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Abstract

The quantum Zakharov system in three-spatial dimensions and an associated Lagrangian descrip-

tion, as well as its basic conservation laws are derived. In the adiabatic and semiclassical case,

the quantum Zakharov system reduces to a quantum modified vector nonlinear Schrödinger (NLS)

equation for the envelope electric field. The Lagrangian structure for the resulting vector NLS

equation is used to investigate the time-dependence of the Gaussian shaped localized solutions,

via the Rayleigh-Ritz variational method. The formal classical limit is considered in detail. The

quantum corrections are shown to prevent the collapse of localized Langmuir envelope fields, in

both two and three-spatial dimensions. Moreover, the quantum terms can produce an oscillatory

behavior of the width of the approximate Gaussian solutions. The variational method is shown to

preserve the essential conservation laws of the quantum modified vector NLS equation.
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I. INTRODUCTION

The Zakharov system [1], describing the coupling between Langmuir and ion-acoustic

waves, is one of the basic plasma models, see Ref. [2, 3] for reviews. Recently [4], a quantum

modified Zakharov system was derived, by means of the quantum plasma hydrodynamic

model [5]–[7]. In this context, enhancement of the quantum effects was then shown e. g.

to suppress the four-wave decay instability. Subsequently [8], a kinetic treatment of the

quantum Zakharov system has shown that the modulational instability growth rate can be

increased in comparison to the classical case, for partially coherent Langmuir wave electric

fields. Also [9], a variational formalism was obtained and used to study the radiation of

localized structures described by the quantum Zakharov system. Bell shaped electric field

envelopes of electron plasma oscillations in dense quantum plasmas obeying Fermi statistics

were analyzed in Ref. [10]. More mathematically-oriented works on the quantum Zakharov

equations concern its Lie symmetry group [11] and the derivation of exact solutions [12]–[14].

Finally, there is evidence of hyperchaos in the reduced temporal dynamics arising from the

quantum Zakharov equations [15].

All these paper refer to quantum Zakharov equations in one-spatial-dimension only. In

the present work, we extend the quantum Zakharov system to fully three-dimensional space,

allowing also for the magnetic field perturbation. In the classical case, both heuristic argu-

ments and numerical simulations indicate that the ponderomotive force can produce finite-

time collapse of Langmuir wave packets in two- or three-dimensions [2], [16, 17]. This is in

contrast to the one-dimensional case, whose solutions are smooth for all time. A dynamic

rescaling method was used for the time-evolution of electrostatic self-similar and asymp-

totically self-similar solutions in two- and three-dimensions, respectively [18]. Allowing for

transverse fields shows that singular solutions of the resulting vector Zakharov equations

are weakly anisotropic, for a large class of initial conditions [19]. The electrostatic nonlin-

ear collapse of Langmuir wave packets in the ionospheric and laboratory plasmas has been

observed [20, 21]. Also, the collapse of Langmuir wave packets in beam plasma experiments

verifies the basic concepts of strong Langmuir turbulence, as introduced by Zakharov [22].

The analysis of the coupled longitudinal and transverse modes in the classical strong Lang-

muir turbulence has been less studied [23]–[25], as well as the intrinsically magnetized case

[26], which can lead to upper-hybrid wave collapse [27]. Finally, Zakharov-like equations
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have been proposed for the electromagnetic wave collapse in a radiation background [28].

It is expected that the ponderomotive force causing the collapse of localized solutions

in two- or three-space dimensions could be weakened by the inclusion of quantum effects,

making the dynamics less violent. This conjecture is checked after establishing the quan-

tum Zakharov system in higher-dimensional space and using its variational structure in

association with a (Rayleigh-Ritz) trial function method.

The manuscript is organized in the following fashion. In Section 2, the quantum Zakharov

system in three-spatial-dimensions is derived by means of the usual two-time scale method

applied to the fully 3D quantum hydrodynamic model. In Section 3, the 3D quantum Za-

kharov system is shown to be described by a Lagrangian formalism. The basic conservation

laws are then also derived. When the density fluctuations are so slow in time so that an

adiabatic approximation is possible, and treating the quantum term of the low-frequency

equation as a perturbation, a quantum modified vector nonlinear Schrödinger equation for

the envelope electric field is obtained. In Section 4, the variational structure is used to ana-

lyze the temporal dynamics of localized (Gaussian) solutions of this quantum NLS equation,

through the Rayleigh-Ritz method, in two-spatial-dimensions. Section 5 follows the same

strategy, extended to fully 3D space. Special attention is paid to the comparison between

the classical and quantum cases, with considerable qualitative and quantitative differences.

