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Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations
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Exact nonlinear stationary solutions of the one-dimensional Wigner and Wigner-Poisson equations
in the terms of the Wigner functions that depend not only on the energy but also on position are
presented. In this way, the Bernstein-Greene-Kruskal modes of the classical plasma are adapted
for the quantum formalism in the phase space. The solutions are constructed for the case of a
quartic oscillator potential, as well as for the self-consistent Wigner-Poisson case. Conditions for
well-behaved physically meaningful equilibrium Wigner functions are discussed.

PACS numbers: 03.65.-w, 52.25.Dg, 52.35.Sb

I. INTRODUCTION

It is well-known that the solutions for the Vlasov equation are arbitrary functions of the invariants (constants of
motion) of the system. In the stationary case, this property allows us to construct the so-called Bernstein-Greene-
Kruskal equilibria [1] for the Vlasov-Poisson system for the classical plasma. On the other hand, it is much more
difficult to derive exact solutions for the corresponding quantum model, namely the Wigner equation or, in the
self-consistent case, the Wigner-Poisson system. Indeed, even if the classical problem is integrable, the stationary
Wigner function is not, in general, a function of the classical invariants. This follows since the Wigner time-evolution
equation does not preserve the classical constants of motion. Therefore, to date, there is a lack of exact solutions for
the Wigner and Wigner-Poisson equations. The better results in this regard are approximate solutions [2]–[4] that
have been obtained as the first order quantum correction to the Vlasov-Poisson equilibria. The quantum Bernstein-
Greene-Kruskal modes have been defined as the solutions of the Wigner-Poisson system under the periodic boundary
conditions [5], but the explicit construction of these solutions is still a challenge. Notice that the original article by
Wigner [6], where he introduces his celebrated function, considers the first-order quantum correction, to a Maxwell-
Boltzmann thermodynamic equilibrium. In addition, quantum like corrections were proposed for charged-particle
beam transport [7].

The purpose of the present paper is to develop explicit exact solutions of the Wigner equation, in a particular form
that is described in Section II. Both the external and self-consistent potential cases are treated. In a sense, we develop
a quantum analogue of the Bernstein-Greene-Kruskal equilibria in the phase space. Of course, exact stationary Wigner
functions can be found after applying the Wigner transform to the previously known energy eigenstates, if available.
However, the question is to derive solutions for the Wigner equation considered in itself, without reference to the
Schrödinger equation or the nature of the quantum statistical mixture of the system. Here we propose a special
functional Ansatz, as a function of the energy and the position, for the Wigner function in a conservative system. The
technique is illustrated for a quartic anharmonic oscillator case and for the self-consistent Wigner-Poisson system.
The derived solutions are the first explicit exact solutions of the Wigner equation for nonlinear systems, constructed
independently of the Schrödinger formalism. In this way, we can have insight on the relation between the classical
constants of motion and the solutions of the stationary Wigner equation. In this regard, it is already well known
[8] that for a quadratic Hamiltonian there is a close relationship between the Ermakov-Lewis invariant, which is the
basic classical constant of motion of the problem, and the Wigner function. However, for a quadratic Hamiltonian the
Wigner equation reduces to the classical (Vlasov) equation, with the quantum effect restricted to the initial conditions.

The work is organized as follows. In Section II, we consider a quartic nonlinear oscillator problem and derive
quantum phase space structures by using our Ansatz generalizing the Bernstein-Greene-Kruskal solutions for the
classical system. In Section III, the approach is adapted to the Wigner-Poisson system, which is related to a quantum
plasma system. Section IV is reserved to the conclusions.
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FIG. 1: the potential in Eq. (6) for µ = 1 and µ = −1, respectively.

II. EXACT SOLUTIONS OF THE STATIONARY WIGNER EQUATION FOR A NONLINEAR

OSCILLATOR POTENTIAL

The Wigner equation [9] in one spatial dimension with a potential V (x, t) reads

∂ f

∂ t
+ v

∂ f

∂ x
(1)

=
im

2πh̄

∫

dλ dv′ eim(v−v′)λ

[

V (x +
λh̄

2
, t) − V (x − λh̄

2
, t)

]

f(x, v′, t) ,

where f(x, v, t) is the Wigner pseudo-probability distribution and all quantities have their usual meaning. The formal
classical limit (h̄ → 0) of the Wigner equation is the Vlasov equation, with the Wigner function playing the role of the
probability distribution function. Even assuming negative values in some regions of phase space, the Wigner function
can be used to compute the macroscopic quantities like the density and the current, in the same way as a faithful
distribution function. In addition to Eq. (1), a genuine Wigner function should correspond to a positive definite
density matrix. Therefore, f = f(x, v, t) must satisfy [10] at least the following necessary conditions,

