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Abstract

Theoretical and numerical studies are performed for the nonlinear structures (explosive, solitons

and shock) in quantum electron-positron-ion magnetoplasmas. For this purpose, the reductive per-

turbation method is employed to the quantum hydrodynamical equations and the Poisson equation,

obtaining extended quantum Zakharov-Kuznetsov equation. The latter has been solved using the

generalized expansion method to obtain a set of analytical solutions, which reflect the possibility

of the propagation of various nonlinear structures. The relevance of the present investigation to

the white dwarfs is highlighted.
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I. INTRODUCTION

Numerous investigations [1, 2, 3, 4, 5] relating to wave phenomena, have been studied

in dense quantum plasmas, are of fundamental importance for understanding collective in-

teractions in superdense astrophysical environments [6], in high intense laser-solid density

experiments [7], in ultracold plasmas [8], in microplasmas [9], and in micro-electronic de-

vices [10]. New characteristics of quantum plasma arise due to the pressure law describing

the fermionic behavior of the charged carriers, quantum forces associated with the electron

tunneling, as well as the Bohr magnetization involving the electron 1/2 spin. The quantum

Bohm potential produces modifications in the dispersions of collective modes at quantum

scales. The latter are strongly effected by the plasma number densities and Fermi tempera-

tures. It is well-known that quantum mechanical effects become relevant when the thermal

de Broglie wavelength of the charged particles is equal or larger than the average interpar-

ticle distance. In particular, quantum behavior of the electrons reaches much easily due to

less mass compared to ions.

In recent years, many theoretical and numerical analysis [11, 12, 13, 14, 15] have been

carried out to investigating the new features of plasmas with quantum corrections by using

both the Schrödinger-Poisson and the Wigner-Poisson systems. In this context, Manfredi [11]

reported different approaches to model the collisionless electrostatic dense quantum plasmas.

Haas et al. [12] investigated the linear and nonlinear properties of the quantum ion-acoustic

(QIA) waves in dense quantum plasmas by employing the quantum hydrodynamical (QHD)

equations for inertialess electrons and mobile ions. They examined that the quantum Bohm

potential modifies the linear wave dispersion and affects strongly the QIA solitary waves.

Shukla and Eliasson [13] presented the numerical study of the dark solitons and vortices in

quantum electron plasmas. Moslem et al. [14] investigated the quantum dust-acoustic double

layers in a multi-species quantum dusty plasma. It was found that both compressive and

rarefactive double layers can only exist for positively charged dust particles. Later, Ali et al.

[16] studied the QIA waves in a three-component plasma, comprised of electrons, positrons,

and ions. They employed the reductive perturbation method and pseudo-potential approach

for the small and arbitrary amplitude nonlinear QIA waves, respectively. It was shown that

the amplitude and width are significantly altered due to the quantum statistics and quantum

tunneling effects. Misra et al. [17] considered the nonlinear propagation of electron-acoustic
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waves in a nonplanar quantum plasma, consisting of two groups of electrons: the inertial

cold electrons and inertialess hot electrons as well as the stationary ions. They obtained the

bright and dark solitons depending strongly upon the presence of cold electrons.

The laboratory and dense astrophysical quantum plasmas can be confined by an external

magnetic field. Therefore, the effect of the magnetic field has to taken into account, espe-

cially for astrophysical observations (such as white dwarfs, neutron stars, magnetars, etc.)

where the high magnetic field plays an important role in the formation and stability of the

existing waves. Several authors have considered the effect of magnetic field in different quan-

tum plasma models. For example, Haas [18] introduced a three-dimensional QHD model

for dense magnetoplasmas and established the conditions for an equilibrium in the ideal

quantum magnetohydrodynamics (QMHD). Ali et al. [19] employed the QMHD equations

presenting a fully nonlinear theory for ion-sound waves in a dense Fermi magnetoplasma.

