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Abstract

A linearization procedure is proposed for Ermakov systems with

frequency depending on dynamic variables. The procedure applies to

a wide class of generalized Ermakov systems which are linearizable in

a manner similar to that applicable to usual Ermakov systems. The

Kepler–Ermakov systems belong into this category but others, more

generic, systems are also included.

1 Introduction

Ermakov systems [1]–[5] have merited special attention in recent years. A
trend in the latest developments on the subject, is to focus attention in
some special features of subclasses of Ermakov systems. These subclasses
are frequently more flexible and may be tailored to suite some particular
application or special purpose. Among others, we quote applications such as
the identification of the Hamiltonian character in special circumstances [6, 7];
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the determination of a second constant of motion in certain other particular
cases [8]; the identification of the structure of associated Lie group of point
symmetries [9, 10] and the extension of the Ermakov systems concept itself
to higher dimensions [10]–[13].

A central feature of Ermakov systems is their property of always possess-
ing a first integral, commonly known as the Lewis–Ray–Reid invariant. The
Lewis–Ray–Reid invariant can be used to construct nonlinear superposition
laws, another important feature of Ermakov systems concerning their general
solutions [14].

Recently, Athorne shown that Ermakov systems in their usual form, where
the frequency function depends only on the time variable, are linearizable
[15]. In the linearization process, the Lewis–Ray–Reid invariant plays a cen-
tral role, analogous to that played by the angular momentum in the lineariza-
tion of the two-body problem of classical mechanics [16]. The linearization
process, besides being an interesting mathematical attribute in itself, has
found some important applications. The linearized form of the Ermakov sys-
tems plays a central role, for example, in the resolution of a problem arising in
the theory of two–layer, shallow water waves [17], in the singularity analysis
of Ermakov systems [18, 19] and in the study of higher dimensional Ermakov
systems [12, 13]. In such applications, however, a restricting condition on the
class of Ermakov system is that its frequency function depends only on time,
a fact that imposes limitation on the scope of the linearization process. In
a recent study, Athorne [20] has found a class of dynamical systems, the so
called Kepler–Ermakov systems, that generalizes the usual Ermakov systems
while preserving the property of being amenable to linearization. The natu-
ral question to ask at this point is, therefore, whether the Kepler–Ermakov
systems are the only linearizable generalization of the Ermakov systems or
if there exist other perturbations of usual Ermakov systems that are also
amenable to linearization.

The frequency function entering the Ermakov system may depend on
the dynamic variables and their derivatives, without any restriction on the
existence of the Lewis–Ray–Reid invariant [14]. The resulting generalized
Ermakov systems, with frequency function depending on the dynamic vari-
ables and their derivatives, besides time, have appeared in the study of a
generalized time–dependent sine–Gordon equation [21]. More recently, the
Hamiltonian character [7], the existence of a second exact invariant [8] and
the Lie point symmetry group [9] of Ermakov systems have been analyzed
for such generalized frequency functions. In the present work we address
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the question raised at the end of the previous paragraph and study the lin-
earizability of generalized Ermakov systems where the frequency function
may depend on the dynamic variables and their first derivatives, besides
time. Our motivation is to find a more general class of dynamical systems
still amenable to linearization, on the same line as the usual Ermakov or
Kepler–Ermakov systems. In fact, as shown in detail in section III, the
Kepler–Ermakov dynamical systems are nothing but a special class of the
linearizable generalized Ermakov system. This result puts the linearizabil-
ity property of Kepler–Ermakov systems in a novel, more generic and sound
basis. It must be stressed, however, that the class of generalized linearizable
Ermakov systems is much ampler then the class of Kepler–Ermakov systems,
as will be seen in section II.