∫

dxdvf = 1 , (2)

∫

dvf ≥ 0 , (3)

∫

dxf ≥ 0 , (4)

∫

dxdvf2 ≤ m

2πh̄
. (5)

Equation (2) is just a normalization condition, while Eqs. (3) and (4) arise because the spatial and velocity densities
should be non-negative everywhere. Finally, Eq. (5) is needed to avoid violation of the uncertainty principle, ruling
out a too spiky function f(x, v, t).

In the stationary case, one would be tempted to use the conservation of the energy to construct exact solutions for
Eq. (1). However, except in the somewhat restricted case where the Wigner function is a linear function of the energy
[11], the Wigner equation is not satisfied by functions of the energy alone. To illustrate our technique, we consider
the anharmonic potential

V = µ
(mω2x2

2
− mω2k2x4

24

)

, (6)

where µ = ±1 is a numerical parameter and ω and k are parameters with dimension of angular frequency and
wavenumber, respectively. Plots of the potential are shown in Figure 1, showing a single nonlinear potential well
or a double-well potential, according to the values of µ. The coefficients were chosen to match the expansion of a
pendulum-like potential µm(ω2/k2)[1 − cos(kx)]. A similar form was considered in connection with the numerical
simulation of quantum echoes described by the Wigner equation [12].
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For the chosen potential, in the stationary case (∂f/∂t = 0), the Wigner equation (1) is

v
∂f

∂x
− µ(ω2x − ω2k2x3

6
)
∂f

∂v
=

µh̄2ω2k2x

6m2

∂3f

∂v3
. (7)

If there was no nonlinearity, Eq. (7) would be the stationary Vlasov equation for the simple harmonic oscillator whose
solutions are arbitrary functions of the energy. However, in the quantum and nonlinear case, the higher-order velocity
derivative term prevents the existence of a solution as a function of the energy only. Notice that the term in the
right-hand side of Eq. (7) can assume large values: it is not necessarily just a quantum correction. Higher-order (in
h̄2) terms would appear for higher anharmonicities.

With the rescaling q = kx, p = kv/ω, F = ωf/k2, Eq. (7) transforms into

p
∂F

∂q
− µ(q − q3

6
)
∂F

∂p
= µΓq

∂3F

∂p3
, (8)

where

Γ =
h̄2k4

6m2ω2
(9)

is a non-dimensional parameter measuring the relevance of the quantum effect. At this point, notice that the necessary
conditions (2)–(5) are rewritten as

∫

dqdpF = 1 , (10)

∫

dpF ≥ 0 , (11)

∫

dqF ≥ 0 , (12)

∫

dqdpF 2 ≤ 1

2π
√

6Γ
. (13)

It is more convenient to search for solutions of Eq. (8) in the form F = F (H, q), where

H =
p2

2
+ µ

(

q2

2
− q4

24

)

(14)

is the energy. Then from Eq. (8) we obtain

∂F

∂q
= µΓq

(

[

2H − µ(q2 − q4

12
)
] ∂3F

∂H3
+ 3

∂2F

∂H2

)

. (15)

The usefulness of the energy and position variables in the treatment of the Wigner equation has been recognized in
the semi-classic case [3], but we feel that this method can be pursued in more depth for a fully quantum system.
When there are no quantum effects, the right-hand side of Eq. (15) is zero and the solution is simply F = F (H),
with an arbitrary functional dependence, in the same spirit of the Bernstein-Greene-Kruskal solutions for the classical
plasma. The difficulties with Eq. (15) are in the entangled character of the quantum term, which prevents the use of
the separation of variables technique, for instance. It is also apparent that if ∂F/∂q ≡ 0, then any linear function of
the energy would be a solution.

