuation the second derivative term in Eq. (10) can be
neglected, yielding

n1 = −
√
2N

1 +H2k2
cosϕ sin a . (11)

Inserting this last result into Eqs. (5) and (9), we get the
two-dimensional dynamical system

ȧ =
N

1 +H2k2
sin 2ϕ sin a , (12)

ϕ̇ = k2(1 +H2k2) +
2N

1 +H2k2
cos2 ϕ cos a . (13)

Actually, Eqs. (12) and (13) contain only one relevant
free parameter µ, as can be proved by introducing the
rescaled time variable

τ =
N t

1 +H2 k2
, (14)

so that

da/dτ = sin 2ϕ sina , (15)

dϕ/dτ = µ2 + 2 cos2 ϕ cos a , (16)

where

µ =
k (1 +H2k2)√

N
. (17)

In this formulation, the role of quantum effects, contained
in the free parameter H , are hidden in the rescaled time
τ and also in µ. Thus, the quantum effects tend to slow
down the dynamics, since a larger H causes dτ/dt to be-
come smaller in magnitude. Moreover, it follows from Eq.
(16) that the fixed points can exist only when µ ≤

√
2.

But, since µ is a monotonically increasing function of H ,
the conclusion is that quantum effects tend to suppress
the existence of equilibrium points.
In addition, Eqs. (15-16) form a completely integrable

dynamical system, as can be better seen in writing it in
the generalized Hamiltonian form

da

dτ
= J

∂H
∂ϕ

,
dϕ

dτ
= −J

∂H
∂a

, (18)

where J = csc a and the first integral H playing the role
of Hamiltonian function is

H = µ2 cos a− cos2 ϕ sin2 a . (19)

The system (18) can be written in canonical Hamiltonian
form using Darboux coordinates (u, v) = (− cosa, ϕ), so
that du/dτ = ∂H/∂v, dv/dτ = −∂H/∂u. Most impor-
tantly, Eq. (18) is manifestly non-chaotic. Notice, how-
ever, that the level surfaces of the constant of motion H
are not compact, and thereby violating a necessary con-
dition for Liouville integrability. In addition, the Poisson
structure is singular in the sense that J is not well-defined
for a = lπ, where l is an integer. Figure 1 exhibits some
typical graphs of H for µ =

√
0.5 and µ =

√
3 showing

distinct qualitative properties of the constant of motion.
On the other hand, the adiabatic limits of the simpli-

fied finite-dimensional system and the original infinite-
dimensional system are to be compared. For the infinite-
dimensional system, the adiabatic limit is get disregard-
ing the second-order time derivative of the density fluc-
tuation in Eq. (2). The resulting equations are

i
∂E

∂t
+

∂2E

∂x2
+ |E|2E = H2

(

∂4E

∂x4
+ E

∂2n

∂x2

)

, (20)

H2 ∂
2n

∂x2
− n = |E|2 , (21)

which in the formal classical limit (H → 0) reduce to
the usual NLSE, which is well-known to be completely
integrable. However, in the quantum case, the adiabatic
limit still shows a coupled nonlinear system, whose prop-
erties are not yet completely known. In contrast, the
simplified dynamics associated to the present few-modes
ansatz has shown to be integrable. Notice that the sys-
tem (20–21) can be decoupled taking both the semiclas-
sical (H ≪ 1) as well as adiabatic limits, so that the
substitution n = −|E|2 is allowed in the right-hand side

3
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FIG. 2: Two largest Lyapunov exponents with respect to H

and for constant N = 1.5 and k = 0.8.

of Eq. (20). In this case one obtains

i
∂E

∂t
+

∂2E

∂x2
+ |E|2E = H2

(

∂4E

∂x4
− E

∂2|E|2
∂x2

)

. (22)

Equation (22) can be used as the starting point for study-
ing quantum perturbations of the classical NLS soliton
solutions [6].

