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Abstract

The Weibel instability in the quantum plasma case is treated by
means of a fluid-like (moments) approach. Quantum modifications to
the macroscopic equations are then identified as effects of first or sec-
ond kind. Quantum effects of the first kind correspond to a dispersive
term, similar to the Bohm potential in the quantum hydrodynamic
equations for plasmas. Effects of the second kind are due to the Fermi
statistics of the charge carriers and can become the dominant influ-
ence for strong degeneracy. The macroscopic dispersion relations are
of higher order than those for the classical Weibel instability. This cor-
responds to the presence of a cutoff wave-number even for the strong
temperature anisotropy case.

1 Introduction

The field of quantum plasmas has been introduced long ago [1, 2] and is
presently attracting renewed attention from a variety of viewpoints. It was
already confirmed that quantum mechanical effects, e.g., electron tunneling
and wave-packet spreading, play a central rôle in the behavior of metallic
or semiconductor nanostructures of the next generation electronic devices
[3]–[5]. Some astrophysical compact objects, such as white dwarf or neutron
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stars, possess very high temperature but strong quantum effects as well due
to their large densities (∼ 106 g/cm3) [6]. There has been recent studies in
quantum plasmas involving quantum turbulence [7], quantum analogues for
the Harris sheet [8], quantum models taking into account spin [9, 10], stable
solitary structures [11], dark soliton and vortices solutions [12], variational
structures for the quantum Zakharov system [13] as well as application of
quantum hydrodynamic equations for carbon nanotubes [14].

The growing interest on quantum plasmas comes in part from the recently
introduced hydrodynamic equations [15]-[17], which are simpler in compari-
son to the kinetic descriptions used in the original developments. However,
the Weibel instability [18] is usually treated in terms of kinetic descriptions.
The Weibel instability is one of the basic plasma instabilities and is driven by
an anisotropic velocity distribution of plasma particles [18, 19]. The quan-
tum version of the Weibel instability has been recently proposed [20, 21]
on grounds of the dispersion relation for the Wigner-Maxwell system, which
is the quantum counterpart of the Vlasov-Maxwell system. Therefore, the
details of the instability are dependent on the precise form of the equilib-
rium Wigner pseudo distribution function, in a similar way as the traditional
Weibel instability is partially dependent on the exact form of the classical
equilibrium distribution function. The purpose of this paper is to overcome
this difficulty by means of a moment description for the quantum Weibel in-
stability. Recently, the classical Weibel instability was investigated by Basu
[22] taking moments of the Vlasov-Poisson system and the present work fol-
lows basically the same strategy. Here, however, the starting point is the
linearized Wigner-Maxwell system. It is also interesting to verify to what
extent a fluid-like approach as the moment method is able to capture the
essentials of the Weibel instability, in the quantum case. Some peculiar sub-
tleties coming from the quantum nature of the model equations will show up.
The transition from a kinetic to a fluid-like approach in a quantum plasma
model will be shown to give rise to quantum effects of a different nature
according to the density of the system, as explained more thoroughly in the
continuation.

Classical plasmas frequently have equilibrium distribution functions a-
nisotropic in velocity space [23]-[25]. In the context of quantum plasmas,
velocity anisotropy can arises at least for laser plasmas and neutron stars. It
is well-known [26] that anisotropic heating by resonant absorption can pro-
duce a Weibel-like instability in laser plasmas. Also, there are experimental
evidence of Weibel instability in laser-solid interaction experiments [27]. In
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addition, in tunnel-ionized laser plasmas there can be velocity anisotropy
driven by a varying laser polarization [28]. Quantum effects should be more
evident in the next generation of laser-solid interaction experiments, where
the densities are very high. For neutron stars, it has been conjectured [29]
that anisotropic heating can arise in view of fast rotation, implying a strongly
deformed neutrino sphere and anisotropic neutrino fluxes. There are esti-
mates [30] where the pole-to-equator neutrino flux ratio can assume a value
of 2. For these reasons, it is important to have a better understanding of the
Weibel instability taking into account quantum effects.