The paper is organized as follows. In section II, a linearization proce-
dure is proposed for generalized Ermakov systems. The class of frequency
functions for which the linearization procedure applies is obtained in terms
of a wide category of generalized Ermakov systems that can be linearized.
In the continuation, it is shown that the general solution for the nonlinear
equations can be recovered from the solution for the corresponding linearized
equation. The linearization of usual Ermakov systems is recovered as a spe-
cial case of the more general theory. In section III, Kepler–Ermakov systems
are shown to belong to the class of generalized linearizable Ermakov systems.
The linearization procedure for the Kepler–Ermakov system is illustrating in
the case of a particular non-central force problem. In section IV an example
of a generalized linearizable Ermakov system is presented which is not of
the Kepler–Ermakov type. The linearization of this system is also exhibited.
Section V is dedicated to the conclusions.

2 Linearization of generalized Ermakov sys-

tems

An Ermakov system [4, 14] in 2–D, is a pair of coupled, nonlinear second
order differential equations,

ẍ+ ω2 x =
1

yx2
f(y/x) , (1)

ÿ + ω2 y =
1

xy2
g(x/y) , (2)
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where f and g are arbitrary functions of their indicated arguments and ω, the
so-called frequency function, may depend on time, the dynamic variables and
their derivatives [14]. In other words, ω = ω(t, x, y, ẋ, ẏ, ẍ, ÿ, . . .). Either for
physical or else for simplifying reasons, we restrict considerations to the cases
where the frequency function depends at most on the velocity components. In
this work, the nomenclature “usual Ermakov system” is used when ω = ω(t),
and “generalized Ermakov system”, or Ermakov system for short, is used
when the frequency has a more general dependence.

Independently of the way on which ω depends on the dynamic variables,
the system (1–2) always possess the Lewis–Ray–Reid invariant

I =
1

2
(xẏ − yẋ)2 + U(y/x) , (3)

where U is defined by

U(y/x) =
∫ y/x

f(λ) dλ+
∫ x/y

g(λ) dλ . (4)

The invariance of I can be directly verified by checking that dI/dt = 0 along
any trajectory of the Ermakov system.

For the specific purpose of this work, polar coordinates x = r cos θ and
y = r sin θ are more appropriate. In this system of coordinates the Ermakov
system becomes

r̈ − rθ̇2 + ω2r = F (θ)/r3 , (5)

rθ̈ + 2ṙθ̇ = −(dV/dθ)/r3 , (6)

where V (θ) = U(tan θ), F being defined in terms of f and g by

F (θ) =
f(tan θ) + g(cos θ)

sin θ cos θ
. (7)

In polar coordinates, the Lewis–Ray–Reid invariant becomes

I =
1

2
(r2θ̇)2 + V (θ) . (8)

As already pointed out before [7, 9], the concept of a generalized Ermakov
system has originated from the observation that ω may depend arbitrarily
on the dynamic variables and that, as a consequence, only two and not three
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arbitrary functions are necessary to specify the Ermakov systems. Indeed,
redefining

ω2 7→ ω2 − F (θ)/r4 (9)

is equivalent to absorbing F into ω, that is, to making F ≡ 0 in the pair of
equations (5–6). Thus, strictly speaking generalized Ermakov system con-
tains only two and not three arbitrary functions. This redefinition, however,
is not essential in the present context and the usual notation is adopted in
order to easy the comparison between our results and the results found in
the literature.

The linearization procedure for usual Ermakov systems is described in
ref. [15]. Our strategy for the linearization of generalized Ermakov systems
follows the same spirit of the procedure proposed for usual Ermakov sys-
tems. However, the assumption of a more generic dependence in ω suggests
a straightforward generalization of the technique which leads to interesting
new results. In this way, we are able to find classes of generalized Ermakov
systems, specified by appropriate dependence of ω in the dynamic variables,
that are linearizable. For this purpose we follow Athorne [15] and introduce
the new dependent variable ψ defined by

ψ = ρ(t)/r , (10)

where ρ(t) is an arbitrary, unspecified function of time. The new independent
variable will be chosen as the angle θ. In order to obtain the equation of
motion in the new variables, it is necessary to express the time variation of
θ in terms of the invariant. This is achieved by use of the Lewis–Ray–Reid
invariant (8), from which we construct

