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Abstract

This work considers the Schrödinger-Maxwell system which is frequently
used to describe the one-dimensional expansion of a quantum electron gas. The
Lie symmetry group of the system is determined. A variational formulation for
the dynamical equations is also proposed and Noether’s theorem is applied to
generate the conservation laws associated with the symmetries that preserve
the action functional.

1 Introduction

Charged particle expansion into vacuum is a basic phenomenon that has attracted
attention since the early days of plasma theory. Plasma expansion occurs in sev-
eral different natural and laboratory situations, notably in astrophysics, in fusion
research and in the polar wind. On the theoretical ground, analytical, numerical and
experimental efforts have been exercised constantly. Expanding plasma have been
described in a classical framework, both by kinetic and hydrodynamic theories. The
nonlinear character of the process is manifest in a variety of ways, such as shock
waves, wave-breaking and anomalous dissipative effects. One of the main features
of these phenomena is the self-similar behavior of the assymptotic motion. For an
extended review of the subject we refer to Ch. Sack and H. Schamel [1].

This work considers the expansion into vacuum of a quantum electron gas, for
which some results are already available. Although the Schrödinger-Maxwell or the
Wigner-Maxwell systems have long been used in their stationary versions to describe
semiconductor devices [2], time-dependent studies are much scarcer. Mola et all. [3]
have used the Schrödinger-Poisson system to model the one-dimensional expansion
of a quantum electron gas, and concluded that the classical regime acts as a univer-
sal attractor. Their analysis relied basically in rescaling thecniques and computer
simulation.

A natural generalization of the rescaling methods is the Lie theory of extended
groups, a powerful tool to search exact solutions for nonlinear problems [4]. In the
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classical context, Lie groups have been used to generate exact, time-dependent solu-
tions for the Vlasov-Maxwell and the Vlasov-Poisson equations [6]–[8]. These solu-
tions are much more general in structure than the uniformly translated BGK equi-
librium solutions [9]. The purpose of this work is to investigate, by means of the Lie
theory of extended groups, the quantum analogue of the classical Vlasov-Maxwell
system, namely the Schrödinger-Maxwell system.

In section two, the Schrödinger-Maxwell system for the one-dimensional expansion
of an electron gas is presented. The Lie symmetries of the problem are determined.
In section three, these symmetries and the existence of a variational principle for the
dynamical equations are used to find conservation laws via Noether’s theorem. In
the conclusions, a brief discussion of the results and a list of open questions on the
subject are presented.

2 Symmetries of the one-dimensional Schrödinger-

Maxwell system

The Schrödinger-Maxwell equations for the one-dimensional expansion of an electron
gas are given by

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
− eV ψ , (1)

∂2V

∂x2
=

Ne

ε0
|ψ|2 , (2)

∂2V
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= − iNeh̄

2mε0

(
ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x

)
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In what follows we will set the Planck’s constant h̄, the electron mass m , the density
of particles per unit length N and the dielectric constant in vacuum ε0 all equal to
one by a convenient choice of rescaling.

Some general remarks are in order now. The Schrödinger-Maxwell model is a
quite näıve approximation to the real problem, since it uses a one-particle wave
function to describe a many-particle system. This is, however, analogous to the
Vlasov approximation in classical plasma theory, where a one-particle distribution
function represents the whole system. Spin and relativistic effects are also neglected.
Nevertheless, the model can be used as an interesting starting point for more serious
treatment. Another remark is that equation (3), a consequence of Ampère’s Law, is
usually not included in the system. This is a mistake that has already been pointed
out in the classical case [5, 10].

In the search of Lie point symmetries we adopt the viewpoint of Bluman and Cole
[4]. First he symmetries of the Schrödinger-Poisson system (1)–(2) are uncovered
and then restricted by the additional imposition that they be also symmetries of the
complete system (1)–(3). The algebraic procedure, though somewhat lengthy, is well
known and we merely state the results here. For the Schrödinger-Poisson system the
point symmetries are
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t̄ = t+ ϵ(c1t+ c2) , (4)

x̄ = x+ ϵ(c1x/2 + a1(t)) , (5)

ψ̄ = ψ + iϵ (ic1 + ȧ1x+ a(t))ψ , (6)

V̄ = V + ϵ(−c1V + ä1x+ ȧ) , (7)

where ϵ is an infinitesimal parameter characterizing the transformation, c1 and c2
are real numerical constants and a1(t) and a(t) are real arbitrary functions. For the
Schrödinger-Maxwell system the symmetries are given by

t̄ = t+ ϵ(c1t+ c2) , (8)

x̄ = x+ ϵ(c1x/2 + c3t
2 + c4t+ c5) , (9)

ψ̄ = ψ + iϵ (ic1 + (2c3t+ c4)x+ a(t))ψ , (10)

V̄ = V + ϵ(−c1V + 2c3x+ ȧ) , (11)

where all the numerical constants ci and the arbitrary function a(t) are real. As one
can see, the symmetry transformations are specified by five numeric parameters and
one arbitrary function. The parameter c1 corresponds to scale transformations, c2 to
time translation, c3 to a more subtle symmetry, c4 to Galilean boosts, c5 to space
translation and a(t) to local changes in the phase of the wave function.

3 Noether’s theorem

A nice feature concerning the Schrödinger-Poisson system (1)–(2) is the existence of
a variational principle, for the fields ψ and V with a Lagrangian density given by

L =
i

2

(
ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t

)
+

1

2

∂ψ

∂x

∂ψ∗

∂x
− 1

2

(
∂V

∂x

)2

− V |ψ|2 . (12)

This Lagrangian density can be easily derived from the quantum electrodynamics
(QED) action (see for instance [11]), but to our knowledge it has not been used in
the present context.

In the Lagrangian formalism, Noether’s theorem states a definite relationship
between point symmetries that preserves the action functional and conservation laws
in the form

∂ρ/∂t+ ∂J/∂x = 0 . (13)

The charge ρ and current J are obtained directly from the Lagrangian density and the
transformation group [12]. We refrain from listing their explicit form here for obvious
reasons of space limitation but their existence is important for example in applications
like checking numerically obtained solutions. This problem will be considered in the
work in progress.

The only symmetry of the Schrödinger-Poisson system that do not preserve the
action is the rescaling transformation (specified in equations (4)–(7) by the parameter
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c1). Here we stress that energy, probability and charge conservation are obtained via
Noether’s theorem using respectively the symmetries of time translation, change of
wave function phase and the transformation specified by a1(t) in (4)–(7). Note also
that these conservation laws do not use the more restricted Schrödinger-Maxwell
symmetry group (8)–(11).

This work can be further developed in several directions. The determination
of exact similarity solutions, for instance, is an interesting topic. We have found
similarity solutions that are much more general than the well known self-similar
solution. On a different direction, spin effects certainly are relevant for some ranges
of temperature and density. Although the exact account of these effects can lead to
formidable obstacles in the analytical or numerical grounds, phenomenological models
(such as Fokker- Planck type models) can be valuable to include spin corrections.
Another desirable improvement on the present methods concerns the extension of
the theory to treat more dimensions and to include other plasma components.

This work has been partially supported by the Brazilian agencies Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq) and Financiadora de
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