III. NUMERICAL RESULTS

The system of Eqs. (5), (9) and (10) can be recast as

ẋ1 = −
√
2 x3 sinx2 , (23)

ẋ2 = k2 (1 +H2k2)−
√
2x3 cosx2 cotx1 , (24)

ẋ3 = x4 , (25)

ẋ4 = −k2 (1 +H2k2)x3 −
√
2Nk2 cosx2 sin x1 , (26)

where, for convenience, we have redefined the variables
as a = x1, ϕ = x2, n1 = x3, ṅ1 = x4.
Eqs.(23–26) were numerically solved by using the sixth

order Runge-Kutta-Fehlberg scheme with the step length
h = 0.01 and initial values as x1 = 0.1, x2 = 0.2,
x3 = 0.3, x4 = 0.1. A Monte-Carlo search on the param-
eter space was conducted to find the possible dynamics
of the system, namely periodic, chaotic or hyperchaotic
regimes. In order to establish the existence of irregular
dynamics we have investigated the Lyapunov exponents
spectra [14]. Chaos or hyperchaos is characterized by the
presence of one or two positive largest Lyapunov expo-
nents respectively. It is sufficient to calculate only the
three largest Lyapunov exponents. These largest Lya-
punov exponents were calculated by integrating Eqs. (23-
26) in order to have average estimates of them over the
attractors [15]. Figure 2 shows examples of two largest
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FIG. 3: Hyperchaotic phase portrait of the system (23)-(26)
in the x1 − x3 plane for H = 0.2, N = 1.5 and k = 0.8.

Lyapunov exponents with respect to the quantum pa-
rameter H and for constant N = 1.5 and k = 0.8 such
that µ ≤

√
2 is satisfied. We observe that the system is

chaotic (one positive exponent) for a small range of H ,
while it is hyperchaotic (two positive exponents) for a
wide range of values of H . In the classical case, i.e., for
H = 0, we also find two positive Lyapunov exponents
indicating the hyperchaotic features even in the classi-
cal ZEs [1] as well. It is to be noted that the system
may experience some other features at the points where
some peaks of the first (maximum) Lyapunov exponent
seem to be correlated with the depletions of the second
exponent. However, since the variations of the exponents
are shown with respect to a system parameter, namely
H , there may be a possibility for the existence of chaos
rather than the hyperchaotic orbits at those points, es-
pecially where the second Lyapunov has negative peaks.
Figure 3 shows an example of the hyperchaotic dynamics
of the system in the x1 − x3 plane for H = 0.2, N = 1.5
and k = 0.8. It seems to show an intermittent switching
between two regions of the phase space, one to the left
and other to the right of x1 ≈ 3.2. These can be veri-
fied from the corresponding time series for x1 and x3 as
shown in Fig. 4. Here the upper panel clearly explains
this intermittency near x1 = 3.2, and both the time series
show the aperiodic nature of the system which are very
common in the context of chaotic dynamics. The chaotic
dynamics of the system can be established by calculat-
ing the power spectrum corresponding to the variable x3.
Here one can measure the power spectrum as the square
of the modulus of the complex Fourier coefficients corre-
sponding to x3 with frequency as the inverse of the period
of the signal [16]. However, measuring the amplitude of
the pulse gives rise a slight modification of the power of
the same obtained by using the Fast Fourier Transform
(FFT). The latter is used to compute the discrete Fourier
Transform (DFT) of the signal, as well as the magnitude
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FIG. 4: The time series corresponding to the variables x1

(upper panel) and x3 (lower panel). The parameter values
are the same as in Fig. 3.

and phase of the transformed signal [17]. The ‘abs’ func-
tion is used to obtain the magnitude of the data and the
‘angle’ function to obtain the phase information [18], and
unwrap in order to remove the phase jumps greater than
π to their 2π complement. These are illustrated in Fig.
5. This figure clearly shows the chaotic dynamics of the
waveforms with low-frequency and high amplitudes, as
well as exhibits the broadband spectral features of the
system. The route to chaos from a single periodic orbit
can be explained by means of a one-parameter bifurca-
tion analysis in the domains of dynamical variables. We
have considered one fixed value of H = 0.2, two different
values of k, namely k = 0.9, 0.95 and allowed the plasmon
number N to vary so as to satisfy the inequality µ ≤

√
2.
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FIG. 5: The amplitude (absolute value, see the upper panel)
and the phase (lower panel) of the hyperchaotic signal cor-
responding to the variable x3. The parameter values are the
same as in Fig. 3.

