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Abstract

The quantum relativistic Buneman instability is investigated theoretically using a collective

Klein-Gordon model for the electrons and a cold fluid model for the ions. The growth rate and

unstable wave spectrum is investigated in different parameter regimes corresponding to various

degrees of relativistic and quantum effects. The results may be important for streaming instabilities

involving ion dynamics in very dense plasmas.
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I. INTRODUCTION

The problem of the stability of electron beams propagating through a plasma is important

in the context of laboratory beam-plasma experiments [1], inertial fusion schemes [2], in the

solar corona [3], astrophysical objects [4, 5], etc. It has been suggested that pulsar glitches

are due to a streaming instability [6, 7], where super-fluid neutrons and superconducting

protons co-exist with relativistic electrons [8]. It was early recognized that electron beams

propagating through the plasma can give rise to high-frequency electron plasma waves, or low

frequency ion acoustic waves. The ion motion becomes important if the electrons drift as a

whole through the plasma and typically becomes unstable if the relative drift speed between

the electrons and ions is larger than the ion acoustic speed, as in the original Buneman

instability [9] in an unmagnetized plasma (or electrons streaming along the magnetic field

lines) and the Farley-Buneman instability in magnetized plasmas [10].

The physics of the linear Buneman instability is fairly well understood [11] in the non-

quantum (~ = 0) and non-relativistic (1/c = 0) cases (~ is the reduced Planck’s constant

and c is the speed of light in vacuum). In other situations, relatively thin beams of electrons

penetrate a plasma consisting of both electrons and ions, giving rise to electron two-stream

and ion Buneman instabilities in different parameter regimes in the non-relativistic [12] and

relativistic [13–15] regimes. An electron beam propagating through a plasma can give rise to

electrostatic two-stream instabilities when the wave vector and electric field are aligned, and

electromagnetic instabilities obliquely to the beam direction. A typical condition for the ion

motion to become important in a current-neutral plasma is γ ≥ αM/(mZi), with γ being

the electron beam gamma factor, α the beam to plasma density ratio, Zi the ion charge

state, and M,m the ion and electron masses [12]. To incorporate quantum effects, collective

multi-stream Schrödinger [16] and Klein-Gordon [17] models have been used to investigate

the electron quantum two-stream instability for non-relativistic and relativistic cases. In the

non-relativistic regime, the quantum two-stream instability can be physically understood in

terms of a free energy available due to negative energy modes [18]. In addition, low frequency

linear and nonlinear waves in collisional, non-relativistic quantum plasmas can be derived

using multi-stream, carrier-envelope methods [19].

In this work, we consider the quantum relativistic Buneman instability, in which the bulk

electrons stream against the ions, initially at rest. We compare the classical relativistic
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case with the non-relativistic and quantum case, as well as with the combined quantum

relativistic case. As a model, we use a collective Klein-Gordon model [20] for the electrons

and a cold plasma model for the ions.

The paper is organized as follows. In Section II, the pertinent dielectric function and

dispersion relation are deduced, starting from the basic hydrodynamic equations for the

two-species plasma. In Section III, assuming low frequency and a beam-plasma resonance

condition, the corresponding Buneman instability is derived, in the case of negligible quan-

tum effects. Moreover, the instability is intuitively understood in terms of positive and nega-

tive energy modes. Section IV and V extend the treatment to the quantum non-relativistic

and quantum relativistic cases, respectively. Section VI contains the final remarks and a

discussion on the validity conditions of the model.

II. DIELECTRIC FUNCTION

The mathematical model is based on a collective Klein-Gordon equation for the electrons

that is cast in to a set of fluid-like equations, and a cold fluid model for the ions. The

electrons are described by a Klein-Gordon field ψ = R exp[iS/~], so that R = R(x, t) and

S = S(x, t) can be viewed as, respectively, the amplitude and phase of the collective electron

wave function. From the Klein-Gordon equation, the evolution equations for R and S are

obtained as [17, 20]

R

(

1

c2

∂2

∂t2
− ∂2

∂x2

)

S − eR

c2

∂φ

∂t
+

2

c2

∂R

∂t

(

∂S

∂t
− eφ

)

− 2
∂R

∂x

∂S

∂x
= 0 , (1)