As examples of distinct equilibrium Wigner functions for the quantum
Weibel instability, one can have Maxwell-Boltzmann or Fermi-Dirac func-
tions, both with anisotropy in velocity space. Using a moment description,
there is some lost of information, but more universal statements are made
available. As for any moments or fluid modeling, an intrinsic limit of such
approach is in the closure of the equations. Indeed, one is always faced with
a system where the equation for the time evolution of the velocity moment
of order n depends on the velocity moment of order n+1. In this way [22], it
happens that the moment approach is appropriate only for long wave-length
and large temperature anisotropy. Moment descriptions have also been ap-
plied to cyclotron wave-particle interaction [31].

This work is organized as follows. In Sec. II we construct the general
formalism of the moment equations using the linearized Wigner equation.
Assuming a large temperature anisotropy, we derive the new dispersion rela-
tion for the electromagnetic unstable modes of Weibel-type, which includes
quantum corrections appropriate for dilute systems. In Sec. III we general-
ize the analysis for an anisotropic Fermi-Dirac distribution. The fourth-order
moment term provides in this case a quantum correction term of a different
nature in the dispersion relation. Our quantum dispersion relations are dis-
cussed in Sec. IV. The analytical forms for the Weibel growth rates are
derived and plotted for representative highly dense plasmas. A brief sum-
mary of the results is given in Sec. V.

2 Basic equations

Consider a quantum plasma with equilibrium Wigner function f = f0(v)
and no equilibrium electromagnetic field. If f̃ = f̃(r,v, t) and Ã = Ã(r,v, t)
denotes the perturbations of the equilibrium Wigner function and of the
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vector potential, then the linearized Wigner equation [20] reads

∂f̃

∂t
+ vi

(

∂f̃

∂ri
+

e

m

∂Ãj

∂ri

∂f0

∂vj

)

+
e

m

∂Ã

∂t
·
∂f0

∂v
(1)

−
ie

h̄

(

m

2πh̄

)3

v ·
∫

dsdv′eim(v−v
′)·s/h̄ [Ã(r +

s

2
) − Ã(r −

s

2
)]f0(v

′) = 0 .

In the above equation, the summation convention is used in some terms
and it is assumed the Coulomb gauge ∇ · Ã = 0, as well as the perturbed
electrostatic potential is taken to be zero. In addition, h̄ = h/(2π) is the
scaled Planck constant, −e is the electron charge and m the electron mass.
Furthermore, the treatment is restricted to transverse waves so that

Ã = A⊥ exp(i[kz − ω t]) , (2)

where k = kẑ is the wave vector and A⊥ is a constant vector satisfying
k ·A⊥ = 0. In all calculations, ∂/∂z is the only spatial derivative which does
not identically vanishes. Also, the equilibrium Wigner function is an even
function of the velocity components.

It is convenient to define the first, second and third order moments

ũx =
1

n0

∫

dvvxf̃(r,v, t) , (3)

P̃xz = m
∫

dvvxvzf̃(r,v, t) , (4)

Q̃xzz = m
∫

dvvxv
2
z f̃(r,v, t) , (5)

where n0 =
∫

dvf0(v) is the equilibrium density. From (1), after integrating
by parts and taking into account the Coulomb gauge as well as the parity
properties of f0, one get

∂

∂t
ũx = −

1

mn0

∂

∂z
P̃xz −

e

m
Ẽx , (6)

∂

∂t
P̃xz +

∂

∂z
Q̃xzz =

en0

m
B̃y(T‖ − T⊥) , (7)

∂

∂t
Q̃xzz + m

∂

∂z

∫

dvvxv
3
z f̃(r,v, t) = −

en0T‖

m
Ẽx , (8)

which are exactly the same as Eqs. (10-12) from Basu’s work [22], in a
different notation. In (6-8), Ẽx = −∂Ãx/∂t and B̃y = ∂Ãx/∂z are the x
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and y components of the perturbed electric and magnetic fields, respectively.
Also,

T‖ = (m/n0)
∫

dvv2
zf0(v) , (9)

T⊥ = (m/n0)
∫

dvv2
xf0(v) (10)

are related to velocity dispersion along the x and z directions, respectively
The fact that the moment equations following from the (quantum) Wigner

equation and the (classical) Vlasov equation are the same seems to be a
puzzle. Some quantum contribution should survive, otherwise both classical
and quantum dispersion relations would be the same. The key to solve
the puzzle is hidden in the fourth-order moment term at (8). This term is
neglected in the pure classical case, but in the following it is shown that this
cannot be taken from granted in the quantum case.