Section 6 contains conclusions.

II. QUANTUM ZAKHAROV EQUATIONS IN 3 + 1 DIMENSIONS

The starting point for the derivation of the electromagnetic quantum Zakharov equations

is the quantum hydrodynamic model for an electron-ion plasma, Equations (20)-(28) of Ref.

[7]. For the electron fluid pressure pe, consider the equation of state for spin 1/2 particles

at zero temperature,

pe =
3

5

mev
2
Fe n

5/3
e

n
2/3

0

, (1)

where me is the electron mass, vFe is the Fermi electron thermal speed, ne is the electron

number density and n0 is the equilibrium particle number density both for electron and

ions. The pressure and quantum effects (due to their larger mass) are neglected for the ions.

Also due to the larger ion mass, it is possible to introduce a two-time scale decomposition,

ne = n0 + δns + δnf , ni = n0 + δns, ue = δus + δuf , ui = δus, E = δEs + δEf , B = δBf ,
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where the subscripts s and f refer to slowly and rapidly changing quantities, respectively.

Also, ue is the electron fluid velocity, ni the ion number density, ui the ion fluid velocity, E

the electric field, and B the magnetic field. Notice that it is assumed that there is no slow

contribution to the magnetic field, a restriction which allows to get B = (me/e)∇×δuf (see

Equation (2.21) of Ref. [3]), where −e is the electron charge. Including a slow contribution

to the magnetic field could be an important improvement, but this is outside the scope of

the present work.

Following the usual approximations [3, 4], the quantum corrected 3D Zakharov equations

read

2iωpe
∂Ẽ

∂t
− c2 ∇× (∇× Ẽ) + v2

Fe∇(∇ · Ẽ) =

=
δns

n0

ω2
pe Ẽ +

h̄2

4m2
e

∇
[

∇2(∇ · Ẽ)
]

, (2)

∂2δns

∂t2
− c2s ∇2δns −

ε0

4mi
∇2(|Ẽ|2) +

h̄2

4memi
∇4δns = 0 . (3)

Here Ẽ is the slowly varying envelope electric field defined via

Ef =
1

2
(Ẽ e−iωpet + Ẽ∗ eiωpet) , (4)

where ωpe is the electron plasma frequency. Also, in Eqs. (2–3) c is the speed of light in

vacuum, h̄ the scaled Planck constant, ε0 the vacuum permittivity and mi the ion mass.

In addition, c2s = κBTFe/mi , where κBTFe = mev
2
Fe. Therefore, cs is a Fermi ion-acoustic

speed, with the Fermi temperature replacing the thermal temperature for the electrons.

In comparison to the classical Zakharov system (see Eqs. (2.48a)–(2.48b) of Ref. [3]),

there is the inclusion of the extra dispersive terms proportional to h̄2 in Eqs. (2)–(3).

Other quantum difference is the presence of the Fermi speed instead of the thermal speed

in the last term at the left hand side of Eq. (2). From the qualitative point of view, the

terms proportional to h̄2 are responsible for extra dispersion which can avoid collapsing of

Langmuir envelopes, at least in principle. This possibility is investigated in Sections 4 and

5. Finally, notice the non trivial form of the fourth order derivative term in Eq. (2). It is

not simply proportional to ∇4Ẽ as could be wrongly guessed from the quantum Zakharov

equations in 1 + 1 dimensions, where there is a ∼ ∂4Ẽ/∂x4 contribution [4].
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It is useful to consider the rescaling

r̄ =
2
√
µωpe r

vFe
, t̄ = 2µωpet , (5)

n =
δns

4µn0

, E =
e Ẽ

4
√
µmeωpevFe

,

where µ = me/mi. Then, dropping the bars in r, t, we obtain

i
∂E
∂t

− c2

v2
Fe

∇× (∇× E) + ∇(∇ · E) =

= n E + Γ∇
[

∇2(∇ · E)
]

, (6)

∂2n

∂t2
− ∇2n−∇2(|E|2) + Γ∇4n = 0 , (7)

where

Γ =
me

mi

(

h̄ ωpe

κBTFe

)2

(8)

is a non-dimensional parameter associated with the quantum effects. Usually, it is an ex-

tremely small quantity, but it is nevertheless interesting to retain the ∼ Γ terms, specially

for the collapse scenarios. The reason is not only due to a general theoretical motivation,

but also because from some simple estimates one concludes that these terms become of the

same order as some of other terms in Eqs. (2)–(3) provided that the characteristic length l

for the spatial derivatives becomes as small as the mean inter-particle distance, l ∼ n
−1/3

0 .