Our proposal is to consider exact solutions according to

F = [A(q)H + B(q)]eC(q)H , (16)

where A, B and C are functions to be determined, depending on position only. For A = 0, the Wigner function
automatically has a Gaussian shape in velocity space. Otherwise, for A 6= 0, one can have a two-stream type Wigner
function, double-humped in velocity space, at least for specific parameters. Notice that the proposed solution does
not distinguish between the trapped and untrapped particles. This is another different feature in comparison to the
Bernstein-Greene-Kruskal method.
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After inserting Eq. (16) into Eq. (15), the exponential factorizes and we derive a second-degree polynomial of H ,
which must be identically zero. Setting the coefficients of the different powers of the energy to zero, we obtain

A′ + BC′ = µΓq
[

9AC2 + 2BC3 − µAC3(q2 − q4

12
)
]

,

B′ = µΓq
[

6AC + 3BC2 − µ(3AC2 + BC3)(q2 − q4

12
)
]

, (17)

AC′ = 2µΓqC3A ,

where the prime denotes derivative with respect to q.
For B = 0, it can be verified that the above system do not admit any solutions. For B 6= 0, the result is

A = A0(C0 − 2µΓq2)−9/4 ×

× exp
{2C2

0 − 2µΓC0(18 + q2) + Γ2q2(36 − q2)

72µΓ2(C0 − 2µΓq2)1/2

}

, (18)

B =
{

B0(C0 − 2µΓq2)−3/4 + A0

[ 3

2(C0 − 2µΓq2)7/4
+

+
µ

24Γ2(C0 − 2µΓq2)9/4
(−2C2

0 + 6µC0Γ(2 + q2) − 3Γ2q2(q2 + 12))
]}

×

× exp
{2C2

0 − 2µΓC0(18 + q2) + Γ2q2(36 − q2)

72µΓ2(C0 − 2µΓq2)1/2

}

, (19)

C = − 1

(C0 − 2µΓq2)1/2
, (20)

where A0, B0 and C0 6= 0 are integration constants. If A0 ≡ 0, then the Wigner function is certainly Gaussian in
velocity space.

In the double-well potential case, when µ = −1, the exact solution is real and bounded provided C0 > 0. However,
for µ = 1, it can be shown that the exact solution becomes singular when q2 → C0/(2Γ), unless 0 < C0 < 24Γ.
Actually, when µ = 1 the Wigner function in Eq. (16) is acceptable only for q2 ≤ C0/(2Γ). Figure 2 displays a
typical plot in phase space, for Γ = 1, µ = 1, A0 = 0, B0 = 0.42, C0 = 16. For simplicity, we assume that there
are no scattering states, so that F ≡ 0 for q2 > C0/(2Γ) = 8. The Wigner function has a Gaussian shape in the
momentum space and an abrupt localization in configuration space, as can be seen more clearly in Figure 3 for the
same parameters and for different rescaled velocities p = 0 and p = 2. These strongly localized structures do not
have classical counterpart. Observe that the necessary conditions in Eqs. (10)-(13) are also satisfied. In particular,
∫

dqdpF 2 = 0.03 < (2π
√

6Γ)−1 = 0.07.
When µ = −1, the Wigner function is regular provided C0 > 0. Then, we can have a more rich variety of behaviors.

For instance, for µ = −1, A0 > 0, B0 = −2.5A0, C0 = 1, there is a two-humped distribution in velocity space, provided
Γ > 0.37. Figure 4 shows the Wigner function in momentum space, for fixed position q = 0, with the same parameters
and several values of Γ. One sees that for increasing quantum effects there is a progressive depth of the exact solution,
which eventually becomes negative for Γ > 0.63. Notice that, in principle, there is no limiting value of Γ, since the
solution is non perturbative. However, for a physically meaningful positive particle spatial density

n(q) =

∫

dpF =

√
π

√

2|C|
exp

[

−µ|C|
2

(q2 − q4

12
)

](

A

|C| + µA(q2 − q4

12
) + 2B

)

(21)

there are extra restrictions, even recognizing that in general the Wigner function is not a positive definite quantity.
For instance, when µ = −1, A0 > 0, B0 = −2.5A0, C0 = 1, n(q) ≥ 0 for all q imposes that Γ ≤ 0.3. For these
parameters, the other necessary conditions in Eqs. (10), (12) and (13) are also fulfilled, as can be checked after
numerically performing the spatial integrations. Actually, a detailed calculation shows that when µ = −1, A0 > 0 and
B0 < 0, for a positive definite particle density the exact Wigner function cannot be a two-stream type distribution.
On the other hand, for µ = −1 and non negative A0, B0 (in which case the distribution function is not two-humped
in momentum space), in principle one can have arbitrarily large values of Γ.