To estimate the fourth-order moment term at (8), one uses the linearized
Wigner equation to find

∂

∂t

∫

dvvxv
3
z f̃(r,v, t) =

e

m
B̃yI +

en0h̄
2T⊥

4m2

∂2B̃y

∂z2
, (11)

where
I =

∫

dv(v4
z − 3v2

xv
2
y)f0(v) (12)

and the fifth-order moment
∫

dvvxv
4
z f̃ was disregarded to get closure of the

system. In (11), the term proportional to h̄2 has a quantum nature, while the
quantity I can be shown to be negligible in the case of a Maxwell-Boltzmann
equilibrium. At this point, suppose that I produces only a higher-order
correction, an approximation to be checked in more detail in Section III.
Assuming I ≈ 0 and Fourier transforming with all quantities proportional to
exp(i[kz −ωt]) in (6-8), (11) and in Faraday and Ampère laws, there follows
the dispersion relation

ω2 − c2k2 − ω2
p

[

1 +
k2T⊥

mω2

(

1 +
h̄2k4

4m2ω2

)]

= 0 , (13)

where ωp = (n0e
2/(mε0))

1/2 is the plasma frequency and c the speed of light.
Equation (13) is the same as Eq. (22) of Basu’s work [22], but now with
the extra quantum term proportional to h̄2. Notice that the final result is
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independent of T‖, a fact which is consistent with an extreme temperature
anisotropy assumption (T⊥ ≫ T‖).

Until now the treatment is completely general, with no particular assump-
tion on the form of the equilibrium distribution function, as long as I in (12)
can be disregarded. In this sense, the instability follows from temperature
anisotropy, whatever the exact form of the equilibrium distribution function.
Nevertheless, in Section III it is shown that for extreme degenerate Fermi
gases one is obliged to fully keep the fourth-order moment contribution, in-
cluding the term I which would be not negligible anymore. This leads to
a modified dispersion relation, useful for very dense plasmas like in astro-
physical objects as white dwarfs and neutron stars as well as in laser-solid
plasma interaction experiments. It can be said, that the quantum correction
in the second term at the right-hand side of (11) is always present and that
an additional quantum correction coming from extreme densities can also
manifest through the term I, fairly negligible for classical plasma. Modifi-
cations arising from the dispersive term ∼ h̄2 at (11) will be referred in the
present context as (quantum) effects of the first kind, while the contribution
from the I integral will be called a perturbation of the second kind.

In order to compare the dispersion relation (13) to previous work on the
quantum Weibel instability, one can insert the extreme anisotropic equilib-
rium distribution function

f0 =
n0m

2πT⊥
δ(vz) exp

[

−
m

2T⊥
(v2

x + v2
y)
]

(14)

into the Wigner-Maxwell system as it is presented, for instance, in reference
[20]. After linearizing and Fourier transforming, the result is

ω2 − c2k2 − ω2
p



1 +
k2T⊥

mω2

(

1 −
h̄2k4

4m2ω2

)−1


 = 0 , (15)

which is the same as (13) provided h̄2k4/(4m2ω2) ≪ 1, in accordance with
the long wave-length approximation. If one proceeds with (15), one would
also get the dispersion relation shown in Eq. (29) of reference [20]. Hence,
the moment and the kinetic theory approaches gives the same results, pro-
vided there is sufficient temperature anisotropy and the long wave-length
assumption is valid.
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3 Anisotropic Fermi-Dirac equilibrium

It should be observed that quantum effects in plasma can be taken into
account in at least two ways. On one hand, a quantum transport equation can
be the starting point. In this work, the rôle of quantum transport equation
is played by the linearized Wigner equation (1). Unlike Vlasov’s equation,
the Wigner equation is able to model quantum phenomena like tunneling
and wave-packet spreading. On the other hand, quantum effects can be
incorporated by means of an equilibrium distribution reflecting the spin of
the charge carriers. This second avenue is pursued in this Section, where
radical departures to the dispersion relation are found, especially for strongly
degenerate systems.

