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Abstract

A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of

the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental

solutions are found for both time-invariant and time-dependent media, considering slow and fast

variations of the electron plasma density. The model is shown to be described by a generalized

Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical

approach indicate the shift of both equilibrium value and frequency oscillation of flavor coherence,

due to the existence of a turbulent plasma background.
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I. INTRODUCTION

Neutrinos are elusive particles which interact very weakly with matter, but play an im-

portant and sometimes a decisive role in astrophysical phenomena [1]. In recent years, the

success of experimental neutrino physics has been spectacular, providing detailed informa-

tion on the stellar matter processes, as well as on their intrinsic properties in vacuum [2].

The existence of a finite neutrino mass leads to the occurrence of neutrino flavor oscillations

in vacuum, as documented by experiments and observations.

Neutrino interactions with a dense plasma show that a significant amount of energy trans-

fer between neutrino beams and plasma waves can take place over distances, thus suggesting

that such a mechanism could be crucial for the formation of an outgoing shock in type II su-

pernovae [3]. Such a coupling results from the existence of an induced neutrino charge [4–6],

leading to collective kinetic instabilities, which are mediated by neutrino Landau damping

[7]. Neutrino plasma interactions could also lead to the emission of electron-positron pairs

[8], and to the excitation of quasi-static magnetic fields [9]. On the other hand, the interac-

tion with matter can also significantly change the neutrino flavor oscillations, and lead to a

resonant coupling between neutrino flavor states, known as the MSW effect [10–12].

Neutrino plasma instabilities and neutrino flavor oscillations are usually considered as

two distinct phenomena, and have been explored independently by two different scientific

communities. Here we try to establish the bridge between these two communities, by con-

sidering the influence of plasma instabilities and plasma turbulence on the neutrino flavor

oscillations. Our approach is also motivated by recent studies of neutrino behavior in a

turbulent background [13].

In the present work we consider the influence of plasma oscillations on the evolution of

the neutrino flavor polarization vector. The influence of a space or time varying medium on

the neutrino flavor content has been considered by many authors, but only a few [14, 15]

consider sine-variations (in time) of the electron density, as we do here. In contrast with this

previous work, which is mainly concerned with numerical solutions of the neutrino oscillation

equations, we use here a WKBJ-like method, which allows us to derive simple analytical

solutions in which the role of higher harmonics becomes apparent. In addition, several other

papers in this area concern the influence of a stochastic background medium (see for instance

[16, 17]), or discuss general time-dependent media [18].
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This work is organized as follows. In Section II we define the flavor polarization vector,

set the basic equations of our model and derive their solutions for a plasma in steady-state.

In Section III we consider flavor oscillations in a time-varying medium, and discuss the

cases of very slow and very fast plasma oscillations. In Section IV we demonstrate that,

even for an arbitrary temporal variation of the electron plasma density, the evolution of the

polarization vector can be described by a generalized Hamiltonian formalism. In Section V

we consider the case of a broad spectrum of electron plasma oscillations. Finally, in Section

VI, we state our conclusions.

II. BASIC DESCRIPTION

In order to allow a direct comparison with the time-dependent situation, in this Section

we review the basic neutrino oscillations in the autonomous case. It is well known that

neutrino mass eigenstates |νj〉, with j = 1, 2, 3, differ from the neutrino flavor eigenstates

|να〉, with α = e, µ, τ , which are identified in weak interaction processes. This leads to

a flavor oscillation process, first suggested by Pontecorvo [19], and then put on a more

solid basis by Maki et al. [20]. These different eigenstates are related by a transformation

matrix, according to |να〉 =
∑

j Uαj |νi〉, where the neutrino mixing matrix Uαj , known as

the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix, contains three mixing angles and

one CP violating phase.

