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Abstract

Among the numerous works on quantum effects that have been published in recent years, stream-

ing instabilities in plasma have also been revisited. Both the fluid quantum and the kinetic Wigner-

Maxwell models have been used to explore quantum effects on the Weibel, Filamentation and Two-

Stream instabilities. While quantum effects usually tend to reduce the instabilities, they can also

spur new unstable branches. A number of theoretical results will be reviewed together with the

implications to one physical setting, namely the electron driven fast ignition scenario.
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I. INTRODUCTION

A quantum plasma is a plasma where quantum effects cannot be neglected. Such is

clearly the case for degenerate plasmas, where temperature is smaller than the Fermi energy.

Considering for simplicity an electron gas of density N and temperature T on a fixed positive

background, the Fermi energy EF varies like N2/3. The line T = EF defines (see Fig. 1) the

limit between classical and degenerate plasmas. A classical plasma becomes relativistic for

T > mc2 where m is the electron mass. A degenerate plasma becomes so for TF > mc2. In

addition to this classification, a plasma is said weakly coupled when the typical Coulomb

potential energy q2N1/3 is smaller than the mean kinetic energy. For classical plasma, this

turns to q2N1/3 > T while for degenerate ones, the inequality reads q2N1/3 > TF which

just determines a threshold density beyond which the plasma is weakly coupled. Degenerate

plasmas thus have this interesting feature that they are all the more weakly coupled, perfect

gas-like, that they are dense. Relativistic effects will not be discussed here, nor spin effects.

Note that these later can trigger quantum effects even for non-degenerate plasmas with

T > TF [1].

According to the present nomenclature,“quantum” and “degenerate” plasmas are there-

fore not necessarily equivalent. A “degenerate” plasma simply has T < TF . A “quantum”

plasma needs quantum theory to correctly describe its behavior. Degenerate plasmas are

quantum, but some non-degenerate plasmas may be quantum as well.

The study of quantum plasmas can eventually be traced back to the first days of solid

state physics, as certain of its aspects can be approached forgetting about the lattice nature

of the background ions [2]. The next motivations for quantum plasma studies came from

the physics of dense astrophysical objects [3] and from Inertial Confinement Fusion (ICF).

Regarding the later, an Deuterium-tritium target in pre-ignition conditions should meet

T ∼ 107 K with N ∼ 1025, placing it at the border of the degeneracy frontier.

The investigation of streaming instabilities in quantum plasma arises naturally when

considering the multi-stream plasma model [4, 5] and has been directly needed recently to

deal with the Fast Ignition Scenario for ICF [6, 7]. Besides these motivations, streaming

instabilities are part of any plasma physics textbook, and it is natural to revisit them from

the quantum point of view.

Quantum plasmas have been so far mostly investigated in the non-relativistic weakly cou-
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FIG. 1: Weakly coupled non-relativistic degenerate plasmas. (Color online)

pled regime (see [8] for a relativistic formalism), although ultra-cold quantum plasmas usu-

ally refers to the low temperature, strongly coupled, degenerate regime. Quantum streaming

instabilities have been dealt with so far exclusively in the weakly coupled non-relativistic

regime (shaded region on Fig. 1), and the present Review will equally focus on this case. As

is the case for the description of a plasma, the theory can deal with the fluid or the kinetic

level. In the later case, quantum plasmas are studied from the so-called Wigner-Maxwell

system of equations where the kinetic Wigner equation [9, 10] replaces the Vlasov equation.

At the fluid level, quantum corrections to the fluid equations can be introduced [5]. We

will first treat the fluid and then the kinetic results on streaming instabilities in quantum

plasmas.

An instability consisting in the temporal exponential growth of some physical quantity,

will by design promptly reach the non-linear regime and then saturation. Among the works

already achieved on nonlinear effects in quantum plasmas (see [11] for a review), none are

dealing with the nonlinear phase of streaming instabilities. The present article is therefore

restricted to what is know on their linear phase.

Although the Weibel and the filamentation instability differ (see [12] for a discussion),

they are frequently considered interchangeably in literature. While filamentation instability
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stands for unstable modes propagating perpendicularly to the flow of a counter-streaming

system, the Weibel instability refers to unstable modes triggered in a anisotropic plasma

without any drift. The present review focuses on streaming instabilities, and the Weibel

one will not be detailed. Let us just emphasize in this respect that both quantum fluids

[13] and kinetic treatments [14–16] of the “true” Weibel instability are now available in the

literature.