Of course, the Zakharov equations are not able to describe the late stages of the collapse,

since they do not include dissipation, which is unavoidable for short scales. But even Landau

damping would be irrelevant for a zero-temperature Fermi plasma, where the main influence

comes from the Pauli pressure. In the left-hand side of Eq. (6), the ∇(∇·E) term is retained

because the ∼ c2/v2
Fe transverse term disappears in the electrostatic approximation.

In the adiabatic limit, neglecting ∂2n/∂t2 in Eq. (7) and under appropriated boundary

conditions, it follows that

n = −|E|2 + Γ∇2n , (9)

When Γ 6= 0, it is not easy to directly express n as a function of |E| as in the classical

case. Therefore, the adiabatic limit is not enough to derive a vector nonlinear Schrödinger

equation, due to the coupling in Eq. (9).
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III. LAGRANGIAN STRUCTURE AND CONSERVATION LAWS

The quantum Zakharov equations (6)–(7) can be described by the Lagrangian density

L =
i

2

(

E∗ · ∂E
∂t

− E · ∂E
∗

∂t

)

− c2

v2
Fe

|∇ × E|2 − |∇ · E|2 − Γ |∇(∇ · E)|2

+ n
( ∂α

∂t
− |E|2

)

− 1

2

(

n2 + Γ|∇n|2 + |∇α|2
)

, (10)

where n, the auxiliary function α and the components of E , E∗ are regarded as independent

fields. Remark: for the particular form (10) and for a generic field ψ, one computes the

functional derivative as

δL
δψ

=
∂L
∂ψ

− ∂

∂ri

∂L
∂ψ/∂ri

− ∂

∂t

∂L
∂ψ/∂t

+
∂2

∂ri ∂rj

∂L
∂2ψ/∂ri∂rj

, (11)

using the summation convention and where ri are cartesian components.

Taking the functional derivatives with respect to n and α, we have

∂α

∂t
= n+ |E|2 − Γ∇2n, (12)

and
∂n

∂t
= ∇2α , (13)

respectively. Eliminating α from Eqs. (12) and (13) we obtain the low frequency equation.

In addition, the functional derivatives with respect to E∗ and E produce the high-frequency

equation and its complex conjugate. The present formalism is inspired by the Lagrangian

formulation of the classical Zakharov equations [29].

The quantum Zakharov equations admit as exact conserved quantities the “number of

plasmons” of the Langmuir field,

N =

∫

|E|2 dr , (14)

the linear momentum (with components Pi, i = x, y, z),

Pi =

∫

[ i

2

(

Ej

∂E∗
j

∂ri

− E∗
j

∂Ej

∂ri

)

− n
∂α

∂ri

]

dr (15)

and the Hamiltonian,

H =

∫

[

n|E|2 +
c2

v2
Fe

|∇ × E|2 + |∇ · E|2 + Γ |∇(∇ · E)|2

+
1

2

(

n2 + Γ|∇n|2 + |∇α|2
)]

dr . (16)
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Furthermore, there is also a preserved angular momenta functional, but it is not relevant

in the present work. These four conserved quantities can be associated, through Noether’s

theorem, to the invariance of the action under gauge transformation, time translation, space

translation and rotations, respectively. The conservation laws can be used e. g. to test the

accuracy of numerical procedures. Also, observe that equations (7) and (9) for the adiabatic

limit are described by the same Lagrangian density (10). In this approximation, it suffices

to set α ≡ 0.