Here we concentrate on a simplified two-flavor model, with i = 1, 2 and α = e, µ. The

restriction to two flavors is very common in the literature, because it allows to derive explicit

analytic results, which are very important for a qualitative analysis. The two flavor states,

|νe〉 and |νµ〉, can then be seen as a linear combination of the two mass eigenstates |ν1〉 and
|ν2〉, as defined by the transformation





νe

νµ



 = U(θ0) ·





ν1

ν2



 , U(θ0) =





cos θ0 sin θ0

− sin θ0 cos θ0



 , (1)

where θ0 is the relevant mixing angle.The temporal evolution of the mass eigenstates is

obviously of the form |νj(t)〉 = |νj(0)〉 exp(−iEjt), for j = 1, 2, and energies Ej = (|pj|2 +
m2

j )
1/2, with ~ = 1, c = 1. Because of the smallness of the masses mj , we can use the

approximation Ej = pj+m
2
j/2pj. As for the temporal evolution of the flavor eigenstates, we

can use Eq. (1). Alternatively, we can consider the evolution of the density matrix ρ, with
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elements ρab = ψ∗

bψa, with a, b = (e, µ), where ψa are the neutrino flavor wave functions.

We can also define a three-dimensional flavor polarization vector P, such that the density

matrix can be defined as

ρ =
N0

2
(1 +P · σ), (2)

where σ ≡ (σ1, σ2, σ3), and σj for j = 1, 2, 3 are the Pauli matrices. Here we have introduced

the total number of neutrinos N0 = Ne + Nµ, as the sum of the the flavor populations.

Alternatively, the single particle normalization condition, N0 = 1 could also be used. It can

then be shown [1] from (1) that P evolves in time according to

dP

dt
= ω0 (B×P) , B =











sin 2θ0

0

cos 2θ0











. (3)

Here we have introduced the characteristic oscillation frequency ω0 = ∆m2/2E, where

∆m2 = m2

2
− m2

1
is the square mass difference and E the fixed energy associated to the

neutrino Dirac spinor. This is formally identical to the spin precession in a magnetic field,

where P plays the role of a fictitious spin vector, and B is a fictitious magnetic field. In the

presence of a background plasma, this evolution equation becomes

dP

dt
=

(

ω0B−
√
2GFneL

)

×P, (4)

where GF is the Fermi constant, ne is the electron plasma density and L ≡ (0, 0, 1). This can

be rewritten in a form identical to the vacuum equation (3), by introducing a new oscillating

frequency ω and a new fictitious magnetic field H, such that ωH = ω0B −
√
2GFneL. We

then get

dP

dt
= ω (H×P) , H =











sin 2θ

0

cos 2θ











, (5)

where the new frequency ω and the new angle θ are determined by

ω = ω0

sin 2θ0
sin 2θ

, tan 2θ =
sin 2θ0

cos 2θ0 − ξ
, (6)

where the parameter ξ =
√
2GFne/ω0 describes the neutrino plasma coupling. In explicit

form, we have the coupled evolution equations for the three components of P as

dP2

dt
= ωP1 cos 2θ − ωP3 sin 2θ, (7)
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and
dP1

dt
= −ωP2 cos 2θ ,

dP3

dt
= ωP2 sin 2θ. (8)

From where we get d2P2/dt
2 = −ω2P2, with the general solution

P2(t) = A exp(−iωt) +B exp(+iωt). (9)

where A and B are integration constants. Replacing this in Eq. (8), we can also solve for

the other two components, as

P1(t) = −i cos 2θ [A exp(−iωt)−B exp(+iωt)] + P10, (10)

and

P3(t) = i sin 2θ [A exp(−iωt)−B exp(+iωt)] + P30, (11)

where P10 and P30 are two additional constants. Since Eqs. (7) and (8) constitute a system

of three first-order ordinary differential equations, the general solution contain only three

integration constants, hence not all A,B, P10 and P30 are independent. Indeed, by direct

substitution it can be verified that

P10 = C sin 2θ , P30 = C cos 2θ , (12)

in terms of a single integration constant C so that A,B and C are the independent arbitrary

constants in the general solution.