In the previous Section, the quantity I at (12) was neglected and the
dispersion relation (13) was obtained. The purpose of this Section is to
investigate more closely the assumption on the smallness of I. In order to get
closure of the moment equations, it is unavoidable to add some hypothesis
on the equilibria. As will be shown, it is not generically true that I can
be neglected. Indeed, one can consider the equilibrium Wigner function
appropriate for an anisotropic Fermi-Dirac distribution,

f0 =
α

exp
[

m
2

(

v2
x
+v2

y

T⊥
+ v2

z

T‖

)

− βµ
]

+ 1
, (16)

where µ is the chemical potential and α is a normalization constant,

α = −
n0

Li3/2(−eβµ)

(mβ

2π

)3/2
= 2

( m

2πh̄

)3
. (17)

In (17), Li3/2 is a polylogarithm function [32]. In addition, β = 1/[(T 2
⊥T‖)

1/3],
with the temperatures T⊥ and T‖ measured in terms of the Boltzmann con-
stant. If T⊥ = T‖, the standard Fermi-Dirac statistics is recovered. The
Fermi statistics is unavoidable in the case of degenerate Fermi gases, as in-
tense laser beams or compact astrophysical objects. Dilute systems (eβµ ≪ 1)
are fairly well treated by the Maxwell-Boltzmann equilibrium. Notice that
(16) is not the more usual Fermi-Dirac distribution f̂(k), where k is the ap-
propriated wave vector in momentum space, but the associated equilibrium
Wigner function. These objects are related by f̂(k) = (1/2)(2πh̄/m)3f0(v),
with the factor 2 coming from spin [33, 34]. Another distinctive feature is
that here temperature anisotropy is allowed.
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Inserting (17) into (12), the result is

I =
3n0T‖(T‖ − T⊥)

m2

Li7/2(−eβµ)

Li3/2(−eβµ)
, (18)

where Li7/2 is another polylogarithm function. In the particular case of dilute
systems, using the properties of the polylogarithm function , the last equation
reduces to

I =
3n0T‖(T‖ − T⊥)

m2
, (19)

which is equivalent to Eq. (23) of [22]. In the general case, proceeding as
before but retaining the I contribution, there follows the dispersion relation

ω2−c2k2−ω2
p

{

1 +
k2T⊥

mω2

[

1 +
3k2T‖(T⊥ − T‖)

mω2T⊥

Li7/2(−eβµ)

Li3/2(−eβµ)
+

h̄2k4

4m2ω2

]}

= 0 .

(20)
By inspection, and taken into account the strong anisotropy assumption
(T⊥ ≫ T‖), the dispersion relation (20) is equivalent to the previous one
Eq. (13) provided

ω2

k2v2
‖

≫
Li7/2(−eβµ)

Li3/2(−eβµ)
, (21)

where v‖ = (T‖/m)1/2 is the characteristic speed associated to T‖. While
(21) is automatically satisfied for dilute systems due to the long wave-length
approximation, the same is not true for a strongly degenerate Fermi gas. For
instance, for βµ ∼ 200, the right hand side of (21) is as large as 4500, so
that the contribution coming from quantum statistics cannot be neglected at
(20). This modified dispersion relation can be useful for a better understand-
ing of the Weibel instability in very dense plasma systems. However, it is a
macroscopic relation not so easily comparable to kinetic (Wigner-Maxwell)
relations. This is the case, since the anisotropic Fermi-Dirac equilibrium
(16) is not easily amenable to analytic results even for extreme temperature
anisotropy. However, the analytical difficulties of the kinetic dispersion re-
lation arising from (16) are just one reason more to emphasize the relevance
of the macroscopic equation (20).

4 Numerical solutions and discussions

To find the Weibel solutions of Eqs. (13) and (20) one should observe that
both equations are of third-order in ω2. For physically reasonable parameters,
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there are one real and two complex solutions. As for classical plasma, the
complex solutions can be taken in the form of purely growing or evanescent
modes, according to ω = ıℑ(ω) = ıγ with |γ| usually small, |γ| ≪ ωp.
Therefore, the first term in both equations (13) and (20) can be neglected
for the purpose of calculating the Weibel growth rate.