θ̇ = h(θ; I)/r2 , (11)

where a function h, parametrically dependent on the numerical value of I,
was defined by the relation

h(θ; I) =
√

2(I − V (θ))1/2 . (12)

At this point it is interesting to compare eq. (11) with the corresponding
equation for θ̇ in the two body problem. Here, the Lewis–Ray–Reid invariant
plays the role of angular momentum whereas V (θ) is a specific feature of the
non-central nature of the motion.
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Now using the Ermakov system (5–6) and equations (10,12), we easily
arrive at the transformed equation

h2(θ; I)
d2ψ

dθ2
+h(θ; I)

∂h(θ; I)

∂θ

dψ

dθ
+
(

h2(θ; I) + F (θ)
)

ψ =
ρ3(ρ̈+ ω2ρ)

ψ3
. (13)

In order to obtain a linear equation in transformed variables, the dependence
of ω in the dynamic variables must be chosen such that the right hand side
of eq. (13) becomes a linear function of ψ and dψ/dθ. This condition yields
the compatibility condition for linearization,

ρ3(ρ̈+ ω2ρ)

ψ3
= a(θ; I)

dψ

dθ
+ b(θ; I)ψ + c(θ; I) (14)

where a, b and c are arbitrary functions of the indicated arguments. A
dependence on the numerical value of the Lewis–Ray–Reid invariant I was
included for maximal generality. Notice how the extra dependence in ω allows
for a more general solution. In the case of ω = ω(t) treated by Athorne, only
ρ̈ + ω2ρ = 0 with a ≡ b ≡ c ≡ 0 was consistent with linearity. In the
present case, ρ remains arbitrary and three new functions a, b and c are
introduced, leading to more general expressions for ω which are compatible
with linearization. The resulting frequencies are given by

ω2 = − ρ̈
ρ

+

(

a(θ; I)
dψ

dθ
+ b(θ; I)ψ + c(θ; I)

)

ψ3

ρ4
. (15)

In principle, we could include higher order derivatives in the right hand side
of equation (13), without restrictions to linearity. This possibility, however,
was neglected, mainly for simplifying reasons.

Now restricting the frequency function of the form (15), we find the lin-
earized Ermakov equation

h2(θ; I)
d2ψ

dθ2
+

(

h(θ; I)
∂h

∂θ
(θ; I) − a(θ; I)

)

dψ

dθ
+

+
(

h2(θ; I) + F (θ) − b(θ; I)
)

ψ = c(θ; I) . (16)

Frequencies not of the form (15), necessarily correspond to Ermakov equa-
tions that are not linear when the transformation (r, t) → (ψ, θ) is performed.

In order to express the frequencies of the linearizable systems in terms of
the original polar coordinates, we can use

dψ/dθ = ψ̇/θ̇ = −(ρṙ − ρ̇r)/r2θ̇ , (17)
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so that

ω2 = − ρ̈
ρ

+
(ρṙ − ρ̇r)

ρr3
A(θ, r2θ̇) +

B(θ, r2θ̇)

r4
+
C(θ, r2θ̇)

ρr3
, (18)

where

A(θ, r2θ̇) = −a(θ; I)/(r2θ̇) , (19)

B(θ, r2θ̇) = b(θ; I) , (20)

C(θ, r2θ̇) = c(θ; I) (21)

are new arbitrary functions. Notice that the dependence of A, B and C in
equations (19–21) is of the correct type, since the invariant (8) depends only
on θ and r2θ̇.