It was revealed that only subsonic ion-sound solitary waves may exist. Shukla and Stenflo

[20] derived the dispersive shear Alfvén waves in a quantum magnetoplasma, incorporat-

ing the strong electron and positron density fluctuations. The shear Alfvén modes acquire

additional dispersion due to quantum corrections. Later, Ali et al. [21] have been carried

out for the low-frequency electrostatic drift-like waves in a nonuniform collisional quantum

magnetoplasma. It was shown that the modes become unstable and can cause cross-field

anomalous ion-diffusion.

Three decades ago, Zakharov and Kuznetsov [22] derived an equation for nonlinear ion-

acoustic waves in a magnetized plasma containing cold ions and hot isothermal electrons.

The Zakharov-Kuznetsov (ZK) equation has also been derived for different physical systems

and scenarios [23, 24]. Nonlinear wave solution for ZK equation can produce an instability

in a three-dimensional system as discussed in Refs. [25, 26]. Moslem et al . [27] extended

the work for a three-dimensional nonlinear ion-acoustic waves in a quantum magnetoplasma,

highlighting the bending instability of the solitary wave solution of the quantum ZK equa-

tion. Recently, Masood and Mushtaq [28] studied obliquely propagating electron-acoustic

waves in a two-electron population quantum magnetoplasma and examining the effects of

nonlinearity at quantum scales.

In the present paper, we shall investigate the possible nonlinear structures (soliton, ex-

plosive and shock pulses) of the QIA waves in a collisionless electron-positron-ion magneto-

plasma using the QHD equations. By means of computational investigations, we examine
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the effect of the positron concentration, the quantum diffraction and the quantum statistical

effects on the profiles of the nonlinear excitations. The paper is organized as follows: The

basic equations governing the dynamics of the nonlinear QIA waves are presented and the

extended quantum ZK equation describing the system is derived in Sec II. In Sections III

and IV, we apply the generalized expansion method to solve the extended quantum ZK

equation. A set of analytical solutions is obtained, and then used to investigate numerically

the effect of positrons and the quantum parameters on the nonlinear excitations. The results

are summarized in section V.

II. BASIC EQUATIONS AND DERIVATION OF THE EXTENDED QUANTUM

ZK EQUATION

We consider a dense magnetoplasma whose constituents are the electrons, positrons, and

singly charged positive ions. The plasma is confined in an external magnetic field H0 = H0ẑ,

where ẑ is the unit vector along the z−axis and H0 is the strength of the magnetic field.

We assume that the quantum plasma satisfies the condition TFe,p ≫ TF i, and obeys the

electron/positron pressure law Pe,p = m n3

e,pV
2

Fe,p/3n2

e,p0
, where VFe,p = (2KBTFe,p/M)1/2 is

the electron/positron Fermi thermal speed, KB is the Boltzmann constant, TFe,p (TF i) is

the electron/positron (ion) Fermi temperature, M is the electron and positron mass, ne,p

is the electron/positron number density, with the equilibrium value ne,p0. The nonlinear

propagation of the QIA waves is governed by the dimensionless hydrodynamics equations as

∂ni

∂t
+ ∇. (ni ui) = 0, (1)

∂ui

∂t
+ ui.∇ui = −∇φ + ui × ẑ, (2)

Ω ▽2 φ = ne − np − ni, (3)

ne = µe

(
1 + 2φ + H2

e

▽2
√

ne√
ne

) 1

2

, (4)

and

np = µp

(
1 − 2σφ + σH2

e

▽2√np
√

np

) 1

2

, (5)

where ni, ui, and φ are the ion number density, the ion fluid velocity, and the electrostatic

potential, respectively. Since, the ion mass is much larger than the electron/positron mass,
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one can ignore the quantum effects of the ions in Eq. (2). The statistical and diffraction

effect for the system can be seen through the nondimensional parameters σ(= TFe/TFp) and

