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Nonlinear Saturation of the Weibel Instability in a Dense Fermi Plasma
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We present an investigation for the generation of intense magnetic fields in dense plasmas with
an anisotropic electron Fermi-Dirac distribution. For this purpose, we use a new linear dispersion
relation for transverse waves in the Wigner-Maxwell dense quantum plasma system. Numerical
analysis of the dispersion relation reveals the scaling of the growth rate as a function of the Fermi
energy and the temperature anisotropy. The nonlinear saturation level of the magnetic fields is
found through fully kinetic simulations, which indicates that the final amplitudes of the magnetic
fields are proportional to the linear growth rate of the instability. The present results are important
for understanding the origin of intense magnetic fields in dense Fermionic plasmas, such as those in
the next generation intense laser-solid density plasma experiments.

PACS numbers: 52.59.Hq, 52.35.Qz, 71.10.Ca

I. INTRODUCTION

The existence of feeble magnetic fields of several micro-
gauss in our galaxies [1], as well as of gigagauss in intense
laser-plasma interaction experiments [2] and of billions
of gauss in compact astrophysical objects [3] (e.g. super
dense white dwarfs, neutron stars/magnetars, degenerate
stars, supernovae) is well known. The generation mech-
anisms for seed magnetic fields in cosmic/astrophysical
environments are still debated, while the spontaneous
generation of magnetic fields in laser-produced plasmas
is attributed to the Biermann battery [4] (also referred to
as the baroclinic vector containing non-parallel electron
density and electron temperature gradients) and to the
return electron current from the solid target. Computer
simulations of laser-fusion plasmas have shown evidence
of localized anisotropic electron heating by resonant ab-
sorption, which in turn can drive a Weibel-like instability
resulting in megagauss magnetic fields [5]. There have
also been observations of the Weibel instability in high
intensity laser-solid interaction experiments [6]. Further-
more, a purely growing Weibel instability [7], arising from
the electron temperature anisotropy (a bi-Maxwellian
electron distribution function) is also capable of gener-
ating magnetic fields and associated shocks [8].

However, plasmas in the next generation intense laser-
solid density plasma experiments [9] would be very dense.
Here the equilibrium electron distribution function may
assume the form of a deformed Fermi-Dirac distribution
due to the electron heating by intense laser beams. It
then turn out that in such dense Fermi plasmas, quantum
mechanical effects (e.g. the electron tunneling and wave-
packet spreading) would play a significant role [10]. The
importance of quantum mechanical effects at nanome-
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ter scales has been recognized in the context of quan-
tum diodes [11] and ultra-small semiconductor devices
[12]. Also, recently there have been several develop-
ments on fermionic quantum plasmas, involving the ad-
dition of a dynamical spin force [13, 14, 15, 16], turbu-
lence or coherent structures in degenerate Fermi systems
[17, 18], as well as the coupling between nonlinear Lang-
muir waves and electron holes in quantum plasmas [19]
. The quantum Weibel or filamentational instability for
non-degenerate systems has been treated in [20, 21].

In this work, we present an investigation of lin-
ear and nonlinear aspects of a novel instability that
is driven by equilibrium Fermi-Dirac electron tempera-
ture anisotropic distribution function in a nonrelativistic
dense Fermi plasma. Specifically, we show that the free
energy stored in electron temperature anisotropy is cou-
pled to purely growing electromagnetic modes. First, we
take the Wigner-Maxwell system [22] with an anisotropic
Fermi-Dirac distribution for the analysis of the linearly
growing electromagnetic perturbations as a function of
the physical parameters. Second, we use a fully kinetic
simulation to assess the saturation level of the magnetic
fields as a function of the growth rate. The treatment is
restricted to transverse waves, since the latter are associ-
ated with the largest Weibel instability growth rates. The
nonlinear saturation of the Weibel instability for clas-
sical, non-degenerate plasmas has been considered else-
where [23].

