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Abstract

The dispersion relation arising from a Vlasov–Poisson system with
a Bohmian force term is examined and compared to the more fun-
damental Bohm and Pines dispersion relation for quantum plasmas.
Discrepancies are found already when considering the leading order
thermal effects. The time–averaged energy densities for longitudinal
modes are also shown to be noticeably different.

1 Introduction

The basic linear dispersion relation for quantum plasmas was derived by
Bohm and Pines [1], after a series of canonical transformations applied to
the N–body Hamiltonian operator for a dense electron gas. Another con-
venient way to obtain the Bohm and Pines dispersion relation is through
a mean field theory formulated in terms of a Wigner–Poisson system [2].
In the context of the plasma physics community, the Wigner–Poisson and
Wigner–Maxwell systems have the advantage of a direct correspondence with
the Vlasov–Poisson and Vlasov–Maxwell kinetic formalisms. However, the
Wigner equation contain a complicated integral term, reflecting the non–
locality of quantum interactions. This motivated some recent studies [3]-[6]
where the nonlocal force term in the Wigner equation is replaced by an effec-
tive force, due to the so–called Bohm potential. This Bohmian force is still
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nonlocal since it involves the particle density which is the zeroth–order mo-
ment of the Wigner function. However, it is comparatively simpler than the
original integral term in Wigner equation. The Bohm potential is widely used
in quantum fluid models, where only macroscopic variables such as particle
density, quantum fluid velocity field and pressure are involved [7, 8]. How-
ever, the insertion of the effective quantum force directly as the momentum
change into the Vlasov equation has been criticized [9] since the resulting
permittivity is different from the Bohm and Pines one.

As a matter of fact, the kinetic equations with a Bohmian force assume
that the N–body quantum statistical ensemble is representable as a pure
state, see e. g. the wave function (3) in [3]. In contrast, the Wigner function
solving the Wigner–Poisson system is the Weyl transform of the single par-
ticle density matrix, hence by definition not restricted to pure states. This
can be viewed as the basic reason why the Bohm and Pines dispersion re-
lation has a privileged rôle. On the other hand, both models don’t include
collisions, since correlations are neglected. A quantum Born–Bogoliubov–
Kirkwood–Green–Yvon hierarchy can be taken as a starting point to describe
correlations [2].

It should be recognized that the dispersion relation arising from the
Vlasov–Poisson system with a Bohmian force is quite similar to the Bohm and
Pines one [10]. Nevertheless, the purpose of the present work is to stress that
there are differences, which become bigger as the joint thermal and quantum
effects are taken into account. Moreover, even if these discrepancies can be
small in certain limits, from a viewpoint of methodology it is preferable to
start with kinetic equations and then proceed to fluid–like equations, which
are by definition less accurate models. A possible route in this context is via
moments of the Wigner (or Vlasov) equation, for instance. The reverse path,
from fluid to kinetic theories, is questionable even if resonant wave–particle
effects such as Landau damping are not considered. This point is explicitly
shown in the following. The fluid models, however, remain valuable in view
of the ability to describe the nonlinear aspects of quantum plasma dynamics,
in an easier way in comparison to kinetic models (see Ref. [11] for a recent
review).

The Bohm and Pines permittivity is revisited and compared to the per-
mittivity arising from the Vlasov–Poisson system with a Bohm potential
term in § 2. Considering the leading thermal effects, the corresponding dis-
persion relations are shown to disagree. In addition, the consequences on the
time–averaged energy density for electrostatic oscillations are studied. Final
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remarks are outlined in § 3.

2 Dispersion relations

For simplicity, consider a one–dimensional electrostatic plasma with a fixed
ionic background of particle density n0. Our starting point is the dispersion
relation derived by Bohm and Pines (1953),

ε = 1−
mω2

p

h̄ k2

∫
dv

F0[v + h̄ k/(2m)]− F0[v − h̄ k/(2m)]

k v − ω
= 0 , (1)

for a frequency ω and a wave–number k, with the equilibrium Wigner function
F0(v) normalized according to

∫
F0(v) dv = n0. In (1), ε is the permittivity,

m the electron mass, ωp the plasma frequency and h̄ Planck’s constant over
2π. This work is not concerned with Landau damping or instabilities, so
that the integrals are understood in the principal value sense. Moreover, for
definiteness F0(v) is assumed to be an even, C∞ and decaying function.

In order to access the rôle of quantum effects, it is convenient to ap-
proximate (1) in the vicinity of the classical permittivity. On integrating
by parts, after Taylor expanding F0 and retaining only the leading quantum
corrections, we get

ε = 1−
ω2
p

n0

∫
dv

F0(v)

(kv − ω)2

[
1 +

ω2
q

(kv − ω)2
+

ω4
q

(kv − ω)4

]
+O

((ωq

ωp

)6)
, (2)

where ωq = h̄ k2/(2m).
The structure of (2) suggests the rescaling

F =
ωp F0

n0 k
, u =

k v

ωp

, Ω =
ω

ωp

, Ωq =
ωq

ωp

. (3)

In the new notation, (2) gives

ε = 1− 1

Ω2

∫
du

F (u)

(1− u/Ω)2

[
1 +

Ω2
q

Ω2 (1− u/Ω)2
+

Ω4
q

Ω4 (1− u/Ω)4

]
, (4)

with the normalization condition
∫
F (u) du = 1 and where the O

(
Ω6

q

)
con-

tribution was neglected.
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To deal with (4), it is convenient to expand like