1

c2

(

∂S

∂t
− eφ

)2

−
(

∂S

∂x

)2

−m2c2 =
~

2

R

(

1

c2

∂2

∂t2
− ∂2

∂x2

)

R , (2)

where −e and m are the electron charge and mass, c is the speed of light in vacuum, and

~ is Planck’s constant divided by 2π. Equation (1) plays the role of a quantum relativistic

electron continuity equation, while Eq. (2) is a relativistic Hamilton-Jacobi equation with

a quantum Bohm-like ∝ ~
2 correction term, for the electrons. The ion continuity and

momentum equations for the ion fluid density ni and velocity vi are

∂ni

∂t
+

∂

∂x
(niui) = 0 , (3)

∂ui

∂t
+ ui

∂ui

∂x
= − e

M

∂φ

∂x
, (4)
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respectively, where M is the ion mass. Due to their larger mass, the ions are taken as

non-relativistic and non-quantum. Also, as a first approximation, no thermal effects are

included for either electrons and ions. The electrostatic potential φ is obtained from Poisson’s

equation

∂2φ

∂x2
= − e

ε0

[

R2

mc2

(

∂S

∂t
− eφ

)

+ ni

]

. (5)

where ε0 the vacuum electric permittivity, in terms of the appropriate electron charge density,

as discussed in more detail in Ref. [17]. Since the interest here is on electrostatic waves

only, it is sufficient to write the model in terms of 1 + 1 dimensions, with a scalar potential

φ = φ(x, t).

Assuming the electron fluid streaming as a whole through the ionic fluid, an equilibrium

solution is

R =

√

n0

γ
, S = −γmc2t+ p x , ni = n0 , ui = 0 , φ = 0 , (6)

in the reference frame where ions are at rest, with the relativistic gamma factor γ = [1 +

p2/(m2c2)]1/2 together with n0 as a the equilibrium density. Notice the modified equilibrium

electron fluid density, due to the spatial contraction (γ > 1).

Linearizing the model around the equilibrium (6) with plane wave perturbations ∝
exp[i(kx− ωt)], one obtains the dielectric function

ε = 1 − ω2
i

ω2
− ω2

e

γ

[1 − ~
2(ω2 − c2k2)/(4m2c4)]

[γ2(ω − kv)2 − ~2(ω2 − c2k2)2/(4m2c4)]
, (7)

the dispersion relation being ε = 0. In Eq. (7), ωe = [n0e
2/(mε0)]

1/2 and ωi =

[n0e
2/(Mε0)]1/2 are the electron and ion plasma frequencies, and v = p/(γm) is the beam

velocity.

It is instructive to consider the consequences of the dielectric function (7) for the three

separate cases (a) relativistic non-quantum; (b) non-relativistic quantum and (c) joint rela-

tivistic and quantum.

III. RELATIVISTIC NON-QUANTUM CASE

Setting formally ~ = 0 in Eq. (7) yield

ε = 1 − ω2
i

ω2
− ω2

e

γ3(ω − kv)2
= 1 − F (ω, k) , (8)
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which also defines a non-quantum characteristic function F = F (ω, k). The dispersion

relation F = 1 is a fourth degree polynomial in the wave frequency ω. From the graphics

of the characteristic function, it follows that stability (four real solutions) is obtained when

the minimum value Fmin < 1. When Fmin > 1 one has two real and two complex conjugate

roots, one of them an unstable mode. Finally, Fmin = 1 is marginally stable. In Fig. (1) an

unstable case is depicted.

kv

1

Ω

F

FIG. 1: Characteristic function F = F (ω, k) from Eq. (8) in the non-quantum case, showing a

generic unstable equilibrium when Fmin > 1

Supposing γ(m/M)1/3 ≪ 1, which in hydrogen plasma is reasonable except in extreme

relativistic situations (γ > 12.3 or β = v/c > 0.997), it is straightforward to obtain

ωmin =
(

m

M

)1/3

γkv (9)

as the wave frequency for the minimum of the characteristic function. Correspondingly,

Fmin =
ω2

e

γ3k2v2

[

1 + γ
(

m

M

)1/3
]

> 1 (10)

for instability. Hence, relativistic effects (γ > 1) tend to shrink the range of unstable wave

numbers.