The resulting linearizable generalized Ermakov system in polar coordi-
nates has the form

r̈ − rθ̇2 − ρ̈

ρ
r +

(ρṙ − ρ̇r)

ρr2
A(θ, r2θ̇) +

+
B(θ, r2θ̇)

r3
+
C(θ, r2θ̇)

ρr2
=
F (θ)

r3
, (22)

rθ̈ + 2ṙθ̇ = −dV/dθ
r3

, (23)

and involves six arbitrary functions, namely ρ, A,B, C, F and V . Other
classes of generalized Ermakov systems amenable to linearization can exist,
besides those generated by a dependence of ω on higher order derivatives. We
may convince ourselves of this by noticing that (ψ, θ) is only one particular
choice of transformed variables. Other different choices can be used, possibly
leading to other classes of linearizable generalized Ermakov systems. The
great generality of the system (22–23), however, is already sufficient for the
purposes of this paper.

Some additional remarks are in order here. First, as already pointed out,
the function F can be dropped from the system by an adequate redefinition
of ω. This is manifest in equation (22) where we see, by inspection, that
B can account for F . The second and perhaps more interesting remark is
that the linearizable generalized Ermakov system (22–23) can be expressed
in autonomous form, by means of a quasi–invariance [15, 22] transformation

r̄ = r/ρ , θ̄ = θ , t̄ =
∫ t

dλ/ρ2(λ) . (24)
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In these variables, we have the autonomous representation

r̄′′ − r̄θ̄′2 +
1

r̄2
(Ar̄′ +B/r̄ + C) =

F (θ̄)

r̄3
, (25)

r̄θ̄′′ + 2r̄′θ̄′ = −dV (θ̄)/dθ̄

r̄3
, (26)

where the prime stands for derivative with respect to t̄ and A, B and C
are functions of r̄2θ̄′ and θ̄. The time dependence in (22–23), is thus, in
a sense, spurious. Consequently, there remains, in fact, only four funda-
mental arbitrary functions in the linearizable generalized Ermakov system
(22–23), that is, F may be incorporated in C and ρ may be eliminated by
the quasi–invariance transformation. It must be stressed, however, that the
quasi–invariance transformation is not an essential step in the linearization
procedure.

We may now recover the solution for the nonlinear dynamics from the
solution for the linearized Ermakov system. Let

ψ = ψ(θ; I, c1, c2) = c1ψ1(θ) + c2ψ2(θ) + ψp(θ) (27)

be the general solution for the linearized equation (16), where c1 and c2 are
arbitrary constants, ψ1 and ψ2 are two linearly independent solutions for
the homogeneous part of (16), and ψp is any particular solution for (16).
The solution for the nonlinear system follows from the definition (10) of the
linearizing variable ψ and relation (11), from which we find

θ̇ = h(θ; I)ψ2(θ; I, c1, c2)/ρ
2(t) . (28)

This is a separable first order, ordinary differential equation, equivalent to
the quadrature

∫ θ dλ

h(λ; I)ψ2(λ; I, c1, c2)
−
∫ t dλ

ρ2(λ)
= J , (29)

where J is the fourth integration constant of the equations of motion. The
quadrature (29) locally yields the equivalent relation,

θ = θ(t; I, J, c1, c2) , (30)

which is the general solution for the angular variable, involving four arbitrary
integration constants, or implicitly

t = t(θ; I, J, c1, c2) . (31)
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To obtain the orbits, we use the definition of ψ, the solution (27) for the
linearized system and the relation (31),

r = r(θ; I, J, c1, c2) =
ρ (t(θ; I, J, c1, c2))

ψ(θ; I, c1, c2)
. (32)

The time evolution of the radial variable follows from the definition of ψ,
the solution for the linearized Ermakov system and the relation (30), from
which we obtain

r = r(t; I, J, c1, c2) =
ρ(t)

ψ̃(t; I, J, c1, c2)
, (33)

where ψ̃(t; I, c1, c2) = ψ (θ(t; I, c1, c2); I, c1, c2). While equation (32) repre-
sents the orbits for the nonlinear generalized Ermakov system, equations
(30) and (33) give the time evolution of the dynamic variables, in terms of
the general solution for the linearized system.