He(= eH0~/2c
√

MiMKBTFe), respectively, where ~ is the Planck constant divided

by 2π, Mi (M) is the ion (electron/positron) mass, and c is the speed of light

in vacuum. Here, Ω(= ωci/ωpi), where ωci (= eH0/mic) and ωpi (=
√

4πe2ni0/Mi)

are the ion gyrofrequency and the ion plasma frequency, respectively. ni0 is the

equilibrium ion density. Equations (4) and (5) reveal that the electrons and positrons

do not follow the Boltzmann law contrary to the classical plasma. The physical quantities

appearing in Eqs. (1)–(5) have been appropriately normalized: ne,i,p → ne,i,p/ni0, ui →
ui/Cs, t → tωci, ∇ → ∇ρs, and φ → eφ/2KBTFe, where ρs(= Cs/ωci) is the ion-sound

Fermi gyroradius and Cs(=
√

2KBTFe/Mi) is the ion-sound Fermi speed.

Before going to the nonlinear developments, it is necessary to examine the condition for

neglecting the source term in the continuity equation due to annihilation of plasma species.

The details are given in the Appendix.

To investigate the propagation of QIA waves, we expand the dependent variables ne,i,p,

ui, and φ about their equilibrium values in power of ǫ,

ni = 1 + ǫni1 + ǫ2ni2 + ǫ3ni3 + ...,

ne,p = µe,p + ǫne,p1 + ǫ2ne,p2 + ǫ3ne,p3 + ...,

uix,y = ǫ2uix,y1 + ǫ3uix,y2 + ǫ4uix,y3 + ..., (6)

uiz = ǫuiz1 + ǫ2uiz2 + ǫ3uiz3 + ...,

φ = ǫφ1 + ǫ2φ2 + ǫ3φ3 + ...,

where ǫ is a keeping order parameter proportional to the amplitude of the perturbation.

Following the reductive perturbation method [29], we express the independent variables into

a moving frame in which the nonlinear wave moves at a phase-speed of λ (normalized with

the ion-sound Fermi speed Cs) as

X = ǫx, Y = ǫy, Z = ǫ (z − λt) and T = ǫ3t. (7)

The neutrality condition at equilibrium reads µe = 1 + µp, where µe = ne0/ni0 and µp =

np0/ni0. Subistituting (6) and (7) into Eqs. (1)–(5), we obtain the lowest-order in ǫ as
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ni1 =
1

λ2
φ1, uix1 = −∂φ1

∂Y
,

uiy1 =
∂φ1

∂X
, uiz1 =

1

λ
φ1, (8)

ne1 = µeφ1, np1 = −σµpφ1,

along with the phase speed rule

λ =

(
1

1 + µp(1 + σ)

)1/2

. (9)

It is clear here that the phase speed λ of the QIA waves is affected by the quantum statistical

effect and by the positron concentration µp. To the next-order in ǫ, we have

ni2 =
4

3λ4
φ2

1
+

1

λ2
φ2, uix2 = λ

∂2φ1

∂X∂Z
− ∂φ2

∂Y
,

uiy2 = λ
∂2φ1

∂Y ∂Z
+

∂φ2

∂X
, uiz2 =

1

2λ3
φ2

1
+

1

λ
φ2, (10)

ne2 = −µe

2

(
φ2

1
− 2φ2

)
, np2 = −σµp

2

(
σφ2

1
+ 2φ2

)
,

while the Poisson equation gives

Qφ2

1
= 0, (11)

where

Q =
[(σ2 − 1)µpλ

4 − λ4 − 3]

2λ4
.

Since φ1 6= 0, therefore Q should be at least of the order of ǫ. Therefore, Qφ2

1
becomes of the

order of ǫ3; so it should be included in the next order of the Poisson equation. The next-

order in ǫ gives a system of equations. Solving this system with the aid of Eqs. (8)-(10), we

finally obtain the extended quantum ZK equation as

∂ϕ

∂T
+
(
A ϕ + B ϕ2

) ∂ϕ

∂Z
+ C

∂3ϕ

∂Z3
+ D

∂

∂Z

(
∂2

∂X2
+

∂2

∂Y 2

)
ϕ = 0, (12)

where we have replaced φ1 by ϕ for simplicity. The nonlinear and dispersion coefficients are
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given, as