Let us now relate these results with the neutrino density matrix. According to (2), we

have

ρ11 =
N0

2
(1 + P3) , ρ22 =

N0

2
(1− P3) , ρ12 = ρ∗

21
=
N0

2
(P1 − iP2). (13)

In passing, notice that since ρ is hermitian one need all components of the polarization

vector to be real. Moreover, in the weak interaction basis we can identify the diagonal

matrix elements with the neutrino flavor populations, as ρ11 = Ne and ρ22 = Nµ, which only

depend on P3 = (Ne −Nµ)/N0. As for the coherences ρ12 and ρ21, they are determined by

P1 and P2. The evolution equations for the neutrino populations are then given by

dNe

dt
= −dNµ

dt
=
N0 ωP2

2
sin 2θ. (14)

One needs P3 real, implying A = B∗, C = C∗ in Eqs. (11) and (12). Therefore one has

A = B∗ =
α

2
eiβ , (15)
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where α, β are real numbers. Finally the solution can be expressed as

P3 = C cos 2θ + α sin(ωt− β) sin 2θ ,

P1 = C sin 2θ − α sin(ωt− β) cos 2θ , (16)

P2 = α cos(ωt− β) ,

uniquely involving real integration constants α, β, C. Note that physically acceptable so-

lutions satisfy |P3| ≤ 1 for all time, otherwise negative flavor populations will eventually

appear.

The constants of integration in the above solution have to satisfy the initial conditions.

For instance, as a particularly important example, let us consider the case of an electron

neutrino beam created at t = 0, as determined by the initial conditions

Ne(0) = N0 , Nµ(0) = 0 , P3(0) = 1. (17)

In this case, it is convenient to use the constants

α = sin 2θ , β = −π
2
, C = cos 2θ . (18)

One then finds

P1(t) = cos 2θ sin 2θ [1− cos(ωt)] ,

P2(t) = − sin 2θ sin(ωt) , (19)

P3(t) = 1− sin2 2θ [1− cos(ωt)] ,

This corresponds to neutrino flavor populations evolving as

Ne(t) = N0 −
N0

2
sin2 2θ [1− cos(ωt)] , Nµ(t) =

N0

2
sin2 2θ [1− cos(ωt)] . (20)

This coincides with the probability for an electron neutrino to become a muon neutrino,

P (νe → νµ, t) ≡ Nµ(t)/N0, as known from direct calculations. The conservation of total

number of neutrinos is obviously satisfied.

III. INFLUENCE OF PLASMA OSCILLATIONS

The basic solutions described above are modified in the presence of plasma density per-

turbations. In this case, a neutrino beam sees a time varying background electron density,
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and the quantities ω and θ become functions of (space and) time. Equations (8) are still

valid, where the component P2 is now determined by the equation

d2P2

dt2
+ ω2P2 =

d lnω

dt

[

dP2

dt
+ ω (P1 sin 2θ + P3 cos 2θ) tan 2θ

]

, (21)

where we have used the first of Eqs. (6). We can simplify the form of (21) by means of a

change of time parametrization, defining

T =

∫ t

ω(t′) dt′ , (22)

which gives
d2P2

dT 2
+ P2 =

d lnω

dT
(P1 sin 2θ + P3 cos 2θ) tan 2θ . (23)

In the case of very slow plasma processes, we can neglect the right hand side of (23). This

is valid for |d lnω/dt| ≪ ω, and for a finite tan 2θ. In this case, d2P2/dT
2 + P2 ≃ 0 and the

solution (9) can be replaced by the WKBJ (Wentzel-Kramers-Brillouin-Jeffreys) like form

P2(t) = A exp

(

−i
∫ t

ω(t′)dt′
)

+B

(

+i

∫ t

ω(t′)dt′
)

. (24)

The usual WKBJ expression contains the inverse square root of the frequency. However, in

our case the rescaling of time completely eliminate the frequency, as far as the right-hand

side of Eq. (23) is negligible. This is because of the extra term (ω̇/ω)Ṗ2 in Eq. (21). In

passing, we note that assuming the reduction P1 sin 2θ + P3 cos 2θ ≡ 0, one has exactly

d2P1/dT
2 + P1 = d2P2/dT

2 + P2 = 0, which allows an exact solution regardless the form of

the time-dependent frequency.