A particular case in the class of generalized linearizable Ermakov systems
(22–23), are the usual Ermakov systems, with frequency depending only on
time, ω ≡ ω(t). Let A ≡ B ≡ C ≡ 0 in the definition (18) of generalized
frequencies, which implies

ρ̈+ ω2(t)ρ = 0 . (34)

Equation (34) is the equation for a harmonic oscillator [2, 3] with time–
dependent frequency. In this particular case of usual Ermakov system, the
linearization (16) reduces to the form

h2(θ; I)
d2ψ

dθ2
+ h(θ; I)

∂h(θ; I)

∂θ

dψ

dθ
+
(

h2(θ; I) + F (θ)
)

ψ = 0 , (35)

which is a homogeneous linear equation. This result is in full agreement with
that of Athorne [15], although in a slightly different form, due to our par-
ticular choice of linearizing variables. Illustrative examples of linearization
of usual Ermakov systems can be found in [15], [17]–[20]. In the following
section, a non-trivial generalized Ermakov system that was not, until now,
treated as a member of the class of Ermakov systems is examined and its
linearization explicitly calculated.
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3 Kepler–Ermakov systems

Kepler–Ermakov systems [20] are given by

r̈ − rθ̇2 = F (θ)/r3 −G(θ)/r2 , (36)

rθ̈ + 2ṙθ̇ = −(dV (θ)/dθ)/r3 , (37)

with F , G and V are arbitrary functions of the indicated arguments. Kepler–
Ermakov systems were introduced as a linearizable perturbation of usual Er-
makov systems. The term G in equation (36) destroys the usual Ermakov
character of the system. However, the system (36–37) belongs to the class
of linearizable generalized Ermakov systems derived in section II and con-
sequently, qualifies as a generalized Ermakov system that is linearized by
the procedure outlined above. This result sheds new light on the cause why
Kepler–Ermakov systems are linearizable. In fact, choose

A = B = 0 , C = G(θ) , ρ = 1 (38)

in the definition of linearizable generalized Ermakov system (22–23). This
choice puts the system in the form of a Kepler–Ermakov system and the
corresponding linearization is given by

h2(θ; I)
d2ψ

dθ2
+ h(θ; I)

∂h(θ; I)

∂θ

dψ

dθ
+
(

h2(θ; I) + F (θ)
)

ψ = G(θ) , (39)

which, unlike the linearization of usual Ermakov systems, is a non-homogeneous
linear equation. The non-usual character of the frequency function associated
to Kepler–Ermakov systems is manifest in the equation

ω2 = G(θ)/r3 , (40)

which, evidently, shows a dependence on the dynamic variables.
A typical example of linearization of a Kepler–Ermakov system can be

found in reference [20]. Other relevant systems that can be cast in the Kepler–
Ermakov form are some of the superintegrable systems treated by Winternitz
et al. [23] and by Rañada [24]. To inspect one of these systems as a Kepler–
Ermakov system and to show how the linearization process works in a specific
case, let us consider the Hamiltonian

H =
1

2

(

p2

r +
p2

θ

r2

)

− µ0

r
+

1

r2

(

g1 + g2 cos θ

sin2 θ
+ g3

)

, (41)
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where µ0, g1, g2 and g3 are positive constants. When g3 ≡ 0, the correspond-
ing Hamilton–Jacobi equation is separable in parabolic and polar coordinates,
a fact that results from the underlying dynamic symmetry algebra [23]. For
g3 6= 0, however, the system is still completely integrable, as shown in [7].
Straightforward computation of the canonical equations

ṙ = ∂H/∂pr , θ̇ = ∂H/∂pθ , ṗr = −∂H/∂r , ṗθ = −∂H/∂pθ (42)

shows that the Hamiltonian (41) yield a Kepler–Ermakov system, with

V (θ) = (g1 + g2 cos θ)/ sin2 θ , (43)