The opposite behavior arises when µ = −1 and A0 < 0, B0 > 0. In this case, it can be proved that a positive
definite particle density implies a two-humped Wigner function in momentum space. For instance, at the origin q = 0,
the condition for n(0) ≥ 0 reads

12B0C
3/2
0 Γ2 ≥ |A0|

(

C2
0 + 6ΓC0 + 24Γ2

√

C0

)

, (22)
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FIG. 2: the exact Wigner function in Eq. (16) for Γ = 1, µ = 1, A0 = 0, B0 = 0.42, C0 = 16.
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FIG. 3: spatial localization of the exact Wigner function in Eq. (16) for Γ = 1, µ = 1, A0 = 0, B0 = 0.42, C0 = 16 and p = 0
(solid line) and p = 2 (dashed line).

and this inequality can be shown to imply that the Wigner function admits two minima in velocity space, as illustrated
in Figure 5. Notice the opposite concavity in comparison to the µ = −1, A0 > 0, B0 < 0 case. In the same figure,
we show the particle density, which has a deep centered at the origin but is positive definite, even with the Wigner
function admitting negative values.

Now, it can happen that the quantum effect comes in favor of a physically meaningful solution, since n(q) ≥ 0
for all q provided Γ is sufficiently large. For instance, from Eq. (22) it follows that n(0) ≥ 0 if B0C0 > 2|A0| and
Γ is large enough. In particular, for µ = −1, A0 < 0, B0 = −2.5A0 and C0 = 1, one needs Γ ≥ 1.14. Figure 6
shows n(q) for these parameters and several values of Γ. One sees that the two maxima of the particle density tend
to approximate each other as the quantum parameter increases. Also, the minimum and maximum values of n(q)
increases as quantum effects becomes larger. However, Γ can’t be arbitrarily large, since the solution becomes too
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FIG. 4: the solution in Eq. (16) in momentum space for q = 0, µ = −1, A0 = 0.52, B0 = −1.3 and C0 = 1. The quantum
parameter is Γ = 0.2 (left, top), Γ = 0.4 (right, top), Γ = 0.6 (left, bottom) and Γ = 0.8 (right, bottom). In the graphs, only
for Γ = 0.2 the solution is a physically acceptable Wigner function.

localized in phase space for increasing Γ. For instance, when Γ = 5, µ = −1, A0 = −0.11, B0 = 0.28 (figure 6, right,

bottom), we have
∫

dqdpF 2 = 0.032 > (2π
√

6Γ)−1 = 0.029, violating Eq. (13). In conclusion, in each specific case
the necessary conditions (10)–(13) must be checked.

III. APPLICATION TO THE WIGNER-POISSON SYSTEM

Now consider the self-consistent case where the potential is V = −eφ, where e is the elementary charge and φ is
the electrostatic potential satisfying the Poisson equation

∂2φ

∂x2
=

e

ǫ0
(n − n0) , n = n(φ) =

∫

fdv , (23)

where ǫ0 is the permittivity constant and n0 a background ion number density. Coupled to the Wigner equation,
Eq. (23) compose the Wigner-Poisson system [13]. For the latter, it is convenient to search for solutions in the form
f = f(H, n), where H = mv2/2− eφ is the energy and n is the electron number density, as defined in Eq. (23). Then,
writing the stationary Wigner equation, retaining only the first-order quantum correction,

v
∂f

∂x
+

e

m

∂φ

∂x

∂f

∂v
− eh̄2

24m3

∂3φ

∂x3

∂3f

∂v3
= 0 , (24)

we obtain, after using the Poisson equation,

∂f

∂n
=

h̄2ω2
p

24n0

[

2
(

H + eφ(n)
) ∂3f

∂H3
+ 3

∂2f

∂H2

]

, (25)
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FIG. 5: on the top: the Wigner function in Eq. (16) for q = 0, µ = −1, Γ = 1.14, A0 = −0.13, B0 = 0.32, C0 = 1. On the
bottom: the corresponding particle number density.
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FIG. 6: particle number density in Eq. (21) for µ = −1, B0 = −2.5A0, C0 = 1 and for Γ = 0.5, A0 = −0.48 (left, top), Γ = 1.14,
A0 = −0.13 (right, top), Γ = 2, A0 = −0.108 (left, bottom) and Γ = 5, A0 = −0.111 (right, bottom). For each Γ, a different A0

must be chosen, to comply with a normalized Wigner function. The derived solution complies with the conditions (10)–(13),
with the exception of the case Γ = 5, A0 = −0.111.

where ωp = (n0e
2/mǫ0)

1/2 is the electron plasma frequency. In Eq. (25), the scalar potential is interpreted as a
function of the electron number density. This is locally possible using n = n(φ), according to the implicit function
theorem, provided n is not identically a constant. Now the Ansatz

f = [A(n)H + B(n)]eC(n)H (26)

produces the following system for the functions A, B and C depending on the electron number density only,