In addition to the adiabatic limit, Eq. (9) can be further approximated to

n = −|E|2 − Γ∇2(|E|2) , (17)

assuming that the quantum term is a perturbation. In this way and using Eq. (6), a

quantum modified vector nonlinear Schrödinger equation is derived

i
∂E
∂t

+ ∇(∇ · E) − c2

v2
Fe

∇× (∇× E) + |E|2E =

= Γ∇
[

∇2(∇ · E)
]

− Γ E∇2(|E|2) . (18)

The appropriate Lagrangian density Lad,sc for the semiclassical equation (18) is given by

Lad,sc =
i

2

(

E∗ · ∂E
∂t

− E · ∂E
∗

∂t

)

− c2

v2
Fe

|∇ × E|2 − |∇ · E|2

− Γ |∇(∇ · E)|2 +
1

2
|E|4 − Γ

2

∣

∣

∣
∇[ |E|2]

∣

∣

∣

2

, (19)

where the independent fields are taken as E and E∗ components.

The expression N for the number of plasmons in Eq. (14) remains valid as a constant

of motion in the joint adiabatic and semiclassical limit, as well as the momentum P in Eq.

(15) with α ≡ 0. Finally, the Hamiltonian

Had,sc =

∫

[ c2

v2
Fe

|∇ × E|2 + |∇ · E|2 + Γ |∇(∇ · E)|2

− 1

2
|E|4 +

Γ

2

∣

∣

∣
∇[ |E|2 ]

∣

∣

∣

2 ]

dr (20)

is also a conserved quantity.

In the following, the influence of the quantum terms in the right-hand side of Eq. (18)

are investigated, assuming adiabatic conditions for collapsing quantum Langmuir envelopes.

Other scenarios for collapse, like the supersonic one [18, 19], could also be relevant and shall

be investigated in the future.
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IV. VARIATIONAL SOLUTION IN TWO DIMENSIONS

Consider the adiabatic semiclassical system defined by Eq. (18). We refer to localized

solution for this vector NLS equation as (quantum) “Langmuir wave packets”, or envelopes.

As discussed in detail in [29] in the purely classical case, Langmuir wave packets will become

singular in a finite time, provided the energy is not bounded from below. Of course, explicit

analytic Langmuir envelopes are difficult to derive. A fruitful approach is to make use of the

Lagrangian structure for deriving approximate solutions. This approach has been pursued

in [30] for the classical and in [9] for the quantum Zakharov system. Both studies considered

the internal vibrations of Langmuir envelopes in one-spatial-dimension. Presently, we shall

apply the time-dependent Rayleigh-Ritz method for the higher-dimensional cases. A priori,

it is expected that the quantum corrections would inhibit the collapse of localized solutions,

in view of wave-packet spreading. To check this conjecture, and to have more definite

information on the influence of the quantum terms, first we consider the following Ansatz,

E =

(

N

π

)1/2
1

σ
exp

(

− ρ2

2σ2

)

exp
(

i(Θ + kρ2)
)

(cosφ, sinφ, 0) , (21)

which is appropriate for two-spatial-dimensions. Here σ, k,Θ and φ are real functions of

time, and ρ =
√

x2 + y2. The normalization condition (14) is automatically satisfied (in

2D the spatial integrations reduce to integrations on the plane). Other localized forms,

involving e. g. a sech type dependence, could have been also proposed. Here a Gaussian

form was suggested mainly for the sake of simplicity [31]. Notice that the envelope electric

field (21) is not necessarily electrostatic: it can carry a transverse (∇× E 6= 0) component.

The free functions in Eq. (21) should be determined by extremization of the action

functional associated with the Lagrangian density (19). A straightforward calculation gives

L2 ≡
∫

Lad,sc dx dy = −N
[

Θ̇ + σ2k̇ +
2c2

v2
Fe

k2σ2 +
1

2

(

c2

v2
Fe

− N

2π

)

1

σ2

+ 8Γk2 + 16Γk4σ4 +

(

1 +
N

2π

)

Γ

σ4

]

, (22)

where only the main quantum contributions are retained. Now L2 is the Lagrangian for a

mechanical system, after the spatial form of the envelope electric field was defined in advance

via Eq. (21). Of special interest is the behavior of the dispersion σ. For a collapsing solution

one could expect that σ goes to zero in a finite time. The phase Θ and the chirp function
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k should be regarded as auxiliary fields. Notice that L2 is not dependent on the angle φ,

which remains arbitrary as far as the variational method is concerned.