F (θ) = 2(V (θ) + g3) , (44)

G(θ) = µ0 (45)

in the equations of motion (36–37). The corresponding linear equation (39)
is easier to treat in terms of a new time parameter T (θ; I) defined by

T (θ; I, J) =
∫ θ dλ

h(λ; I)
+ J . (46)

where J is an arbitrary constant. Interestingly, this new time parameter de-
pends parametrically on the numerical value of the Lewis–Ray–Reid invariant
I. In terms of the new independent variable, the linearization becomes

d2ψ

dT 2
+ (I + g3)ψ = µ0 , (47)

the equation for a harmonic oscillator with a time–independent driving,
which is always exactly solvable. The explicit form of the solution will de-
pend on the parameters I and g3. To construct a particular case, take I > 0
and g3 > 0. This choice together with (47) yields,

ψ = ψ(T ; c1, c2) = c1 cos(I + g3)
1/2T + c2 sin(I + g3)

1/2T , (48)

where c1 and c2 are arbitrary constants. To express ψ in terms of the angle
θ, we use formula (46) which, for I > 0, furnishes

T (θ; I, J) = − 1√
2I

sin−1

(

2I cos θ + g2

(g2
2 + 4I(I − g1))1/2

)

+ J . (49)
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After substituting this result in (48), we find ψ = ψ(θ; I, J, c1, c2). The orbits
are then given by

r = r(θ; I, J, c1, c2) = 1/ψ(θ; I, c1, c2) , (50)

which is obtained from the definition of the linearizing variable ψ and the
fact that ρ ≡ 1 in the case of Kepler–Ermakov systems. The actual form
of the orbit is intricate and will be omitted here. In spite of the orbits
being analytically given in the present example, the time evolution of the
dynamic variables cannot be given analytically because the quadrature (29)
is not expressed in terms of elementary functions. Similar reasoning apply
for other values of the parameters I and g3.

4 Linearization and reduction to free motion

In this section, we reverse the arguments and search for classes of Ermakov
systems whose linearized form is simply a free motion. Among those, we
find examples of linearizable Ermakov systems that are not of the Kepler–
Ermakov type. In addition we find that a whole class of Ermakov systems,
still depending on two arbitrary functions, are reducible, by the linearization
process, to simple free motion. Let

a ≡ h ∂h/∂θ , b ≡ h2 + F , c ≡ 0 (51)

in the linear equation (16), yielding free particle motion,

d2ψ/dθ2 = 0 . (52)

In this case the general solution is

ψ = c1 + c2θ , (53)

where c1 and c2 are arbitrary constants. In this case the quadrature (29) has
the form

∫ θ dλ

h(λ; I)(c1 + c2λ)2
−
∫ t dλ

ρ2(λ)
= J . (54)

For any given function h(θ; I), we locally find, from equation (54), that either
t = t(θ; I, J, c1, c2) or θ = θ(t; I, J, c1, c2). The corresponding orbits are given
by

r = r(θ; I, J, c1, c2) =
ρ (t(θ; I, J, c1, c2))

c1 + c2θ
; (55)
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whereas the time evolution of the radial variable follows from

r = r(t; I, J, c1, c2) =
ρ(t)

c1 + c2θ(t; I, J, c1, c2)
. (56)

This completes, in the quadrature sense, the integration of the equations of
motion.

Performing the steps in reversed order, we find, from (19–21) and (51),
the dynamical system in the original variables

A = (dV/dθ)/(r2θ̇) , B = (r2θ̇)2 + F (θ) , C = 0 . (57)

This yields the frequency function

ω2 = − ρ̈
ρ

+
(ρṙ − ρ̇r)dV/dθ

ρr5θ̇
+

(r2θ̇)2 + F

r4
(58)

and the corresponding linearizable generalized Ermakov system

ρr̈ − ρ̈r +
(ρṙ − ρ̇r)

r4θ̇

dV (θ)

dθ
= 0 , (59)

rθ̈ + 2ṙθ̇ = −dV (θ)/dθ

r3
. (60)