A =
λ4 + 3 − (σ2 − 1) µpλ

4

2λ
,

B = −3 ((σ3 + 1)µpλ
6 + λ6 − 5)

4λ3
,

C =
1

8
λ3
(
4Ω − (µp + 1)H2

e − σ2H2

e µp

)
,

D = C +
1

2
λ3

The extended quantum ZK equation (12) constitutes the final outcome of this model. The

anticipated balance between dispersion and nonlinearity (which contain the quantum me-

chanical effects) within the extended quantum ZK equation may give rise to different non-

linear structures. Some of these solutions will recover in the next section.

III. EXACT SOLUTIONS OF THE EXTENDED QUANTUM ZK EQUATION

To obtain the possible analytical solutions of Eq. (12), we assume that

ξ = LXX + LY Y + LZZ − ϑT, (13)

where LX , LY and LZ are the direction cosines and ϑ is the QIA wave speed to be determined

later. Using (13) into (12), we obtain

− ϑϕ′ + A0ϕ ϕ′ + B0ϕ
2ϕ′ + γϕ′′′ = 0, (14)

where A0 = ALZ , B0 = BLZ and γ = CL3

Z +DLZ (L2

X + L2

Y ). According to the generalized

expansion method [30] the solution of Eq. (14) can represent by

ϕ = a0 + a1ω, (15)

with

dω

dξ
= k

(
c0 + c1ω + c2ω

2 + c3ω
3 + c4ω

4
)1/2

, (16)

where a0, a1, c0, c1, c2, c3 and c4 are arbitrary constants to be determined later and k = ±1.

Substituting Eq. (15) into Eq. (14) and making use of Eq. (16), we obtain a polynomial

equation in ω. Equating the coefficients of different powers of ω, we obtain an overdetermined
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system of algebraic equations which can be solved with the help of symbolic manipulation

package Mathematica to give three Jacobi elliptic doubly periodic type solutions as

ϕ = − A0

2B0

+ k

√
6 γ c2 m2

B0 (2m2 − 1)
cn

(√
c2

(2m2 − 1)
ξ

)
,

with c0 = −c2

2
m2 (1 − m2)

c4 (2m2 − 1)2
, c2 > 0, c4 < 0, (17)

ϕ = − A0

2B0

+ k

√
6 γ c2

B0 (2 − m2)
dn

(√
c2

(2 − m2)
ξ

)
,

with c0 =
c2

2
(1 − m2)

c4 (2 − m2)2
, c2 > 0, c4 < 0, (18)

and

ϕ = − A0

2B0

+ k

√
6 γ c2 m2

B0 (m2 + 1)
sn

(√
− c2

(m2 + 1)
ξ

)
,

with c0 =
c2

2
m2

c4 (m2 + 1)2
, c2 < 0, c4 > 0, (19)

where m is a modulus of the Jacobian elliptic function and c1 = c3 = 0. As m → 1, the

Jacobi doubly periodic solutions (17) and (18) degenerate to the bell-shapped solitary wave

ϕ = − A0

2B0

+ k

√
6 γ c2

B0

sech (
√

c2ξ) , (20)

where the arbitrary constant c0 vanishes. Again, as m → 1 the solution (19) can degenerate

to the kink-type wave solution

ϕ = − A0

2B0

+ k

√
3 γ c2

B0

tanh

(√
−c2

2
ξ

)
, (21)

where c0 = c2

2
/4c4. In the solutions (17)-(21), the QIA wave speed ϑ = 1

2
(−A2

0
/2B0 + 2γc2)

where c2 6= A2

0
/4γB0.

Furthermore, the generalized expansion method provides us with further analytical solu-

tions of the extended quantum ZK equation (12) as

ϕ = − 2 c2

c3 + k
√

c2

3
− 4c2c4 cosh

(
2
√

c2ξ
) ,

with c0 = c1 = 0, c2 =
ϑ

γ
, c3 = −A0

3γ
, c4 = −B0

6γ
, (22)
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and

ϕ = − A0

2B0



1 + k coth




√

−A2

0

24γB0

ξ







 , with ϑ = − A2

0

6B0

and B0 < 0.