The three-dimensional pictorial views of the bifurcation
diagram with x1, x3 and N are shown in Fig. 6 for dis-
tinct values of k. These explain that the system loses its
stability through a supercritical Hopf-bifurcation (hb),
which gives the birth to periodic limit cycles at N ≈ 0.78
for H = 0.2, k = 0.9 (upper panel) and N ≈ 0.6 for
H = 0.2, k = 0.95 (lower panel). The nature of the
supercritical Hopf-bifurcation can be seen in the x1-x2

plane from Fig. 7 for N = 1.5, H = 0.2 and different
k: (i) k = 0.3 (upper panel) and (ii) k = 0.5 (lower
panel). Notice that in the case of Hopf-bifurcation, we
have generated a program with varying k from k = 0.1 to
1.0. Figure 7 shows illustrations of two different values
of k. The trajectories in both the upper and lower panel
of Fig. 7 are generated with different initial conditions,
and finally they converge to attracting or repelling limit
cycles. In both the cases the initial values are taken from
the unstable sets. For values of k larger than k = 0.5 no
more attracting or repelling limit cycle is found to coex-
ist. From Fig. 7 one can also observe that a limit cycle
(the blue curves or e.g., the orbits appeared first from the
bottom at x1 < 0 and at x1 > 0 ) is surrounded by the
unstable equilibriums (red colored curves). To further
examine the chaotic features, one can also calculate the
Fourier transform of the signal [16] corresponding to the
variable x1. Figure 8 represents the distribution of the
Fourier coefficients in the complex plane corresponding
to the chaotic signal x1for H = 0.2, N = 1.5 and k = 0.8.
It shows how wide and dense are the Fourier coefficients
in the complex plane. This distribution could be useful
to quantify chaos from numerical points of view. How-
ever, the detail analysis is beyond the scope of the present
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FIG. 6: The snap shots of an animated movie showing the
three-dimensional views of the bifurcation diagrams with vari-
ation of the parameter N and for a fixed H = 0.2. Two dif-
ferent values of k are: k = 0.9 (upper panel) and k = 0.95
(lower panel). Different colors may correspond to the pixels
of different projections on the “floor”.

work.

IV. CONCLUSION

The nonlinear interaction of quantum Langmuir waves
and quantum ion-acoustic waves is analyzed in terms
of a superposition of three interacting wave modes
in Fourier space. Previous works on both classical
[12, 13] and quantum [5] Zakharov equations have been
rectified and modified. The chaotic behaviors of the
reduced temporal system have been identified by the
analysis of Lyapunov exponent spectra as well as by the
analysis of power spectrum. The hyperchaos has been
characterized by the presence of two positive Lyapunov
exponents. Also, the route to chaos from a single

periodic orbit is analyzed by means of one-parameter
bifurcation analysis. Moreover, the reduced temporal
dynamics is shown to be integrable in the adiabatic
limit. This is in contrast to the adiabatic limit of the
spatiotemporal dynamics described by the QZEs whose
integrable properties deserves further study; whereas
the finite-dimensional reduced system is shown to evolve
into periodic, chaotic as well as hyperchaotic orbits [5].
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FIG. 7: Supercritical Hopf-bifurcation in the x1−x2 plane for
N = 1.5, H = 0.2 and different k: (i) k = 0.3 (upper panel)
(ii) k = 0.5 (lower panel).

To conclude, we believe that the results presented in
this work would be helpful for better understanding the
salient features of such 1D QZEs.
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