Let us assume that we are in the presence of a plasma oscillation at some frequency

ω′ ≪ ω. This could be the case of an ion acoustic mode, such that ω′ = k′vac, where

k′ is the wavenumber and vac =
√

T /mp is the ion acoustic velocity, with T the plasma

temperature in energy units and mp the proton mass. We can then use

ω(t) = 〈ω〉 [1 + ǫ cosω′t], (25)

where 〈ω〉 is the frequency value in the absence of plasma oscillations, and ǫ is the amplitude

of the electron density modulations. More precisely, from Eq. (6) we infer that time-

dependent electron density modulations produce a changing frequency ω(t), modeled in a

simple way through Eq. (25). The amplitude parameter ǫ can be simply interpreted as the
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ratio between the electron trapping frequency in the potential well of the electron plasma

wave and the electron plasma frequency [21].

To avoid analytic difficulties, we will uniquely consider forward propagating waves, so

that 0 ≤ ǫ < 1. Notice that from Eq. (6) one has

sin 2θ =
ω0 sin 2θ0

〈ω〉 (1 + ǫ cosω′t)
. (26)

The absolute value of the right hand side of the last equation should not exceed unity,

otherwise P would became complex in a finite time, spoiling our physical interpretation.

Hence the parameters should satisfy ω0 sin 2θ0/ [〈ω〉 (1− ǫ)] ≤ 1. In addition, from Eq.

(6) some algebra shows that the equilibrium frequency value should exceed the vacuum

value, 〈ω〉 > ω0. Finally, for the frequency (25) the slow time-dependence condition reads

ǫω′/ 〈ω〉 ≪ 1.

Replacing Eq. (25) in (24), we get

P2(t) =
∑

n

Jn(κ) [A exp (−i 〈ω〉 t− inω′t) +B exp (i 〈ω〉 t + inω′t)] , (27)

where Jn are Bessel functions with argument κ = ǫ 〈ω〉 /ω′. The spectral broadening of the

solution P2(t) introduces a quantum decoherence which in a sense is equivalent to an energy

broadening of the neutrino beam. This leads to a decrease of the amplitude of the neutrino

flavor oscillations due to phase mixing, similar to Landau damping [1].

Repeating the procedure done for a steady-state medium and integrating Eq. (8) once

to obtain P3, a tedious analysis allows the solution to be expressed as

P2 = α
∑

n

Jn(κ) cos [(〈ω〉+ nω′) t− β] , (28)

P3 = P3(0) + αω0 sin 2θ0
∑

n

Jn(κ)

〈ω〉+ nω′
sin [(〈ω〉+ nω′) t− β]

+ αω0 sin 2θ0 sin β
∑

n

Jn(κ)

〈ω〉+ nω′
, (29)

in terms of real constants α, β and P3(0). We omit the complicated form of P1. From Eq.

(29) it can be proven that P3(t∗) − P3(0) > 0 after a finite time t∗ whose precise value

depends on the initial conditions (the rough estimate ǫω′t∗ ≃ 1 applies). Hence, starting

from a pure electron neutrino beam (P3(0) = 1) one would eventually get negative flavor

populations, at least in the context of the slowly varying medium approximate solution. In
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FIG. 1: Oscillations of the coherence variable P2 from the approximate solution (30) with param-

eters ω0 = 1.0, 〈ω〉 = 1.1, ω′ = 0.1, sin2 2θ0 = 0.15 and ǫ = 0.1.

specific cases, these difficulties can be avoided choosing P3(0) < 1, associated e.g. to a mixed

state neutrino beam.

The spectral broadening induces beating in the oscillations of P3. Consider, for instance,

the parameters α = sin 2θ0, β = −π/2, so that P2(0) = 0 and

P2 = − sin 2θ0
∑

n

Jn(κ) sin [(〈ω〉+ nω′) t] , (30)

P3 = P3(0)− ω0 sin
2 2θ0

∑

n

Jn(κ)

〈ω〉+ nω′
[1− cos (〈ω〉+ nω′) t] . (31)

When ǫ = 0 and P3(0) = 1, we immediately regain the solution (19) valid for steady media,

due to Jn(0) = δn0.