(23)

IV. PARAMETRIC ANALYSIS FOR WHITE DWARFS

It is clear that the propagation speed of the QIA wave is modified by the effect of the

quantum statistical effect σ and by the presence of positrons µp. As σ and µp increase, the

propagation speed of the QIA wave will decrease. The dependence of the nonlinear structures

amplitude and width on the equilibrium positron number density (µp) and quantum effects

σ and He is more perplex. First, it is important to note that changing µp leads to a change

in the phase-speed (λ) of the QIA waves [see Eq. (9)] , as well as the electron concentration

(via the charge-neutrality condition µe = 1+ µp). Since the electron (positron) Fermi

temperature depends upon the equilibrium electron (positron) number density, it can also be

affected by µp through the charge-neutrality condition. As a result, the quantum statistical

(σ) and diffraction (He) effects will vary with the positron concentration µp.

Based upon the above findings, we shall now investigate the effects of the relevant phys-

ical quantities, namely the positron concentration µp on the profiles of the QIA nonlinear

structures. We have used, as a starting point, a typical set of plasma parameter values

for white dwarfs [11] (in the absence of positrons; µp = 0), namely: ne0 = 4 × 1028 cm−3,

TFe = 4.9 × 108 K, ωci = 1.88 × 1016 s−1 and ωpi = 2.63 × 1017 s−1. However, once the

positrons species density is determined, the values of TFe, λ and He are subsequently com-

puted, according to the above formulae, which also determine A, B, C and D. In the plots,

we shall change the positrons concentration, which leads to recalculate all the physical pa-

rameters again. Obviously, by varying the positron concentration, we simultaneously modify

all the parameter values used in the plots below.

A. Solitary and Explosive/Blowup Excitations

It may be appropriate to point out that the analytical solutions in Sec. III have been

obtained for different arbitrary constants k, c0, ...c4. One of them is the localized solution
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(22), which is a bell-shapped solitary wave solution. Recall that the arbitrary constant

k can be either +1 or −1. For k = −1, a positive solitary pulse can propagate and for

k = +1, a negative solitary pulse exist. Note that we have executed the negative solitary

pulse since it is not physically correct in the the present model. Figure 2 depicts the QIA

solitary pulse for different values of positron concentration µp, which now determines TFe,p

(and the ratio σ) through the charge-neutrality condition. It is found that the amplitude of

the soliton pulse decreases by increasing µp, resulting an increase (decrease) of the electron

Fermi temperature TFe (quantum diffraction effect He). Physically, the increase of TFe leads

to an increase of the electron Fermi energy (viz. KBTFe = EFe ≡ (~2/2m)(3π2ne0)
2/3), and

as a result the ion Fermi energy should decrease to conserve the energy law. The decrease

of the ion Fermi energy decreasing the nonlinearity of the system and hence the height of

the soliton pulse shrinks.

It may be interesting to note that for certain values of plasma parameters the solitary

pulse convert to an explosive/blowup excitation as shown in Fig. 3. The blowup excitation

indicates that an instability in the system can produce due to the effect of the nonlinearity

(which in our case depends on the positron concentration µp and the quantum statistical

effects σ). On the other hand, the magnitude of some quantities (e.g. temperature, pressure,

density, etc.) leads to prejudice the balance between the dispersion and the nonlinearity [31].

Therefore, the amplitude may increase to very high values, which gives rise to increasing

the electric potential and then accelerate the moving particles.

It is important to notice that Eq. (23) is an explosive/blowup solution, i.e. the potential

ϕ infinitely grows at a finite point (for any fixed X, Y, Z → X0, Y0, Z0), there exist an ξ0 at

which the solution (23) blowup and thereby we regard the latter as an explosive solution as

depicted in Fig. 4.