A′ + BC′ =
h̄2ω2

p

24n0

[

2(B + eφA)C + 9A
]

C2 ,

B′ =
h̄2ω2

p

24n0

[

2eφC2(BC + 3A) + 3C(BC + 2A)
]

, (27)

AC′ =
h̄2ω2

p

12n0
AC3 ,

where the prime denotes derivative with respect to n. The resulting system can be solved in all generality, but here
we are content with the A ≡ 0 case, which is more amenable to detailed calculations. When A = 0, the solution for
the system (27) is given recursively as

C = − C0

(1 − h̄2ω2
pC

2
0n/(6n0))1/2

, (28)

B = B0

(

1 −
h̄2ω2

pC
2
0n

6n0

)−3/4

exp

[

eh̄2ω2
p

12n0

∫

dnφ(n)C3(n)

]

, (29)
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FIG. 7: the electrostatic potential as a function of the electron number density, for e = m = h̄ = n0 = ωp = B0 = 1 and C0 = 1
(upper curve, dot-dashed), C0 = 2 (mid curve, dashed) and C0 = 3 (lower curve, solid line).

where B0 and C0 are integration constants, with C0 > 0 for an integrable Wigner function.
Using Eq. (26), we obtain

n(φ) = B

√

2π

−Cm
exp(−eCφ) . (30)

After rearranging, Eq. (29) then gives the following integral equation for B = B(n),

B = B0

(

1 −
h̄2ω2

pC2
0n

6n0

)−3/4

exp
[

−
h̄2ω2

p

12n0

∫

dnC2(n) ln

(

n

B

√

−C(n)m

2π

)

]

, (31)

where C = C(n) is given by Eq. (28).
In the absence of the quantum effect, from Eq. (29), one would directly have B = B0. Since in the self-consistent

case we are considering, for simplicity, only the first-order quantum correction, it is then reasonable to put B = B0

in the integral at the right-hand side of Eq. (31). After performing the integral, which is a complicated expression
involving the dilogarithm function Li2(z) =

∫ z

1
ds ln(s)/(1 − s), one derives a function B = B(n) and hence the

electrostatic potential φ = φ(n) through Eq. (30). As apparent from Eqs. (28), (29) and (31), one can identify
the non-dimensional quantum parameter h̄2ω2

pC2
0/6, with the interpretation of the inverse square of a temperature.

Figure 7 displays typical plots of φ(n), with units so that e = m = h̄ = n0 = ωp = B0 = 1, for different values of
C0. The graphs are similar to that from a electron hole Maxwell-Boltzmann equilibrium (φ ∼ lnn), however with
modifications and a cutoff when n → 6n0/(h̄2ω2

pC2
0 ). For increasing quantum effects (larger C0, or a smaller effective

temperature), the cutoff becomes closer to the origin. The explicit form in terms of position (φ = φ(x)) could also be
found, through the Poisson equation.

In the Wigner-Poisson case, the calculations becomes too involved if higher-order quantum corrections are added in
the right-hand side of Eq. (24). However, the stationary solution found are non perturbative, in the sense that they
do not have, as a starting point, a prescribed zeroth-order Wigner function, like a Maxwell-Boltzmann or Fermi-Dirac
equilibrium, as in Refs. [2]–[6]. In other words, except for the substitution B → B0 in the right-hand side of Eq. (31),
what have been found here is an exact solution for an approximate model, namely the Wigner-Poisson system up to
the first-order quantum term.



10

IV. CONCLUSION

In this paper, we have presented explicit nonlinear solutions for the stationary Wigner and Wigner-Poisson equa-
tions. The solutions are inspired by the Bernstein-Greene-Kruskal modes of the classical Vlasov-Poisson plasma.
However, unlike for the Bernstein-Greene-Kruskal modes, the equilibrium distribution function here depends not only
on the energy, but also on the position. In addition, there is no need for the eigen-functions or the characterization of
the quantum statistical mixture of the system, with no reference to the Schrödinger equation. Our new solutions are
in the form shown in Eqs. (16) or (26), which disentangle the equilibrium Wigner equation, thanks to the particular
exponential dependence on the energy. It would be relevant to obtain another classes of explicit solutions, in order to
derive a better understanding of the relation between the classical constants of motion and the equilibrium states of
the Wigner and Wigner-Poisson equations. Finally, there are no known necessary and sufficient criteria for a faithful
Wigner function in the phase space. The solutions derived have been checked against the necessary conditions Eqs.
(2)–(5), for specific parameters only.
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