Applying the functional derivative of L2 with respect to Θ, we obtain

δL2

δΘ
= 0 → Ṅ = 0 , (23)

so that the variational solution preserves the number of plasmons, as expected. The remain-

ing Euler-Lagrange equations are

δL2

δk
= 0 → σσ̇ =

2c2

v2
Fe

σ2k + 8Γk + 32Γσ4k3 , (24)

δL2

δσ
= 0 → σk̇ = −2c2

v2
Fe

k2σ +
1

2

(

c2

v2
Fe

− N

2π

)

1

σ3
− 32Γk4σ3

+

(

1 +
N

2π

)

2Γ

σ5
. (25)

The exact solution of the nonlinear system (24–25) is difficult to obtain, but at least the

dynamics was reduced to ordinary differential equations.

It is instructive to analyze the purely classical (Γ ≡ 0) case first. This is specially true,

since to our knowledge the Rayleigh-Ritz method was not applied to the vector NLS equation

(18), even for classical systems. The reason can be due to the calculational complexity

induced by the transverse term. When Γ = 0, Eq. (24) gives k = v2
Feσ̇/2c

2σ. Inserting this

in Eq. (25) we have

σ̈ = −∂V2c

∂σ
, (26)

where the pseudo-potential V2c is

V2c =
c2

2v2
Fe

(

c2

v2
Fe

− N

2π

)

1

σ2
. (27)

From Eq. (27) it is evident that the repulsive character of the pseudo-potential will be

converted into an attractive one, whenever the number of plasmons exceeds a threshold,

N >
2πc2

v2
Fe

, (28)

a condition for Langmuir wave packet collapse in the classical two-dimensional case. The

interpretation of the result is as follows. When the number of plasmons satisfy Eq. (28),

the refractive ∼ |E|4 term dominates over the dispersive terms in the Lagrangian density

(19), producing a singularity in a finite time. Finally, notice the ballistic motion when

N = 2πc2/v2
Fe, which can also lead to singularity.
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Further insight follows after evaluating the energy integral (20) with the Ansatz (21),

which gives, after eliminating k,

Had,sc,2c =
Nv2

Fe

c2

[

σ̇2

2
+ V2c

]

(Γ ≡ 0) . (29)

Of course, this energy first integral could be obtained directly from Eq. (26). However, the

plausibility of the variational solution is reinforced, since Eq. (29) shows that it preserves

the exact constant of motion Had,sc. In addition, in the attractive (collapsing) case the

energy (29) is not bounded from bellow.

In the quantum (Γ 6= 0) case, Eq. (24) becomes a cubic equation in k, whose exact

solution is too cumbersome to be of practical use. It is better to proceed by successive

approximations, taking into account that the quantum and electromagnetic terms are small.

In this way, one arrives at

σ̈ = −∂V2

∂σ
, (30)

where the pseudo-potential V2 is

V2 =
c2

2v2
Fe

(

c2

v2
Fe

− N

2π

)

1

σ2
+

Γc2

v2
Fe

(

1 +
N

2π

)

1

σ4
. (31)

Now, even if the threshold (28) is exceeded, the repulsive ∼ σ−4 quantum term in V2 will

prevent singularities. This adds quantum diffraction as another physical mechanism, besides

dissipation and Landau damping, so that collapsing Langmuir wave packets are avoided in

vector NLS equation. Also, similar to Eq. (29), it can be shown that the approximate

dynamics preserves the energy integral, even in the quantum case. Indeed, calculating from

Eq. (20) and the variational solution gives Had,sc as

Had,sc,2 =
Nv2

Fe

c2

[

σ̇2

2
+ V2

]

(Γ ≥ 0) . (32)

From Eq. (30), obviously Ḣad,sc,2 = 0.

It should be noticed that oscillations of purely quantum nature are obtained when the

number of plasmons exceeds the threshold (28). Indeed, in this case the pseudo-potential

V2 in Eq. (31) assumes a potential well form as shown in Figure 1, which clearly admits

oscillations around a minimum σ = σm. Here,

σm = 2

[

Γ(1 +N/2π)

N/2π − c2/v2
Fe

]1/2

. (33)

10



Σ

V2

FIG. 1: The qualitative form of the pseudo-potential in Eq. (31) for N > 2πc2/v2
Fe.