II. BASIC EQUATIONS

It is well known [24] that a dense Fermi plasma with
isotropic equilibrium distributions does not admit any
purely growing linear modes. This can be verified, for
instance, from the expression for the imaginary part of
the transverse dielectric function, as derived by Lindhard
[25], for a fully degenerate non-relativistic Fermi plasma.
It can be proven (see Eq. (30) of [26]) that the only
exception would be for extremely small wavelengths, so
that k > 2kF , where k is the wave number and kF the
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characteristic Fermi wave number of the system. How-
ever, in this situation the wave would be super-luminal.
On the other hand, in a classical Vlasov-Maxwell plasma
containing anisotropic electron distribution function, we
have a purely growing Weibel instability [7], via which
dc magnetic fields are created. The electron temperature
anisotropy arises due to the heating of the plasma by
laser beams [6], where there is a signature of the Weibel
instability as well. In the next generation intense laser-
solid density plasma experiments, it is likely that the elec-
trons would be degenerate and that electron temperature
anisotropy may develop due to an anisotropic electron
heating by intense laser beams via resonant absorption,
similar to the classical laser plasma case [5].

In a dense laser created plasma, quantum effects must
play an important role in the context of the Weibel
instability. In order to keep the closest analogy with
the distribution function in phase space for the classical
plasma, we shall use the Wigner-Maxwell formalism for a
dense quantum plasma [27]. Here the distribution of the
electrons is described by the Wigner pseudo-distribution
function [28], which is related to the Fermi-Dirac distri-
bution widely used in the random phase approximation
[24]. Proceeding with the time evolution equation for the
Wigner function (or quantum Vlasov equation [27]), we
shall derive a modified dispersion relation accounting for
a wave-particle duality and an anisotropic Wigner distri-
bution function that is appropriate for the Fermi plasma.
The results are consistent with those of the random phase
approximation, in that they reproduce the well-known
transverse density linear response function for a fully de-
generate Fermi plasma [25].

Consider linear transverse waves in a dense quantum
plasma composed of the electrons and immobile ions,
with k · E = 0, where k is the wave vector and E is the
wave electric field. Following the standard procedure,
one then obtains the general dispersion relation [21, 29]
for the transverse waves of the Wigner-Maxwell system

ω2 − ω2
p − c2k2 +

mω2
p

2n0h̄

∫

dv

(

v2
x + v2

y

ω − kvz

)

× (1)

×
(

f0(vx, vy, vz +
h̄k

2m
) − f0(vx, vy, vz − h̄k

2m
)

)

= 0 ,

where ω is the frequency, c is the speed of light in vac-
uum, h̄ is the Planck constant divided by 2π, m the rest
electron mass, n0 the unperturbed plasma number den-
sity, ωp the electron plasma frequency, v = (vx, vy, vz) is
the velocity vector, and f0(vx, vy, vz) is the equilibrium
Wigner function associated to Fermi systems.

For spin 1/2 particles, the equilibrium pseudo distri-
bution function is in the form of a Fermi-Dirac function.
Here we allow for velocity anisotropy and express

f0 =
α

exp
[

m
2

(

v2
x+v2

y

κBT⊥
+

v2
z

κBT‖

)

− βµ
]

+ 1
, (2)

where µ is the chemical potential, κB the Boltzmann

constant, and the normalization constant is

α = − n0

Li3/2(−eβµ)

(mβ

2π

)3/2

= 2
( m

2πh̄

)3

. (3)

Here Li3/2 is a polylogarithm function [30, 31]. Also, β =

1/[κB(T 2
⊥T‖)

1/3], where T⊥ and T‖ are related to velocity
dispersion in the direction perpendicular and parallel to z
axis, respectively. In the special case when T⊥ = T‖, the
usual Fermi-Dirac equilibrium is recovered. The chemical
potential is obtained by solving the normalization condi-
tion (3), yielding, in particular, µ = EF in the limit of
zero temperature, where EF = (3π2n0)

2/3h̄2/(2m) is the

Fermi energy. Also, the Fermi-Dirac distribution f̂(k),
where k is the appropriated wave vector in momentum
space, is related to the equilibrium Wigner function (2)

by f̂(k) = (1/2)(2πh̄/m)3f0(v), with the factor 2 coming
from spin [32, 33]. However, these previous works refer to
the cases where there is no temperature anisotropy. No-
tice that it has been suggested [34] that in laser plasmas
the Weibel instability is responsible for further increase
of T‖ with time.