0.1 1 10 100

0.0005

0.001

0.0015

0.002

0.0025
a

1 2

ck /ωp

Im (    )ω /ωp

k c

Basu

Eq. (13)

0.1 1 10 100

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
b

1
2

Im (   )ω ωp

ck ωpk c

/

/

Eq. (13)

Basu

Figure 1: With dashed bold lines are shown the Weibel growth rates obtained
from Eq. (13) for a metallic (gold) plasma with n0 = 1028 m−3 and two
temperatures (a) T⊥ = 2.5 eV, and (b) T⊥ = 25 eV. In contrast to the
classical theory (solid bold lines), the aperiodic solutions of Eq. (13) are
limited here to wave-numbers k < kc, by the quantum effects of the first
kind.

Here, one first restrict to the quantum effects described by Eq. (13) from
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which there follows the fourth-order dispersion relation
(

c2k2

ω2
p

+ 1

)

γ4 −
k2T⊥

m

(

γ2 −
h̄2k4

4m2

)

= 0 , (22)

which admits four aperiodic solutions given analytically by

γ2 =
k2T⊥

2m

(

c2k2

ω2
p

+ 1

)−1






1 ±

[

1 −
h̄2k2

mT⊥

(

c2k2

ω2
p

+ 1

)]1/2






, (23)

which exist as long as the wave number is less than a cutoff value, k ≤ kc.
The cutoff value is given by the existence condition for the square root in
(23),

k2
c =

ω2
p

2c2





(

1 +
4T⊥mc2

h̄2ω2
p

)1/2

− 1



 . (24)

For a complete characterization of the Weibel instability, we plot the
growth rates in Fig. 1. It has been chosen a representative case of a metallic
gold plasma [35] with density n0 = 1028 m−3 and two temperatures (a) T⊥ =
2.5 eV, and (b) T⊥ = 25 eV. One can assume sufficiently large anisotropies,
T⊥/T‖ = 100 ∼ 1000, so that the parallel temperature is close to the room
temperature, T‖ ≃ 0.025 eV.

In addition, curve 1 (solid line) is given by the condition |ω/(kv‖)| ≫ 1
introduced in Basu’s Vlasov model [22] for the strong temperature anisotropy
approximation. This curve limits to its left side the existence of the macro-

scopic Weibel modes, and their fluid approach using Eq. (22) from Ref. [22].
On the other hand, curve 2 (dashed line) is given by h̄2k4/(4m2ω2) ≪ 1
being less restrictive, and limits to its left side the moment description of
the quantum Weibel modes by using Eq. (13). In practice it excludes the
lower mode (curve 2 at Figures 1a and 1b as unphysical. In addition, their
existence is limited only to the wave-numbers smaller than a cutoff value,
k < kc. This cutoff wave-number is projected with dotted line in Fig. 1
(b). It should also be given by the condition for a maximum wave-number,
dk/dγ = 0. Imposing this condition to the last dispersion relation (22) one
find

γ2
c = ω2

p

k2
cT⊥

m(c2k2
c + ω2

p)
. (25)

The cutoff wave-number, kc, and the corresponding growth rate ωc are so-
lutions of Eq. (22), and therefore replacing (25) in (22) yields exactly (24).
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This can be used to evaluate, for example, in Fig. 1 (b) the cutoff wave-
number scaled as ckc/ωp ≃ 6.72. Concluding, Eq. (13) admits four aperiodic
solutions for each wave-number k < kc.

-4 -2 2 4

-4

-2

2

4
ω / ω

c k / ω

light
waves

superluminal
EM waves

p

p

Figure 2: With solid lines are shown the superluminal waves (no damping
and no growing, ℑ(ω) = 0) described by Eqs. (13) and (20). In this case
the wave dispersion is not affected by quantum effects. With dashed line are
shown the light waves.