Also, the minimum value of V2 is

V2(σm) = − c2

16Γ v2
Fe

(N/2π − c2/v2
Fe)

2

1 +N/2π
> − 1

16Γ

(

N

2π
− c2

v2
Fe

)2

, (34)

the last inequality follows since Eq. (28) is assumed. Therefore, a deepest potential well

is obtained when N is increasing. Also, for too large quantum effects the trapping of the

localized electric field in this potential well would be difficult, since V2(σm) → 0− as Γ

increases. This is due to the dispersive nature of the quantum corrections.

The frequency ω of the small amplitude oscillations is derived linearizing Eq. (30) around

the equilibrium point (33). Restoring physical coordinates via Eq. (5) this frequency is

calculated as

ω =
c√

2 vFe

(

κBTFe

h̄ ωpe

)2
(N/2π − c2/v2

Fe)
3/2

1 +N/2π
ωpe

<
vFe√
2 c

(

κBTFe

h̄ ωpe

)2 (

N

2π
− c2

v2
Fe

)3/2

ωpe . (35)

To conclude, the variational solution suggests that the extra dispersion arising from

the quantum terms would inhibit the collapse of Langmuir wave packets in two-spatial-

dimensions. Moreover, for sufficient electric field energy (which is proportional to N), in-

stead of collapse there will be oscillations of the width of the localized solution, due to the

competition between the classical refraction and the quantum diffraction. The frequency of
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linear oscillations is then given by Eq. (35). The emergence of a pulsating Langmuir envelope

is a qualitatively new phenomena, which could be tested quantitatively in experiments.

V. VARIATIONAL SOLUTION IN THREE-DIMENSIONS

It is worth to study the dynamics of localized solutions for the vector NLS equation (18)

in fully three-dimensional space. For this purpose, we consider the Gaussian form

E =

(

N

(
√
π σ)3

)1/2

exp

[

− r2

2σ2
+i(Θ+k r2)

]

(cosφ sin θ, sin φ sin θ, cos θ) , (36)

where σ, k,Θ, θ and φ are real functions of time and r =
√

x2 + y2 + z2, applying the

Rayleigh-Ritz method just like in the last Section. The normalization condition (14) is

automatically satisfied with Eq. (36), which, occasionally, can also support a transverse

(∇× E 6= 0) part.

Proceeding as before, the Lagrangian

L3 ≡
∫

Lad,sc dr = −N
[

Θ̇ +
3

2
σ2k̇ +

4 c2

v2
Fe

k2σ2 +
c2

v2
Fe σ

2
− N

4
√

2π3/2 σ3

+ 10 Γk2 + 20 Γk4σ4 +
5 Γ

4 σ4
+

3 ΓN

4
√

2 π3/2 σ5

]

(37)

is derived. In comparison to the reduced 2D-Lagrangian in Eq. (22), there are different

numerical factors as well as qualitative changes due to higher-order nonlinearities. Also, the

angular variables θ and φ don’t appear in L3.

The main remaining task is to analyze the dynamics of the width σ as a function of time.

This is achieved from the Euler-Lagrange equations for the action functional associated to

L3. As before, δL3/δΘ = 0 gives Ṅ = 0, a consistency test satisfied by the variational

solution. The other functional derivatives yield

δL3

δk
= 0 → σσ̇ =

4k

3

[

2 c2

v2
Fe

σ2 + 5Γ (1 + 4k2σ4)

]

, (38)

δL3

δσ
= 0 → σk̇ =

1

3

[

−8 c2

v2
Fe

k2σ +
2 c2

v2
Feσ

3
− 3N

4
√

2π3/2 σ4

− 80 Γk4σ3 +
5 Γ

σ5
+

15 ΓN

4
√

2π3/2 σ6

]

. (39)

In the formal classical limit (Γ ≡ 0), and using Eq. (38) to eliminate k, we obtain

σ̈ = −∂V3c

∂σ
, (40)
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Σ

V3 c

FIG. 2: The qualitative form of the pseudo-potential V3c in Eq. (41).

where now the pseudo-potential V3c is

V3c =
c2

v2
Fe

(

8 c2

9 v2
Fe σ

2
− 2N

9
√

2 π3/2 σ3

)

. (41)