II. FLUID TREATMENT

Like in the classical case, a number of plasmas instabilities such as two-stream, filamen-

tation or Weibel are accessible to the fluid level [17–19]. The fluid treatment basically relies

on some quantum corrections terms to the Euler fluid equation. Writing it for the electrons,

for example, gives

∂v

∂t
+ (v · ∇)v = − q

m

(

E +
v × B

c

)

+
~

2

2m2
∇
(

∇2
√

n√
n

)

− n0v
2
T

n
G∇

(

n

n0

)3

, (1)

where n, v are the density and velocity fields respectively, n0 the equilibrium density, vT

the thermal velocity and G a function of the chemical potential [20]. Quantum corrections

obviously consist in the last two terms of the r.h.s. The first of these is the so-called Bohm

term accounting for undulatory quantum aspects. The second one clearly accounts for

temperature effects and arises from the moments of the Wigner equation when considering

a finite temperature Fermi-Dirac statistics [20]. Formal linearization of these two terms can

be found in Ref. [7].

A. Two-stream instability

The dispersion equation for the quantum two-stream instability has been derived in Refs.

[5, 21]. For two counter-streaming symmetric electron beams of density n0 and velocity v0

it reads,
1

(Ω − Z)2 − H2Z2/4
+

1

(Ω + Z)2 − H2Z2/4
= 1, (2)

with Ω = ω/ωp, Z = kv0/ωp, ωp being the electronic plasma frequency of a single beam.

The H2 term at the denominator, sometime refers to as “quantum recoil” defines an extra,

purely quantum unstable branch, located at higher k’s than the classical one, which has
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been detailed in [5] (see Fig. 3). These secondary unstable modes have been related to

negative energy waves [22].

Two-stream modes are electrostatic Langmuir waves having the electrons oscillate along

the streaming direction. This is why no theory of these modes when accounting for a flow

aligned magnetic field B0 is needed, since the correcting v × B0 force vanishes at all orders.

B. Filamentation instability

The two-stream instability pertains to unstable electrostatic modes propagating along the

flow. The filamentation instability, which has to do with electromagnetic modes propagating

perpendicularly to the flow, has been discussed in [23] for the un-magnetized case, and [24]

for the magnetized one. Considering again counter-streaming electron beams on a fixed

neutralizing ion background, the classical filamentation instability is known to display a

growth-rate saturating to a finite value at large k’s [25]. Quantum effects has been found

to set un upper limit to the unstable k range. If the two beam have a density ratio much

smaller than one, the largest unstable k takes the simple form [23],

k2
m =

2mωb

~
, (3)

where ωb is here the plasma frequency of the thinner beam. In the classical case, the largest

growth rate is reached from k ∼ ωp/c, ωp being the plasma frequency os the denser beam.

Quantum effects thus become important when,

km <
ωp

c
⇔ ~ωp

mc2
> 2

ωb

ωp

, (4)

showing effects can be pronounced for very asymmetric systems with ωb ≪ ωp.

Filamentation instability has first been explored for the case of a flow aligned magnetic

field in the cold approximation [25]. The magnetized fluid theory accounting for the Bohm

pressure term has been analyzed in Ref. [24]. The guiding magnetic field is here measured

through the dimensionless parameter,

ΩB =
qB0

mcωp
≡ ωB

ωp
. (5)

Quantum effects have been found to emphasize the stabilization effects of the magnetic field.

In the classical regime, magnetization introduces a low k cutoff to the instability. In the
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quantum magnetized case, a large k cutoff is added, as can be seen on Figure 2. As in the

classical case, the instability can be completely suppressed beyond a given magnetic field

which value is reduced by quantum effects.

C. Full unstable spectrum

Investigating the full unstable spectrum for any kind of wave-vector orientations sheds

an interesting light on the problem [26, 28, 29]. The basic idea is that unstable waves can be

excited for intermediate orientations between the two-stream and filamentation propagation

directions [30]. Linearizing the cold quantum fluid equations and computing the dielectric

tensor for any kind of wave vectors allows for the derivation of the 2D unstable spectrum

pictured on Fig. 3 [29]. The growth rate of a given mode k has been systematically calculated

in terms of (Z‖, Z⊥) = (k‖v0/ωp, k⊥v0/ωp). Along the parallel axis, the classical two-stream

unstable modes are easily recognized at low Z’s. At higher though, one now finds the purely

quantum unstable branch. In the normal direction, the unstable range of filamentation

modes is visible. Extending the calculation to the full spectrums uncovers a surprising

connection between the two-stream branches. In the classical limit, the two-stream quantum

branch is sent to k‖ = ∞, filamentation cutoff is sent to k⊥ = ∞, and the cold classical

unstable domain fulfilling approximately k‖ < 1 is recovered.