To obtain the interpretation of the stability analysis, we first rewrite the dispersion rela-

tion as

(ω − ωn)ω2 =
ω2

i (ω − kv)2

ω − ωp

, (11)
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where

ωp = kv +
ωe

γ3/2
, ωn = kv − ωe

γ3/2
(12)

are relativistic versions of the usual Doppler-shifted beam modes. Notice that when ions are

taken as immobile (M → ∞) one has ωp,n as exact normal modes.

It is interesting to focus on resonant wave numbers and low frequency modes such that

kv ≃ ωe

γ3/2
, ω ≪ kv , (13)

implying ωn ≃ 0. One then immediately obtains the estimates

ω − ωp ≃ −2kv , (ω − kv)2 ≃ k2v2 , ω − ωn ≃ ω , (14)

so that Eq. (11) becomes

ω3 = − m

2M

ω3
e

γ3/2
. (15)

The reason why the dispersion relation (a fourth degree polynomial equation) can be con-

verted into Eq. (15), which is of the third degree, is the assumption (13). Far from resonant

or high frequency normal modes cannot be detected in this manner.

Equation (15) has one real

ω = −
(

m

2M

)1/3 ωe√
γ

(16)

and two complex conjugate roots,

ω =
(

m

16M

)1/3 ωe√
γ

(1 ± i
√

3) . (17)

The plus sign in Eq. (17) correspond to an exponentially growing mode. Note that the

growth rate becomes smaller due to relativistic effects. In addition, for all three modes one

get
ω

kv
∼ γ

(

m

M

)1/3

, (18)

apart from numerical factors of order unity, so that the low frequency assumption is ac-

ceptable with the exception of extremely relativistic beams (in the case of hydrogen plasma

where m/M = 1/1867). Moreover, the instability condition (10) is also fulfilled by the

resonant wave numbers in Eq. (13).

The time-averaged energy density <W> in a dielectric medium can be shown [21] to be

given by

<W>=
ε0|δE|2

4

d

dω
[ωεr(ω)]ωr

, (19)
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where δE is the electric field perturbation and εr, ωr are the real parts of the dielectric

function and wave frequency. In the present dissipation-free problem, ε = εr. In Eq. (19),

both field and particle energy contributions are already taken into account.

From the above well-known result, it is found that the energy content of the different

modes depends on the quantity

ω
∂ε

∂ω
= 2

ω2
i

ω2
+

2ω2
eω

γ3(ω − kv)3
, (20)

calculated from Eq. (8) considering ω = ωr. By inspection, the ion contribution has always

a positive energy. Concerning electrons, if the wave velocity is larger than the beam’s mode

the energy is positive. From Eq. (12) one has that ω = ωp is a positive energy mode,

while ω = ωn is a negative energy mode (without loss of generality, we use in this work the

convention ω > 0, k > 0). One can understand the result as follows. When the Doppler-

shifted frequency of the beam mode is negative, its energy is also negative. Moving through

the plasma, the beam is then slowed down, losing energy which is the seed for the growing

amplitude of the wave.

In conclusion, in this Section the low-frequency instability due to a negative energy

relativistic beam mode in an oscillating ionic background was investigated. Relativistic

effects tend to produce a smaller range of unstable wave numbers, as well as a smaller

growth rate, in comparison to the γ ≃ 1 case.

IV. NON-RELATIVISTIC QUANTUM CASE

Setting formally 1/c = 0 in Eq. (7) yields

ε = 1 − ω2
i

ω2
− ω2

e

(ω − kv)2 − ~2k4/(4m2)
= 1 − F (ω, k) , (21)

which also defines a non-relativistic characteristic function F = F (ω, k). The dispersion

relation F = 1 is again a fourth degree polynomial in the wave frequency ω. However,

there are qualitative changes in comparison with the non-quantum case, as apparent in Fig.