As a final step, we can express the dynamical equations in cartesian form
(1–2), with

ω2 = − ρ̈
ρ

+

(

xẏ − yẋ

x2 + y2

)2

+

(

(ρẋ− ρ̇x)x+ (ρẏ − ρ̇y)y

ρx2y2(xẏ − yẋ)

)

f(y/x) , (61)

g(x/y) = −f(y/x). (62)

These systems which are of the generalized Ermakov type certainly have
remarkable properties: despite having two arbitrary functions, ρ and f , their
solution can be reduced to the equation of a free particle plus the quadrature
(54).

5 Conclusion

In this paper, an extensive class of generalized Ermakov systems, character-
ized by several arbitrary functions was shown to possess equivalent linear
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form. The linearization process depends basically on the existence of the
Lewis–Ray-Reid invariant, a fact that is always assured for Ermakov sys-
tems, both in its usual or generalized form. As a particular result of the
theory, it was shown that the linearization of Kepler–Ermakov systems is
nothing but a special case of the more general linearization of some classes
of generalized Ermakov systems. While usual Ermakov systems are always
linearizable, the same does not apply to generalized Ermakov systems. In the
present work, use was made of the linearization variables (ψ, θ), the choice
that originates the system (22–23). Different choices of linearizing variables
could eventually lead to other classes of linearizable generalized Ermakov
systems. As a final comments we remind that linearization could be a use-
ful criteria to qualify or classify Ermakov systems. For instance, using the
linearization, Athorne has classified usual Ermakov systems with respect to
the rational character of their solutions [18, 19]. The same strategy can be
applied to linearizable generalized Ermakov systems. This could be adopted
as an alternative to the symmetry criteria proposed by Leach [10] . At least
the class of linearizable Ermakov systems seems more extensive - four arbi-
trary functions - than the class of generalized Ermakov system with Lie point
symmetry which is specified in terms of only two arbitrary functions.
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[6] J. M. Cerveró and J. D. Lejarreta, Phys. Lett. A 156 (1991) 201.

[7] F. Haas and J. Goedert, J. Phys. A: Math. Gen. 29 (1996) 4083.

[8] J. Goedert, Phys. Lett. A 136 (1989) 391.

[9] J. Goedert and F. Haas, Phys. Lett. A 239 (1998) 348.

14



[10] P. G. L. Leach, Phys. Lett. A 158 (1991) 102.

[11] R. S. Kaushal, D. Parashar, S. Gupta and S. C. Mishra, Ann. Phys. 259

(1997) 233.

[12] C. Rogers and W. K. Schief, J. Math. Ann. Appl. 198 (1996) 194.

[13] W. K. Schief, C. Rogers and A. P. Bassom, J. Phys. A: Math. Gen. 29

(1996) 903.

[14] J. L.Reid and J. R. Ray, J. Math. Phys. 21 (1980) 1583.

[15] C. Athorne, C. Rogers, U. Ramgulam and A. Osbaldestin, Phys. Lett.

A 143 (1990) 207.

[16] H. Goldstein, Classical mechanics. Reading: Addison–Wesley, 1980.

[17] C. Athorne, J. Differential Equations 100 (1992) 82.

[18] C. Athorne, Phys. Lett. A 151 (1990) 407.

[19] C. Athorne, J. Phys. A: Math. Gen. 24 (1991) 945.

[20] C. Athorne, J. Phys. A: Math. Gen. 24 (1991) L1385.

[21] K. Saermark, Phys. lett. A 90 (1982) 5.

[22] A. Munier, J. R. Burgan, M. R. Feix and E. Fijalkow, J. Math. Phys.

22 (1981) 1219.

[23] P. Winternitz, Y. A. Smorodinskii, M. Uhlir and I. Fris, Sov. J. Nucl.

Phys. 4 (1967) 444.
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