The form (41) shows a generic singular behavior, since the attractive ∼ σ−3 term will

dominate for sufficiently small σ, irrespective of the value of N . Hence, in fully three-

dimensional space there is more “room” for a collapsing dynamics. Figure 2 shows the

qualitative form of V3c, attaining a maximum at σ = σM , where

σM =
3 v2

F N

8
√

2π3/2 c2
. (42)

By Eq. (39) and using successive approximations in the parameter Γ to eliminate k via

Eq. (38), we obtain

σ̈ = −∂V3

∂σ
, (43)

where

V3 =
8 c2

3 v2
Fe

[

c2

3 v2
Fe σ

2
− N

12
√

2π3/2 σ3
+

5 Γ

12 σ4
+

ΓN

4
√

2 π3/2 σ5

]

. (44)

The quantum terms are repulsive and prevent collapse, since they dominate for sufficiently

small σ. Moreover, when Γ 6= 0 an oscillatory behavior is possible, provided a certain

condition, to be explained in the following, is meet.

To examine the possibility of oscillations, consider V ′
3(σ) = 0, the equation for the critical

points of V3. Under the rescaling s = σ/σM , where σM (defined in Eq. (42)) is the maximum

13
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FIG. 3: The qualitative form of the pseudo-potential V3 in Eq. (44) for g < 1 (on the left) and

g > 1 (on the right).

of the purely classical pseudo-potential, the equation for the critical points read

V ′
3 = 0 → s3 − s2 +

4 g

27
= 0 , (45)

where

g =
480 π3 Γ c4

N2 v4
Fe

(46)

is a new dimensionless parameter. In deriving Eq. (45), it was omitted a term negligible

except if s ∼ c2/v2
Fe, which is unlikely.

The quantity g plays a decisive rôle on the shape of V3. Indeed, calculating the discrim-

inant shows that the solutions to the cubic in Eq. (45) are as follows: (a) g < 1 → three

distinct real roots (one negative and two positive); (b) g = 1 → one negative root, one

(positive) double root; (c) g > 1 → one (negative) real root, two complex conjugate roots.

Therefore, g < 1 is the condition for the existence of a potential well, which can support

oscillations. This is shown in Figure 3. The analytic formulae for the solutions of the cubic

in Eq. (45) are cumbersome and will be omitted.

Restoring physical coordinates, the necessary condition for oscillations is rewritten as

g < 1 → ε0

2

∫

|Ẽ|2 dr >
√

30π

γ
me vFe c , (47)

where γ = e2/4 πε0 h̄ c ≃ 1/137 is the fine structure constant. From Eq. (47) it is seen

that for sufficient electrostatic energy the width σ of the localized envelope field can show

oscillations, supported by the competition between classical refraction and quantum diffrac-

tion. Also, due to the Fermi pressure, for large particle densities the inequality (47) becomes

more difficult to be met, since vFe ∼ n
1/3

0 . For example, when n0 ∼ 1036m−3 (white dwarf),

the right-hand-side of Eq. (47) is 0.6 GeV. For n0 ∼ 1033m−3 (the next generation intense

laser-solid density plasma experiments), it is 57.5 MeV.

14



Finally, notice that Had,sc from Eq. (20), evaluated with the variational solution (36),

is proportional to σ̇2/2 + V3, which is a constant of motion for Eq. (43). Therefore, the

approximate solution preserves one of the basic first integrals of the vector NLS equation

(18), as it should be.

VI. CONCLUSION

In this paper, the quantum Zakharov system in fully three-dimensional space has been

derived. An associated Lagrangian structure was found, as well as the pertinent conservation

laws. From the Lagrangian formalism, many possibilities are opened. Here, the variational

description was used to analyze the behavior of localized envelope electric fields of Gaussian

shape, in both two- and three-space dimensions. It was shown that the quantum correc-

tions induce qualitative and quantitative changes, inhibiting singularities and allowing for

oscillations of the width of the Langmuir envelope field. This new dynamics can be tested

in experiments. In particular, the rôle of the parameter g and the inequality in Eq. (47)

should be investigated. However, the variational method was applied only for the adiabatic

and semiclassical case, which allows to derive the quantum modified vector NLS equation

(18). Other, more general, scenarios for the solutions of the fully three-dimensional quantum

Zakharov system are also worth to study, with numerical and real experiments.
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