(2) drawn for v > ~k/(2m). It can be verified that the maximum of the characteristic

function for frequencies kv − ~k2/(2m) < ω < kv + ~k2/(2m) is always negative. Hence

one need Fmin > 1 for instability, where the corresponding wave frequency ωmin satisfy

0 < ωmin < kv−~k2/(2m). In passing, the case v ≤ ~k/(2m) can be shown to produce only

linearly stable oscillations and will be not considered.
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1

Ω- Ω+
Ω

F

FIG. 2: Characteristic function F = F (ω, k) from Eq. (21) in the non-relativistic case, showing a

generic stable equilibrium when Fmin < 1. In the graphic, ω± = kv ± ~k2/(2m)

The dispersion relation F = 1 can be rewritten as

(ω − ωn)ω2 =
ω2

i [(ω − kv)2 − ~
2k4/(4m2)]

ω − ωp
, (22)

where

ωp = kv +

(

ω2
e +

~
2k4

4m2

)1/2

, ωn = kv −
(

ω2
e +

~
2k4

4m2

)1/2

(23)

are quantum versions of the usual Doppler-shifted beam modes. Notice that when ions are

taken as immobile (M → ∞) one has ωp,n as exact normal modes.

In analogy with the previous Section, it is interesting to focus on wave numbers such that

ωn ≃ 0 and on low frequencies, or

kv ≃
(

ω2
e +

~
2k4

4m2

)1/2

, ω ≪ kv . (24)

Proceeding as before, the result is

ω3 = −mω3
e

2M
θ±(H) , (25)

where

H =
~ωe

mv2
(26)

measures the strength of quantum effects and where it was defined

θ±(H) =
H√

2

[

1 ± (1 −H2)1/2
]−1/2

. (27)
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One should compare the relativistic and quantum expressions for the low frequency beam

modes in Eqs. (15) and (25), respectively. In addition, H is bigger for dense plasmas since

ωe ∝ n
1/2
0 .

The resonance condition can be explicitly solved yielding

kv =
ωe

θ±(H)
, (28)

which gives real wave numbers provided H2 ≤ 1. In particular, the previous resonant

wave number is now split in two, due to the quantum recoil term ~
2k4/(4m2) in Eq. (21).

Moreover, one has

θ+(H) =
H

2

(

1 +
H2

8

)

+O(H5) , θ−(H) = 1 − H2

8
+O(H4) , (29)

so that θ± have, respectively, a purely quantum and semiclassic nature. In Fig. (3) the

behavior θ±(H) is shown. The two modes coalesce when H = 1.

Θ+

Θ-

0 0.5 1
H

0.5

1

FIG. 3: Functions θ± from Eq. (27). Bottom, line: θ+. Upper, dashed: θ−

Similarly to the non-quantum case, Eq. (25) can be solved yielding purely oscillatory,

ω = −
(

mθ±(H)

2M

)1/3

ωe , (30)

damped,

ω =

(

mθ±(H)

16M

)1/3

ωe(1 − i
√

3) , (31)

and exponentially growing

ω =

(

mθ±(H)

16M

)1/3

ωe(1 + i
√

3) (32)
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waves. Now one has not only one, but two unstable low frequency modes, according to the

plus or minus sign chosen in θ±. However, since θ±(H) ≤ 1, it is apparent from Eq. (32)

that quantum effects are stabilizing.

For consistency, it remains to check the low frequency assumption. From Eqs. (30)–(32)

it follows that
ω

kv
∼
(

m

M

)1/3

θ
4/3
± ≪ 1 . (33)

Besides, after some algebra one finds from Eq. (21),

ωmin =
[

m

M
θ±(H)

]1/3

⇒ Fmin ≃ 1 + 3

[

m

Mθ2
±(H)

]1/3

> 1 (34)

in accordance with the general instability condition.

Concerning the total energy, one should analyze the quantity

ω
∂ε

∂ω
=

2ω2
i

ω2
+

2ω2
eω(ω − kv)

[(ω − kv)2 − ~2k4/(4m2)]2
. (35)

By using Eq. (23) one concludes that ω = ωp and ω = ωn are positive and negative energy

modes, respectively.

V. RELATIVISTIC QUANTUM CASE

Having in mind the fruitful results following from the low frequency assumption, in this

work the full relativistic and quantum dispersion relation (7) will not be investigated in

detail. Rather, it is interesting to restrict to slow waves such that

ω2 ≪ c2k2 , (36)

which implies

ε = 1 − ω2
i

ω2
− ω2

e

γ

[1 + ~
2k2/(4m2c2)]

[γ2(ω − kv)2 − ~2k4/(4m2)]
. (37)

The qualitative form of the characteristic function derived from Eq. (37) is similar to the

non-relativistic quantum characteristic function from Section IV, with quantitative changes

due to 1/c 6= 0, γ > 1.