The other two solutions of Eq. (13) are real and are plotted in Fig. 2,
corresponding to |ω| > ωp. These electromagnetic modes are superluminal
and approaches the electromagnetic plasma modes described by ω2 = ω2

p +
c2k2, for increasing k. However, since these solutions have ω/k > c, they
undergo no collisionless damping or growing. Also remark that the dispersion
properties of these superluminal plasma waves does not change too much in
the quantum approach, for physically relevant choices of parameters.

In (13), the quantum corrections of the first kind are proportional to T⊥

and hence to temperature anisotropy. This is because the nature of this
modification comes from wave-packet spreading. In an opposite way, in (20)
the quantum corrections of the second kind are connected to wave-packet
overlap, since, for extreme temperature anisotropy,

3k2T‖(T⊥ − T‖)

mω2T⊥

Li7/2(−eβµ)

Li3/2(−eβµ)
≃

3k2T‖

mω2

Li7/2(−eβµ)

Li3/2(−eβµ)
, (26)

which becomes bigger for larger densities. Therefore, this contribution be-
comes more evident for increasing degeneracy.
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0.06

0.08

0.1

0.12
b

2 1
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Eq. (20)

Im (   )ω / ωp

ck /ω pk c

Figure 3: With the solid lines 1 and 2, are shown the Weibel growth rates
obtained from the Eqs. (13) and (20), respectively, for two temperature
anisotropies (a) T⊥/T‖ = 100 and (b) T⊥/T‖ = 500. The aperiodic solutions
of Eq. (20) are even more limited to wave numbers k < kc,2 < kc,1 by the
quantum effects of the second kind.

One may look in the same manner to the unstable solutions of Eq. (20),

γ2 =
k2T⊥

2m

(

c2k2

ω2
p

+ 1

)−1

× (27)

×







1 ±

[

1 − (
12 T‖(T⊥ − T‖)

T 2
⊥

Li7/2(−eβµ)

Li3/2(−eβµ)
+

h̄2k2

mT⊥

)(
c2k2

ω2
p

+ 1)

]1/2






,

which characterize the equilibrium of an anisotropic Fermi-Dirac distribution
by including the quantum effects of the second kind. The Weibel growth rates
are plotted in Fig. 3 with the solid lines “2”, for two very large temperature
anisotropies. For comparison, the Weibel growth rates provided by Eq. (13)
are also shown and including only the quantum effects of the first kind (solid
lines “1”), and those provided by the classical approach without any quantum
effects (dashed lines). In this case, the instability is limited to smaller wave-
numbers k < kc,2 < kc,1, where kc,2 follows from (27),

k2
c,2 =

ω2
p

2c2















(

1 −
12mc2T‖(T⊥ − T‖)

h̄2ω2
pT⊥

Li7/2(−eβµ)

Li3/2(−eβµ)

)2

+
4T⊥mc2

h̄2ω2
p





1/2

− 1











.

(28)
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and referring to kc,1 as those wave-numbers defined in (24), arising from the
quantum effects of first kind.

In the above calculations, only a moderately degenerate plasma has been
considered, with βµ ∼ 5. Otherwise, for a strongly degenerate one, for
instance, with βµ ∼ 200, the aperiodic solutions are completely suppressed,
except for unrealistic temperature anisotropies (T⊥/T‖ > 500).

5 Conclusion

The transition from a kinetic to a fluid-like model in the case of the quantum
Weibel instability presents more particularities than one could expect at the
first sight. Eq. (11), obtained after retaining terms up to the fourth-order
moment of the equilibrium and perturbed Wigner functions, offers the best
way to understand these subtleties. The second term at the right-hand side
of (11) is a dispersive term which is always present and is reminiscent of the
Bohm potential term at the quantum hydrodynamic model [16]. Since it is
universal, here it was identified as a quantum effect of first kind. However, for
sufficiently large densities, the term proportional to I in (11) can become the
dominant quantum influence, as made clear in Section III. In fact, the cutoff
wave-number for instability becomes much smaller for increasing degeneracy
reflected in these quantum effects of the second kind. The present work can
be relevant not only for applications of Weibel-like instabilities in quantum
plasmas as in intense laser-solid interaction experiments but also as a step
towards a better conceptual understanding about the origin of the Bohm
potential in quantum plasma fluid models, as well as about the transition
from kinetic to fluid descriptions for quantum plasmas.
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