B. Shock/Double Layer Excitation

For the shock/double layer solution [32], the boundary condition ϕ(ξ) → 0 at ξ → ∞
must satisfy. Applying the last boundary condition into Eq. (21), we obtain the double

layer solution as

ϕ = ϕm [1 + tanh (WDξ)] , (24)
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where the amplitude of the double layers is ϕm = −A0/2B0, the width is WD =
√

−24γB0/A2

0
. Here ϑ(= −A2

0
/6B0) is the shock wave speed. Notice that B0 < 0 has

to be fulfilled, in order for making the width WD real. The numerical analysis in Fig. 5,

however, shows that for small positron concentration µp the dominant situation corresponds

to B0 < 0, so the double layers may exist. For large positron concentration µp, double layers

cannot occur, since B0 > 0. Typically, we have used the plasma density value for white

dwarf [11] via ni0 = 2×1032 cm−3 and assume that Lz = 0.2, which leads to the fact that for

negative B0 (i.e., formation of double layers) the positron concentration np0 must less than

1.43308 × 1031 cm−3. Also, it noted that the narrow range of µp [corresponding to B0 < 0]

will not change the ion gyrofrequency Ω. Generally speaking, one can also note from Eq.

(24) that the nature of the double layer depends on the sign of A0, i.e. for A0 > 0 a positive

double layer exists (viz ϕm > 0), whereas for A0 < 0 we would have a negative double layer

(ϕm < 0). For white dwarf plasma parameters, it is found that A0 is usually greater than

zero and then only positive double layers can exist.

Equation (24) describes the double layer potential, which has a well-know profile (cf. Fig.

6). This profile may change due to vary of physical parameters. The dependence of double

layer characteristics on the positron concentration µp [which determines TFe,p, He and σ

through the charge-neutrality condition] is depicted in Fig. 7. It is obvious that an increase

in the positron concentration µp shrinks the double layers width but the amplitude increases

by increasing µp.

It important to note here that in Ref. [33], the soliton excitation in e-p-i

magnetoplasma was investigated but the present work investigates soliton, shock

and explosive excitations in e-p-i magnetoplasma. Therefore, the present model

studies another two nonlinear structures, which did not discuss in Ref. [33].

Also, in Ref. [27], the authors used the extended Conte’s truncation method

to obtain the solitary, explosive, and periodic solutions of the QZK equation.

Note that this method gives solitary and explosive excitations described by

equation (25) and periodic excitation described by equation (26). Thus, the

extended Conte’s truncation method cannot predict the shock formation, which

may arise due to the presence of weakly double layers. In the present work,

we have used generalized expansion method. The later succeeded to describe

soliton, explosive, as well as shock excitations. Therefore, the present method
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can be considered as a powerful tool to deal with more general nonlinear partial

differential equations.

V. SUMMARY

To summarize, we have presented the properties of the nonlinear structures QIA waves

in a very dense Fermi plasma, composed of the electrons, positrons and positive ions. By

employing the reductive perturbation method, an extended quantum ZK equation is derived.

The latter has been solved using the generalized expansion method to obtain a set of ana-

lytical solutions, which reflects the possibility of propagation of various nonlinear structures

(viz. explosive, soliton and shock pulses). We have numerically examined the effects of the

positron concentration (which changes the quantum statistics and quantum diffraction pa-

rameters through the charge-neutrality condition) on the electrostatic potential excitations,

by varying relevant physical parameters. It is found that the amplitudes and widths of the

nonlinear structures are significantly affected by the positron concentration, quantum statis-

tical, and quantum tunneling effects. Also, for certain plasma parameters the solitary pulse

transforms to blowup pulse. Finally, we stress that this investigation should be useful for

understanding the features of the nonlinear structures QIA waves in an electron-positron-ion

plasma, such as those in the superdense white dwarfs and in the intense laser-solid matter

interaction experiments.