Inserting (2) into (1) and integrating over the perpen-
dicular velocity components, we obtain

ω2 − c2k2 − ω2
p

(

1 +
T⊥

T‖
WQ

)

= 0 , (4)

where

WQ =
1

2
√

πHLi3/2(−eβµ)

∫

dν

ν − ξ
(5)

×
(

Li2

{

− exp
[

−
(

ν +
H

2

)2

+βµ
]}

− Li2

{

− exp
[

−
(

ν − H

2

)2

+βµ
]}

)

.

In (5), Li2 is the dilogarithm function [30, 31], H =
h̄k/(mv‖) is a characteristic parameter representing the
quantum diffraction effect, ξ = ω/(kv‖), and ν = vz/v‖,

with v‖ = (2κBT‖/m)1/2. In the simultaneous limit of
a small quantum diffraction effect (H ≪ 1) and a di-
lute system (eβµ ≪ 1), it can be shown that WQ ≃
−1 − ξZ(ξ), where Z is the standard plasma disper-
sion function [35]. It is important to notice that either
(1) or (4) reproduces the transverse dielectric function
calculated from the random phase approximation for a
fully degenerate quantum plasma [25], in the case of an
isotropic system. The simple way to verify this equiva-
lence is to put T⊥ = T‖ in (1) and then take the limit of

zero temperature, so that f0 = 3n0/(4πv3
F ) for |v| < vF ,

and f0 = 0 otherwise, where vF ≡ (2EF /m)1/2 is the
Fermi velocity. However, to the best of our knowledge,
there is no corresponding calculation for an anisotropic
Fermi equilibrium, as necessary in laser-solid interaction
experiments with an anisotropic electron heating due to
resonant absorption. Also notice that in this Letter we
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are mainly interested in the real part of the transverse
response function, since we are looking for purely grow-
ing instabilities (ω2 < 0), so that the contribution from
the poles at (4) is not relevant.

III. NUMERICAL RESULTS
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FIG. 1: The growth rate for the Weibel instability of a dense
Fermionic plasma with n0 = 1033 m−3 (ωp = 1.8 × 1018 s−1)
and βµ = 5, relevant for the next generation inertially com-
pressed material in intense laser-solid density plasma interac-
tion experiments. The temperature anisotropies are T⊥/T|| =
3 (dashed line), T⊥/T|| = 2 (solid line) and T⊥/T|| = 1.5

(dotted line), yielding, respectively, T|| = 3.9 × 106 K, T|| =

5.2 × 106 K and T|| = 6.3 × 106 K.

0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

γ/
ω

p

k c/ω
p

FIG. 2: The growth rate for the Weibel instability of a dense
Fermionic plasma with n0 = 1033 m−3 (ωp = 1.8 × 1018 s−1).
Here the temperature anisotropy is T⊥/T|| = 2. We used
βµ = 1 (dashed line), βµ = 5 (solid line) and βµ = 10 (dotted
line), yielding T|| = 1.6 × 107 K, T|| = 5.2 × 107 K and T|| =

2.6 × 106 K, respectively.

We next solve our new dispersion relation (4) for a
set of parameters that are representative of the next
generation laser-solid density plasma interaction experi-
ments. The normalization condition (3) can also be writ-
ten as −Li3/2[− exp(βµ)] = (4/3

√
π)(βEF )3/2, which is

formally the same relation holding for isotropic Fermi-
Dirac equilibria [36]. For a given value on the prod-
uct βµ and the density, this relation yields the value β,
from which the temperatures T⊥ and T|| can be calcu-
lated, if we know T⊥/T||. Consider only purely grow-
ing modes. From the definition (5), one can show that
WQ → −1 when ω = iγ → 0 for a finite wavenumber
k. From (4) we then obtain the maximum wavenum-
ber for instability as kmax = (ωp/c)

√

T⊥/T|| − 1. When

T⊥/T|| → 1, the range of unstable wavenumbers shrinks
to zero. In Figs. 1 and 2, we have used the elec-
tron number density n0 = 1033 m−3, which can be ob-
tained in laser-driven compression schemes. The growth
rate for different values on T⊥/T|| is displayed in Fig.
1. We see that the maximum unstable wavenumber is
kmax = (ωp/c)

√

T⊥/T|| − 1, as predicted, and that the
maximum growth rate occurs at k ≈ kmax/2. Figure 1
also reveals that the maximum growth rate of the insta-
bility is almost linearly proportional to T⊥/T||−1. In Fig.
2, we have varied the product βµ, which is a measure of
the degeneracy of the quantum plasma. We see that for
βµ larger than 5, the instability reaches a limiting value,
which is independent of the temperature, while thermal
effects start to play an important role for βµ of the order
unity.