Notice that fast wave propagation not satisfying Eq. (36) can be relevant in some instan-

ces, but is outside the scope of the present work. For instance, the usual Bohm correction

is not valid for waves with phase speed greater than the speed of light [22]. Moreover,
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the simplified dielectric function (37) does not produce the high frequency pair modes [23]

admitted by the fully relativistic dispersion relation.

Once again, the dispersion relation F = 1 is a fourth degree polynomial in the wave

frequency ω, which can be written as

(ω − ωn)ω2 =
ω2

i [(ω − kv)2 − ~
2k4/(4γ2m2)]

ω − ωp
, (38)

where

ωp = kv +

[

ω2
e

γ3

(

1 +
~

2k2

4m2c2

)

+
~

2k4

4γ2m2

]1/2

, (39)

ωn = kv −
[

ω2
e

γ3

(

1 +
~

2k2

4m2c2

)

+
~

2k4

4γ2m2

]1/2

. (40)

Neglecting the ion correction, these are exact beam modes for the dielectric function (37).

They correspond to Doppler-shifted relativistic modifications of the usual Bohm-Pines dis-

persion relation [24].

Similarly to the non-quantum or non-relativistic cases, it is useful to focus on wave

numbers such that ωn ≃ 0 and on low frequencies, or

kv ≃
[

ω2
e

γ3

(

1 +
~

2k2

4m2c2

)

+
~

2k4

4γ2m2

]1/2

, ω ≪ kv . (41)

The resonance condition gives

kv

γ
=

ωe

ϕ±(H, γ)
, (42)

where

ϕ±(H, γ) =
H√

2





1 − β2H2

4γ3
±




(

1 − β2H2

4γ3

)2

− H2

γ5





1/2






−1/2

, (43)

with β = v/c and H 6= 0 given by Eq. (26).

Proceeding as before, the result is

ω3 = − mω3
e

2γ4M
ϕ±(H, γ)

(

1 +
β2γ2H2

4ϕ2
±(H, γ)

)

. (44)

For γ → 1, β → 0, one has ϕ±(H, γ) → θ±(H). Moreover, the ∝ β2 term in Eq. (44)

vanishes, so that the quantum non-relativistic results in Eqs. (25) and (28) are recovered.

On the other hand, choosing ϕ−(H, γ) (the semi-classical branch) and then letting H → 0
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it is easy to verify that the relativistic, non-quantum results from Section III are recovered,

considering ϕ−(H, γ) = γ5/2 +O(H2).

It will be assumed that ϕ±(H, γ) is not complex, which is true either for

H <
2γ

β2

(

√
γ − 1√

γ

)

= 1 + β2 +
31β4

32
+O(β6) (45)

or for

H >
2γ

β2

(

√
γ +

1
√
γ

)

=
4

β2
+ 2 +

13β2

8
+

23β4

16
+O(β6) . (46)

Equation (45) extends the condition H < 1 from the preceding Section to the relativistic

domain, while Eq. (46) seemingly provides a new parameter regime not existent in the

non-relativistic approximation. However, in practice it can be verified that the inequality

(46) can be attained only for non-realistic values of H (at least H > 10.8). Hence Eq. (45)

gives the only important constraint, shown in Fig (4) below. We note that the relativistic

effects allows bigger H values.

0.0 0.2 0.4 0.6 0.8 1.0
Β

0.5
1.0
1.5
2.0
2.5
3.0
3.5

H

FIG. 4: The filled area shows the allowable values of the quantum parameter H in terms of β = v/c,

as found from Eq. (45)

From Eq. (44) it is obvious that the instability analysis from the preceding Section

applies, once the replacement θ±(H) → ζ±(H, γ) is made, where

ζ±(H, γ) ≡ ϕ±(H, γ)

γ4

[

1 +
β2γ2H2

4ϕ2
±(H, γ)

]

. (47)

Moreover, generalizing Eq. (29) one has

ζ+(H, γ) =
H

2γ2

[

1 +
(2 − γ2)H2

8γ5

]