Figures 1 and 2 below show a representative case with ω0 = 1.0, 〈ω〉 = 1.1, ω′ =

0.1, sin2 2θ0 = 0.15, ǫ = 0.1 and P3(0) = 0.98. In this situation the slow time variation

condition ǫω′ ≪ 〈ω〉 is fairly well satisfied and one can employ Eqs. (30) and (31).

Figures 3 and 4 below shows more complicated oscillations for strongly nonlinear plasma

waves, with the same parameters of Figs. 1 and 2, except that now ǫ = 0.6 and P3(0) = 0.87.

The slow time varying assumption is still fairly well satisfied.

Let us now consider the opposite case of a very fast plasma process, such as that associated

with an electron plasma wave, with typical frequencies ω′ ≥ ωp ≫ ω, where ωp is the electron

plasma frequency. In this situation we need to numerically solve the full system of Eqs. (7)

and (8). Figure 5 below shows the flavor neutrino oscillations found for ω0 = 1.0, 〈ω〉 =

1.1, ω′ = 3.0, ǫ = 0.6, sin2 θ0 = 0.15 and initial conditions P1(0) = P2(0) = 0, P3(0) = 1. We
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FIG. 2: Oscillations of the variable P3 from Eq. (31) using the same parameters of Fig. 1 together

with P3(0) = 0.98.
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FIG. 3: Oscillations of the coherence variable P2 from the approximate solution (30) with the same

parameters of Figs. 1 and 2, except that now ǫ = 0.6.

see the distortion of the flavor population envelope profiles, due to the fast oscillations of

the plasma background.

IV. GENERALIZED HAMILTONIAN FORMULATION

The dynamical system (8) and (9) can be cast in an generalized Hamiltonian form. This

is very useful because it reveals the internal symmetries and invariants of the system. The

Hamiltonian formalism has been generalized in several directions since the time of Dirac

[22]. The importance of generalized Hamiltonians to fluids and plasmas has been detailed

in the review by [23]. Here we are more concerned with the Nambu generalization to the
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FIG. 4: Oscillations of the variable P3 from Eq. (31) using the same parameters of Fig. 3 together

with P3(0) = 0.87.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

Ne,Μ

FIG. 5: Flavor neutrino oscillations from the direct numerical integration of (7) and (8). Param-

eters: ω0 = 1.0, 〈ω〉 = 1.1, ω′ = 3, ǫ = 0.6, sin2 θ0 = 0.15. Initial conditions: P1(0) = P2(0) =

0, P3(0) = 1. Line: electron neutrino population Ne. Dashed: muon neutrino population Nµ.

case of a three-dimensional phase space [24]. An extension of Nambu mechanics (which is

associated to the so(3) algebra) to arbitrary algebras could also have been considered [25].

In order to discuss the Hamiltonian structure of our flavor polarization equations, let us

first apply the time re-parametrization (22) to obtain

dP1

dT
= −P2 cos 2θ ,

dP2

dT
= P1 cos 2θ − P3 sin 2θ ,

dP3

dT
= P2 sin 2θ . (32)

Second, consider the definition of N-dimensional generalized Hamiltonian systems [23, 26],

dPi

dT
= [Pi,H] =

N
∑

j=1

Jij
∂H
∂Pj

, i = 1, . . . , N, (33)

11



in terms of local phase-space variables Pi, i = 1, . . . , N . Here [, ] denotes a generalized

Poisson bracket such that

[A,B] =
N
∑

i,j=1

∂A
∂Pi

Jij
∂B
∂Pj

, (34)

for arbitrary phase-space functions A,B. In (33) the cosymplectic tensor with matrix

elements Jij should satisfy: (a) Jij = −Jji (anti-symmetry); (b)
∑N

l=1
(Jil ∂Jjk/∂Pl +

Jjl ∂Jki/∂Pl + Jkl ∂Jij/∂Pl) = 0 (Jacobi identity). Finally, in (33) the function H is the

Hamiltonian, which is a constant of motion when not explicitly time-dependent. A dynami-

cal system endowed with a generalized Poisson bracket and a Hamiltonian as defined above

corresponds to a flow in a Poisson manifold.