FIG. 3: The magnetic field components By (top panel) and
Bz (bottom panel) as a function of space and time, for βµ = 5
and T⊥/T|| = 2. The magnetic field has been normalized by
ωpm/e. We see a nonlinear saturation of the magnetic field
components at an amplitude of ∼ 0.01.

From several numerical solutions of the linear dis-
persion relation, we have been able to deduce an ap-
proximate scaling law for the instability as γmax/ωp =

constant × n
1/3

0 (T⊥/T|| − 1), where the constant is

approximately 8.5 × 10−14 s−1m. Using that n0 =
(2mEF /h̄2)3/2/(3π2) ≈ 1.67× 1036(EF /mc2)3/2, we have

γmax

ωp
= 0.10

( EF

mc2

)1/2(

T⊥

T||
− 1

)

, (6)

for the maximum growth rate of the Weibel instability
in a degenerate Fermi plasma. This scaling law, where
the growth rate depends on the Fermi energy and the
temperature anisotropy, should be compared to that of a
classical plasma [5, 37], where the growth rate depends
on the thermal energy and the temperature anisotropy.

For a Maxwellian plasma, it has been found [38] that
the Weibel instability saturates nonlinearly once the
magnetic bounce frequency ωc = eB/m has increased to
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FIG. 4: The maximum of the magnetic field amplitude, B =
(B2

y + B2

z)1/2, over the simulation box (top panel), and the
logarithm of the magnetic field maximum (bottom panel) as
a function of time, for T⊥/T|| = 2 and βµ = 5. The magnetic
field has been normalized by ωpm/e. From the logarithmic
slope of the magnetic field in the linear regime we find γ ≈

∆ln(Bmax)/∆t ≈ 0.01 ωp.

a value comparable to the linear growth rate. In order to
assess the nonlinear behavior of the Weibel instability for
a degenerate plasma, we have carried out a kinetic simu-
lation of the Wigner-Maxwell system. We have assumed
that the quantum diffraction effect is small, so that the
simulation of the Wigner equation can be approximated
by simulations of the Vlasov equation by means of an
electromagnetic Vlasov code [39]. As an initial condition
for the simulation, we used the distribution function (2).
In order to give a seed for any instability, the plasma
density was perturbed with low-frequency fluctuations
(random numbers). The results are displayed in Figs. 3
and 4, for the parameters βµ = 5 and T⊥/T|| = 2, cor-
responding to the solid lines in Figs. 1 and 2. Figure

3 shows the magnetic field components as a function of
space and time. We see that the magnetic field initially
grows, and saturates to steady state magnetic field fluctu-
ations with an amplitude of eB/mωp ≈ 0.008. The maxi-
mum amplitude of the magnetic field over the simulation
box as a function of time is shown in Fig. 4, where we see
that the magnetic field saturates at eB/mωp ≈ 0.0082,
while the linear growth rate of the most unstable mode
is γmax/ωp ≈ 0.009. Similar to the classical Maxwellian
plasma case [38], we can thus estimate the magnetic field
(in Tesla) as

B =
mγmax

e
, (7)

for a degenerate Fermi plasma. For our parameters pa-
rameters relevant for intense laser-solid interaction ex-
periments, we will thus have magnetic fields of the order
105 Tesla (one gigagauss).

IV. CONCLUSION

In conclusion, we have demonstrated the existence of
the Weibel instability for a Wigner-Maxwell dense quan-
tum plasma, taking into account an anisotropic Fermi-
Dirac equilibrium distribution function and the quantum
diffraction effect. Numerically solving the dispersion re-
lation for transverse waves, we found the dependence of
the growth rate on the Fermi energy and the temper-
ature anisotropy. The nonlinear saturation level of the
magnetic field was found by means of kinetic simulations,
which show a linear dependence between the growth rate
and the saturated magnetic field. The present results
may account for intense magnetic fields in dense quantum
plasmas, such as those in the next generation of intense
laser-solid density plasma interaction experiments.
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