+O(H5) , ζ−(H, γ) =
1

γ3/2

[

1 − (2 − γ2)H2

8γ5

]

+O(H4) ,

(48)
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so that ζ±(H, γ) have, respectively, a purely quantum and semiclassic nature. In Fig. (5)

the behavior of ζ±(H, γ) is shown for different values of the relativistic parameter γ. The

two modes coalesce at the maximal quantum parameter found from Eq. (45). Overall, the

relativistic effects produce a smaller value of ζ±(H, γ) and hence a smaller instability growth

rate, which is proportional to [ζ±(H, γ)]1/3.

0.5 1.0 1.5 2.0
H

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1.0 1.5 2.0 2.5 3.0 3.5
H

0.1

0.2

0.3

0.4

1 2 3 4 5
H

0.05

0.10

0.15

0.20

0.25

0.30

0.35

2 4 6
H

0.05

0.10

0.15

0.20

0.25

0.30

FIG. 5: Functions ζ±(H, γ) from Eq. (47). In all plots, the dashed curve is ζ−(H, γ), while ζ+(H, γ)

is the other one. Parameters are: upper, left, γ = 1.5; upper, right, γ = 2.0; bottom, left, γ = 2.5;

bottom, right, γ = 3.0

Finally, we note that ω = ωp [Eq. (39)] can be shown to be a positive energy mode, while

ω = ωn [Eq. (40)] is a negative energy mode.

VI. CONCLUSION

Here we give some notes on the validity of our model. One question in the approach refers

to the magnetic field generation due to the unbalanced current at equilibrium. Following

the discussion of Bludman et al. [13] we can examine the neglect of static magnetic fields

according to:

∇ × B = −µ0n0ev ⇒ B ∼ µ0n0eLv , (49)

13



where B is the magnetic field, µ0 is the vacuum permeability and L is some characteristic

dimension of a beam of finite cross section. From this one can estimate the Larmor frequency

ωL as

ωL =
eB

γm
∼ n0e

2µ0Lv

γm
=
ω2

eLv

γc2
⇒ ωL

ωe
=
βLωe

γc
. (50)

For low frequency, the last quantity may be significant, so that the neglect of a return current

may be unjustified. However, one can always have ωL/ωe ≪ 1 for sufficiently small L.

Another question is under which ideal experimental conditions the quantum relativistic

Buneman instability can be investigated, in particular in view of the quantum effects mea-

sured by the parameter H in Eq. (26). Using S.I. units one has H = 7.25 × 10−20n
1/2

0 /β2,

which attain non-negligible values only for very high densities. For instance, for β = 1/10

(a weakly relativistic beam) one has H > 1/10 only for n0 > 1.90 × 1032m−3. This corres-

ponds to the parameter regimes of laser-compressed plasma interaction experiments [25, 26].

Correspondingly, the predicted stabilization effects can be relevant for extremely short wave-

lengths.

As a by-product, the present treatment derived the Doppler-shifted relativistic Bohm-

Pines dispersion relations in Eqs. (39) and (40). The relativistic effects inhibits dispersion,

with a lower group velocity for a given wavelength, as can be verified. This prediction should

be tested e.g. with the development of multi-Peta-Watt lasers [27].

In summary, in this work it was developed an unified methodology for the treatment of

low-frequency beam-driven instabilities in relativistic quantum plasmas. A detailed com-

parison was made considering different parameter regimes (formally, ~ = 0 and 1/c 6= 0;

~ 6= 0 and 1/c = 0; both ~ 6= 0 and 1/c 6= 0). The corresponding Buneman instabilities

were shown to be associated to certain beam-plasma negative energy modes. Both quantum

and relativistic effects cause a stabilizing effect, with the remark that the quantum effects

produce a splitting of the original Buneman mode into two modes, due to the quantum re-

coil term as discussed in Section IV. Finally, observe that the model equations have certain

limitations in particular because of the semiclassical nature (no quantized fields), see [17]

for more details. Nevertheless, the dispersion relation (7) can be equally found using more

complete, field-theoretic methods [23]. In this context, the positive-negative energy waves

found here have a more broad applicability, as long as the low frequency assumption is valid.
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