0.2 0.4 0.6 0.8 1 Z
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0.02

0.03

Classical, non magnetized

Classical, magnetized

Quantum, magnetized

δ/ωp

FIG. 2: Comparing the cold classical growth rate δ for the filamentation instability with the

classical magnetized and quantum magnetized results. Parameters v0 = 0.1c, ~ωp/mc2 = 1.4 10−3

and ΩB = 3 10−2. The beams density ratio is 10.
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FIG. 3: Full unstable spectrum of a symmetric counter-streaming plasmas with velocities v = 0.6c

with ~ωp = 0.6mc2. (Color online)

III. KINETIC TREATMENT

A kinetic approach is usually required to explore thermal effects on unstable modes. The

basic reason for this is that this kind of modes are unstable in the cold limit because they

can interact strongly with particles. If, thus, they are in phase with the particles in the

cold limit, thermal effects will necessarily introduce a spread relevant for the wave-particle

interaction. One can additionally infer from this physical picture that thermal effects usually

reduce the instability, precisely because the thermal spread reduces the number of particles

remaining in phase with the wave for a long time.

The expression of the quantum dielectric tensor for multi-species plasma reads (see [31]

and references therein),

εαβ = δαβ



1 −
∑

j

ω2
pj

ω2



 (6)

+
∫

dv
vα vβ

~ (ω − k · v)

∑

j

mj ω2
pj

ω2

(

f 0
j

[

v +
~k

2 mj

]

− f 0
j

[

v − ~k

2 mj

])

,

where mj , ωpj and f 0
j are the mass, plasma frequency and equilibrium distribution function
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FIG. 4: Kinetic growth rate (blue) obtained solving the kinetic dispersion equation, compared to

the quantum fluid result with Bohm pressure term (purple) and to the classical cold plasma result

(yellow), in terms of the reduced wave vector Z = kv0/ωp for v0 = 0.1c. Left: v0/vF = 15, and

the fluid unstable range is wider than the kinetic one. Right: v0/vF = 900, and the fluid unstable

range is smaller than the kinetic one. The saturation value for the classical cold curve is simply

β = v0/c. (Color online)

for specie j respectively. In principle, the expression above allows for the investigation of any

linear phenomenon such as stopping power [32–34] or beam-plasma instabilities. Regarding

the later, only the filamentation instability has been so far studied, for the case of two

cold identical counter-streaming electrons beams on a fixed ions background [31]. Note that

“cold” does not refer here to “monokinetic”, but to the Fermi-Dirac distribution in the zero

temperature limit.

For the case treated so far, the quadrature involved in the instability process can be

calculated exactly, as the integrand is integrated over two Fermi spheres centered around

±v0. Figures 4 compare the growth rates in the cold classical, cold fluid quantum and cold

kinetic quantum regimes. Both figures confirm the long wavelength equivalence of the 3

models. Noteworthily, while the Left plot gives, as expected, a fluid unstable range larger

than the kinetic one, the situation is reversed on the Right plot.

It is interesting to compare the way some key quantities reach the classical limit in the

quantum fluid and the quantum kinetic models. In both cases, the largest unstable wave

vector tends to infinity like ~
−1. In the strong quantum limit v0/vF → 0, both models

equally yield a maximum growth rate δm approaching zero, but not the same way as the

fluid one gives δm ∝ (v0/vF )3/2 while the kinetic one yields δm ∝ (v0/vF )2.
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The general intuitive conclusion that the kinetic system should be more stable than the

fluid one is thus recovered, in spite of the yet not understood “anomaly” observed on Fig. 4

(right) where the kinetic unstable range is larger than the fluid one.

IV. CONCLUSION

As stated in the introduction, quantum effects on streaming instabilities have been so

far mainly studied from a fundamental point of view. However, an important practical

motivation for their investigation in recent years has been the so called Fast Ignition Scenario

(FIS) for Inertial Confinement Fusion (ICF). In the “traditional” scenario for ICF [35], a ∼ 1

mm pellet of Deuterium and Tritium is compressed and heated by one single driver (mainly

laser or heavy-ions). The heating requires an highly symmetrical compression to limit the

growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities [36–38]. The current

solution, implemented at the National Ignition Facility, consists in converting the megajoule

laser energy to an homogenous X-ray “bath” which compresses the target. In order to save

the driver energy lost in the X-ray conversion, a scheme was proposed in 1994 decoupling

the compression from the heating phase [6]. While the compression phase is still achieved

through a few hundreds kilojoule laser, the heating is performed shooting a petawatt laser on

the pre-compressed target. This later interaction produces a beam of relativistic electrons

which, if properly tailored, deposit their energy at the center of the target a create the

“hot spot”. Since the target center is partially degenerate, the beam-plasma interaction at

this location requires the inclusion of quantum effects. These later have been so far found

negligible [7], so that the energy lost exciting unstable modes can be evaluated near the

target centered assuming a classical plasma.

Further applications should arise in astrophysics were dense objects are commonplace.

Meanwhile, the theory still needs to extend. As we have seen, only the filamentation insta-

bility has been examined in the kinetic regime. Quantum relativistic extensions are equally

possible [39–41].
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