In the present case, (32) is an explicitly time-dependent (through θ = θ(T )) three-

dimensional generalized Hamiltonian system with the Hamiltonian

H =
1

2
(P 2

1
+ P 2

2
+ P 2

3
) , (35)

which is clearly a first integral due to the conservancy of the polarization vector modulus,

and with

Jij =











0 − cos 2θ 0

cos 2θ 0 − sin 2θ

0 sin 2θ 0











. (36)

For a given cosymplectic tensor, one can look for a privileged Casimir function C which

Poisson-bracket commutes with any other phase-space function, so that
∑N

j=1
Jij∂C/∂Pj ≡

0. Presently we derive

C = P1 sin 2θ + P3 cos 2θ , (37)

which also allows to set the dynamics into the Nambu mechanics [24] form

dP

dT
= ∇PC × ∇PH , (38)

where ∇P = (∂/∂P1, ∂/∂P2, ∂/∂P3). From Eq. (38) it is apparent that the orbits are

found from the intersection between the level surfaces of the Hamiltonian and the Casimir.

However, due to the explicit time-dependence C is not a constant of motion,

dC
dT

= −d lnω
dT

dP2

dT
tan 2θ . (39)

We see that the plasma oscillations induce a non-constant frequency, and hence a time-

variance of the Casimir and of the corresponding level surfaces, which are planes in this

case.
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V. INFLUENCE OF A BROAD TURBULENCE

Another important physical situation is that of a plasma with a broad band high frequency

turbulent spectrum. In this case, we can use a statistical approach, by taking the average of

Eqs. (7) and (8) over a time interval larger than the average flavor oscillating period 1/ 〈ω〉,
but much larger than the typical turbulence period 1/ω′. We can then write

d

dt
〈P2〉 = −a0 〈P3〉+ 〈b〉 〈P1〉+

〈

b̃P̃1

〉

, (40)

and
d

dt
〈P1〉 = −〈b〉 〈P2〉 −

〈

b̃P̃2

〉

,
d

dt
〈P3〉 = a0 〈P2〉 . (41)

Here the symbol 〈〉 represent the time average over fast oscillations and tilted variables

denote fluctuating parts e.g. P̃j = Pj − 〈Pj〉, and where we have defined the quantities

a0 = ω sin 2θ = ω0 sin 2θ0 , b = ω cos 2θ. (42)

On the other hand the fluctuating parts of the polarization vector components have to satisfy

the equations
dP̃2

dt
= −a0P̃3 + 〈b〉 P̃1 + b̃ 〈P1〉 , (43)

and
dP̃1

dt
= −〈b〉 P̃2 − b̃ 〈P2〉 ,

dP̃3

dt
= a0P̃2, (44)

where the correlations
〈

b̃P̃1

〉

− b̃P̃1 and
〈

b̃P̃2

〉

− b̃P̃2 were disregarded in view of a weak

turbulence assumption.

We can see from Eqs.(40)-(41) that the plasma fluctuations introduce a non-zero con-

tribution to the slow time evolution of P, due to the average term 〈b〉, which is different

from 〈ω〉 〈cos 2θ〉. On the other hand, Eqs.(43)-(44) show that these turbulent plasma fluc-

tuations also induce fluctuations in the polarization vector, due to the terms containing b̃.

Coupling between the slow and fast time evolution are also seen in these equations. Let us

first consider the fast time scale equations, by using a spectral analysis, through the Fourier

decomposition

b̃ =

∫

b̃νe
−iνt dν

2π
, P̃j =

∫

P̃jνe
−iνt dν

2π
. (45)

Replacing in Eqs.(43)-(44), we obtain for the Fourier components of Pj the following results

P̃1ν = − i

ν
f1b̃ν , P̃2ν =

1

δν2
f2b̃ν , P̃3ν =

i

ν
f3b̃ν , (46)

13



where we have used the auxiliary quantities

f2 = 〈b〉 〈P2〉+ iν 〈P1〉 , δν2 = ν2 − (a2
0
+ 〈b〉2) = ν2 − 〈ω〉2 , (47)

and

f1 =
f2
δν2

〈b〉+ 〈P2〉 , f3 =
f2
δν2

a0. (48)