Appendix: The necessary condition to neglect the annihilation

process

To neglect the annihilation process, the following inequality must satisfy

1

ωpe
<< Tann, (A1)

where (1/ωpe) is the electron plasma period and Tann is the annihilation time. For nonrela-

tivistic plasma, the time of annihilation reads [34]

Tann =
4

3σT nec

[
Θ

1 + 6Θ

]
, (A2)

where σT (= 6.65 × 10−25 cm2) is the cross section and Θ(= KBT/mc2) is the temperature

range, which satisfy the inequality [34]
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α2 < Θ < 1, (A3)

where α (= 7.2974 × 10−3) is the Fine-structure constant. Equation (A3) can be rewritten

in terms of temperature as

3 × 105 < T (K) < 5.9 × 109 (A4)

Inserting Eq. (A2) into (A1), we obtain

Θ > 2.66 × 10−19n1/2. (A5)

Using Eq. (A3) and (A5), one can calculate the range of the density where the annihilation

can be ignored

3.9 × 1028 < ne

(
cm−3

)
< 1.4 × 1037. (A6)

The quantum effects become important for certain values of density (ne,p) and temperature

(Te,p). The quantum condition ne,pλ
3

B > 1 specifies the temperature-density relation, where

the quantum effects become important as

Te,p 6 3.2 × 10−11n2/3

e,p . (A7)

Using Eq. (A6) with (A7), one can calculate the range of temperature in quantum plasma

as

3.6 × 108 < T e,p (K) < 1.8 × 1014. (A8)

It is clear that the range for neglecting annihilation is well satisfied for white dwarf [see Ref.

[11]]. Therefore, the present model can be applicable to the dense white dwarf.
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Figure Captions
Figure 1 (color online):

Three-dimensional profile of the solitary pulse [given by Eq. (22)]. A positive solitary

pulse for k = −1, µp = 0.8304, σ = 1.693, Ω = 0.05, He = 0.03, T = 0, Y = 0.1, Lx = 0.01,

and Lz = 0.1.

Figure 2 (color online):

Two-dimensional profile of the solitary pulse [given by Eq. (22)]. A positive solitary

pulse for k = −1. For curve A, µp = 0.5, σ = 2.08, Ω = 0.01, and He = 0.0075, for curve

B, µp = 0.75, σ = 1.75, Ω = 0.0102, and He = 0.0068 and for curve C, µp = 1, σ = 1.587,

Ω = 0.010291, and He = 0.00624. Also, we have used T = 0, X = Y = 0.1, Lx = 0.01, and

Lz = 0.1.

Figure 3 (color online):

Three-dimensional profile of the explosive/blowup pulse [given by Eq. (22)]. A positive

explosive pulse for k = −1, µp = 0.6, σ = 1.9, Ω = 0.0102, He = 0.0072, T = 0, Y = 0.1,

Lx = 0.01, and Lz = 0.1.

Figure 4:

Three-dimensional profile of the explosive/blowup pulse [given by Eq. (23)], for µp =

0.0525, σ = 7.37, Ω = 0.0257, He = 0.0081, T = 0, Y = 0.1, Lx = 0.01, and Lz = 0.2.

Figure 5:

The nonlinear coefficient B0 is depicted against the positron density np0 for ni0 = 2×1032

cm−3 and LZ = 0.2. Recall that for np0 < 1.43308×1031 cm−3 the nonlinear coefficient B0 < 0

and then a shock pulse can propagate.

Figure 6:

Three-dimensional profile of the shock pulse [given by Eq. (24)], for µp = 0.05, σ = 7.6,

Ω = 0.03, He = 0.008, T = 0, Y = 0.1, Lx = 0.01, and Lz = 0.2.

Figure 7:

Two-dimensional profile of the shock pulse [given by Eq. (24)]. For curve A, µp = 0.05,

σ = 7.6, Ω = 0.03, He = 0.008 and for curve B, µp = 0.052, σ = 7.37, Ω = 0.03, and

He = 0.0081. Here, T = 0, X = Y = 0.1, Lx = 0.1, and Lz = 0.2. Recall that the narrow

range of µp will not affect on the ion-gyrofrequency Ω.
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