1

(1− u/Ω)i
=

∞∑
j=0

C(i+ j − 1, i− 1)
(
u

Ω

)j

, (5)

where C(i, j) is a binomial coefficient. The above series diverges for |u/Ω| ≥ 1
but we suppose that F (u) is such that the contribution from this range is
negligible. In other words, as usual, a high frequency (or, alternatively, a long
wave–length) assumption is implicit. Moreover, admitting that 〈u4〉/Ω4 ∼
〈u2〉2/Ω4 � 〈u2〉/Ω2 � 1, where 〈u2〉 =

∫
duF (u)u2 and 〈u4〉 =

∫
duF (u)u4,

the dispersion relation (4) gives

Ω2 = 1 +
Ω2

q

Ω2
+

Ω4
q

Ω4
+

(
3 +

10 Ω2
q

Ω2
+

10 Ω4
q

Ω4

)
〈u2〉
Ω2

, (6)

which is valid up to the first order in 〈u2〉/Ω2 and to second order in the
quantum parameter Ω2

q. In addition, 〈un〉 = 0 for odd n was used to get (6),
since F (u) is taken as an even function.

Solving (6) by successive approximations, the result is

Ω2 = 1 + Ω2
q +

(
3 + 4 Ω2

q − 11 Ω4
q

)
〈u2〉 , (7)

which is correct if the O(〈u4〉) and O(Ω6
q) contributions are negligible. As

expected, the O(Ω4
q) terms show up only when taking into account the ther-

mal spread. Indeed, in the case of zero velocity dispersion (F (u) = δ(u))
one has Ω2 = 1 + Ω2

q up to all orders in the quantum parameter (as shown
in Ref. [2]). Here it is referred to “zero velocity dispersion” rather than to
“zero–temperature” to not confound with, for instance, a zero–temperature
Fermi gas, where 〈u2〉 6= 0 in consequence of the exclusion principle. In addi-
tion, it is curious that the thermal effects already present in (7) disappear for
the particular value Ω2

q = 0.74, which still can be considered as a moderate
number, with some optimism.

Using the same notation, the modified permittivity ε and the associated
dispersion relation arising from the Vlasov–Poisson system with a Bohmian
force is

ε = 1−
(1 + Ω2

q)

Ω2

∫
du

F (u)

(1− u/Ω)2
= 0 , (8)

see Refs. [3]-[6] and also equation (3) of [9]. Contrary to (4), (8) is supposed
to hold to all orders in Ωq.
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Proceeding as before, (8) gives

Ω2 =
(
1 + Ω2

q

) (
1 +

3 〈u2〉
Ω2

)
+O

(
〈u4〉
Ω4

)
, (9)

to be compared to (7). Discarding the O(〈u4〉/Ω4) terms, the pertinent root
for (9) can be expressed as

Ω2 = 1 + Ω2
q +

3 (1 + 2 Ω2
q) 〈u2〉

1 + Ω2
q

, (10)

where there is no limitation on the quantum effects in the context of the
modified theory. However, if the O(Ω6

q) contribution is disregarded, (10)
gives

Ω2 = 1 + Ω2
q + 3

(
1 + Ω2

q − Ω4
q

)
〈u2〉 , (11)

which is in the same level of approximation as (7). It is seen that the quantum
corrections in the velocity dispersion term are not the same, starting from the
Bohm and Pines or the Vlasov–Poisson with effective quantum force theories.
In particular, the thermal effects in (11) are vanishing for Ω2

q = 1.62, well
above the Bohm and Pines value.

Finally, even if the resulting dispersion relations are somehow similar,
the use of different permittivities has tangible consequences. For instance,
restoring physical variables,

〈W 〉 =
ε0
4

∂ (ω εh)

∂ ω
|E1|2 (12)

is the time–averaged energy density 〈W 〉 for longitudinal oscillations, where
ε0 is the vacuum permittivity, εh is the hermitian part of the dielectric
function and E1 is the amplitude of the perturbation electric field. For
dissipation–free models, εh is the same as ε or ε, as given by (2) or (8)
respectively. Relation (12) is a consequence of just the Maxwell equations
so that it applies equally well to classical and quantum plasmas. It includes
not only the electrostatic energy, but also the “acoustic energy”, which is the
component of the particles kinetic energy due to the coherent wave motion
[12].

The results are

〈W 〉 =
(
1 + Ω2

q + [3 + 8 Ω2
q − 29 Ω4

q] 〈u2〉
) ε0

2
|E1|2 (13)
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from the Bohm–Pines permittivity ε in (2) and

〈W 〉 =
(
1 + 3 [1− 2 Ω2

q + 3 Ω4
q] 〈u2〉

) ε0
2
|E1|2 (14)

from the modified permittivity ε in (8). As before, the calculations neglect
the O(Ω6

q) and O(〈u4〉) terms. At this instance, comparison between (13)
and (14) shows discrepancies even for zero thermal effects. Moreover, the
energy density following from ε does not include quantum effects at all, for
vanishing thermal spread.

3 Conclusions

It is evident that different permittivities would produce distinct dispersion
relations, except in very particular limits. Nevertheless, it is relevant to ex-
plicitly determine what are the discrepancies between the Bohm and Pines
theory and some recently introduced kinetic equations inspired by fluid mod-
els. To summarize, it is found that the corresponding wave frequencies dis-
agree already when considering the leading thermal effects. The same apply
to the energy density for longitudinal waves. Similar disagreement arise if
higher order thermal effects are taken into account.

The author would like to dedicate this paper to Padma Kant Shukla
on occasion of his 60th birthday and acknowledge the support provided by
Ume̊a University and Kempe Foundations.
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