These results for the fast time quantities can then be used to calculate the fluctuating terms

in the slow time scale equations (40)-(41). We obtain

〈

b̃P̃1

〉

= −iB3 〈b〉 − i 〈P2〉B1 ,
〈

b̃P̃2

〉

= B2 ,
〈

b̃P̃3

〉

= ia0B3. (49)

The new quantities Bj appearing in these expressions are functions of the energy content of

the plasma turbulence spectrum, and are defined by

B1 =

〈

b̃2

ν

〉

, B2 =

〈

f2b̃
2

δν2

〉

, B3 =

〈

f2b̃
2

νδν2

〉

, (50)

where the time average operation is equivalent to an integration over the turbulent spectrum,

as indicated: B0 ≡
〈

b̃2
〉

=
∫

|b̃ν |2dν/2π. For electron plasma turbulence, we can obviously

use the estimate: Bj = B0/ω
j
p, with j = 1, 2, 3, where ωp is the electron plasma frequency.

Replacing these results in equations (40)-(41), we finally get

d

dt
〈P2〉 = −a0 〈P3〉+ 〈b〉 〈P1〉 − i(B3 〈b〉+B1 〈P2〉), (51)

and
d

dt
〈P1〉 = −〈b〉 〈P2〉 − B2 ,

d

dt
〈P3〉 = a0 〈P2〉 . (52)

A closed equation for the component 〈P2〉 can be obtained by taking the time derivative

of Eq. (51), and using Eq. (52). If we further assume steady state turbulence we get

[

d2

dt2
+ iB1

d

dt
+ 〈ω〉2

]

〈P2〉 = −B2 〈b〉 , (53)

whose solution is

〈P2〉 = −B2 〈b〉
〈ω〉2

+ αeiΩ+t + βeiΩ−
t + c.c. , (54)

where α and β are integration constants and where

Ω± = −B1

2
±

(

B2

1

4
+ 〈ω〉2

)1/2

. (55)
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We conclude that the effects of plasma turbulence are two-fold: to shift both the frequency

oscillation and the equilibrium value of the average coherence 〈P2〉. We can easily realize

that the shifting frequency is of the order of

B1 ≃
B0

ωp
≃ 〈ω〉2

ωp

〈

( ñ

n0

)2
〉

, (56)

where ñ are the electron density perturbations and n0 the equilibrium density. In what

concerns the turbulent force −B2 〈b〉, we can see that it depends on B2 ≃ B1/ωp and

〈b〉 = 〈ω cos 2θ〉.

VI. CONCLUSIONS

We have studied the influence of electron plasma oscillations on the neutrino flavor in-

stabilities. We have first shown that slow changes in the plasmas medium, with typical

frequencies much smaller than the neutrino flavor frequency, lead to a spectral broadening

of the neutrino oscillation process and to beat wave disturbances of these oscillations. On

the other hand, a single high frequency plasma oscillation will introduce high frequency

flavor processes, which can eventually become unstable. In this case, quantum coherence

can increase, as imposed by the oscillation of the background medium. In spite of the ex-

plicit time-dependence, the exact conservation law of |P| can be used to cast the model in

a generalized Hamiltonian form.

We have also studied the influence of a broadband high frequency turbulent spectrum.

In this case, turbulence can be described as a stochastic process and a statistical approach

similar to that used in the Langevin model can be used. Equations for the long time evolution

of the flavor polarization vector were derived. This evolution is intimately dependent on the

fast time evolution processes, and as a result, shifting frequency and force terms occur due

to the presence of turbulence.

These results definitely show that plasma oscillations can be intimately linked with the

quantum coherent processes associated with flavor oscillations. The amplitude of the plasma

oscillations can be, on the other hand, influenced by these flavor oscillations, and a more

complete description of the neutrino plasma coupling needs to address this mutual influence,

which will be considered in a forthcoming publication. Our results can be used for qualitative

and semi-quantitative analysis, because they only concern a two-flavor model. In the case

15



of a more rigorous three flavor model, we would be faced with a non-autonomous system

of 8 first-order ordinary differential equations, hardly amenable to meaningful approximate

methods (see e.g. [18].
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