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Abstract

We find the Lie point symmetries for non–relativistic two-dimensio-

nal charged particle motion. These symmetries comprise a quasi–inva-

riance transformation, a time–dependent rotation, a time–dependent

spatial translation and a dilatation. The associated electromagnetic

fields satisfy a system of first–order linear partial differential equations.

This system is solved exactly, yielding four classes of electromagnetic

fields compatible with Lie point symmetries.

1 Introduction

Lorentz equations for non–relativistic charged particle motion constitute a
very basic dynamical system whose symmetry structure deserves a detailed
investigation. In a previous paper [1], we have studied the Noether point sym-
metries for two–dimensional non–relativistic charged particle motion. Here
we make a systematic search of the Lie point symmetries associated with two–
dimensional non–relativistic charged particle motion under general electro-
magnetic fields. The reasons for this are two–fold. First, as is well known
[2], the Lie point symmetry group is more general and contains the Noether
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point symmetry group of any given problem. In fact, the Lie point symme-
tries extends the class of Noether point symmetries of planar non–relativistic
charged particle motion by the incorporation of an extra scale symmetry.
Second, even if the Lie point symmetry approach does not give first integrals
as directly as Noether’s theorem, it does opens the possibility for reducing
the number of relevant variables in the system. Reduction of variables is
of importance in reducing the amount of computational time in numerical
simulations. For example, in the numerical treatment of the Vlasov–Maxwell
system in colisionless plasma physics [3, 4], it is highly desirable to know the
most general electromagnetic field configurations having Lie point symmetry.

Herein, we consider planar non–relativistic charged particle motion under
initially general electromagnetic field. The corresponding Lorentz equations
read

ẍ = E1(x, y, t) + ẏ B(x, y, t) , (1)

ÿ = E2(x, y, t) − ẋ B(x, y, t) , (2)

where E = (E1(x, y, t), E2(x, y, t), 0) is the planar electric field and B =
(0, 0, B(x, y, t)) is the perpendicular magnetic field. Unlike the usual ap-
proach to Lie symmetries for charged particle motion [5], we do not start
with a prescribed electromagnetic field. Rather, we find the conditions on E

and B so that the system (1–2) do admit a Lie point symmetry. With this
strategy in mind we do not stick to any particular electromagnetic field but
search for the most general form that may present the symmetry. Once the
general forms are known they can eventually be specified in more detail to fit
some particular application. In fact, electromagnetic fields written in terms
of arbitrary functions are of fundamental importance for treating the Vlasov–
Maxwell system in colisionless plasma physics [3, 4]. Therefore, we do not
consider, in the continuation, any choice implying a too much particular field
configuration, like that homogeneous in space. This strategy excludes some
of the Lie point symmetries. Nevertheless, the approach gives the most gen-
eral electromagnetic fields containing a number of arbitrary functions, that
can be fixed later to fit particular applications like those of plasma physics.

As in the Noether point symmetry case [1], the Lie point symmetry ap-
proach also produces a system of linear, first order partial differential equa-
tions to be satisfied by the electromagnetic fields. We solve this system using
a strategy similar to that used in reference [1]. That is, we find the canonical
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group coordinates for the various Lie symmetries and express the resulting
system of partial differential equations in these coordinates. As a conse-
quence, the system is transformed in a set of ordinary differential equations
that can be solved easily. Our procedure shows how the problem of find-
ing classes of electromagnetic fields compatible with Lie point symmetries is
equivalent to the problem of finding canonical group variables for these same
symmetries.

The paper is organized as follows. In section 2, we obtain the most gen-
eral form of the Lie point symmetries associated with planar, non–relativistic
charged particle motion. In the same section, we obtain the system of equa-
tions satisfied by the corresponding electromagnetic field. Section 3 is ded-
icated to the calculation of the canonical group variables for the Lie point
symmetries. We find four classes of canonical coordinates. In section 4, the
basic system of partial differential equations satisfied by the electromagnetic
field is solved for each of the four classes of canonical group variables. Section
5 is devoted to the conclusions.

2 Lie point symmetries

Let us consider infinitesimal point transformations,

x̄ = x+ εη1(x, y, t) , (3)

ȳ = y + εη2(x, y, t) , (4)

t̄ = t+ ετ(x, y, t) , (5)

where ε is an infinitesimal parameter. For future convenience we denote the
generator of the group of symmetries associated to (4–6) by

G = τ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
. (6)

The generator G appears frequently in what follows and is useful in the
definition of canonical group coordinates, which plays a central role in the
systematic determination of the electromagnetic fields associated the sym-
metries.

The condition for Lie symmetry [6, 7] reads, in this case

G[2] (N)
N=0 = 0 , (7)
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where N = (N1, N2),

N1 = ẍ− E1(x, y, t) − ẏ B(x, y, t) , (8)

N2 = ÿ − E2(x, y, t) + ẋ B(x, y, t) , (9)

G[2] being the generator of the twice extend group (for its complete expression
see, for instance, references [6, 7]). The calculation of Lie point symmetries
is a fairly known procedure and we only outline its main steps here. By
inserting the equations of motion into the Lie symmetry criteria (7) we obtain
a polynomial equation in the velocity components. For this polynomial form,
condition (7) implies that the coefficients of all monomials of the form ẋmẏn

must be identically zero. This yields a system of partial differential equations
to be satisfied by τ, η1 and η2. For instance, the terms cubic in velocity give
a system with general solution

τ = ρ2(t) + g1(t) x+ g2(t) y , (10)

where g1,. . .,g6 are arbitrary functions of the indicated arguments. Equation
(10) wil be taken into account in the continuation.

The terms quadratic in the velocity yield

η1xx − 2ġ1 + g2B = 0 , η1xy − ġ2 − g1B = 0 , (11)

η1yy − g2B = 0 , η2xx + g1B = 0 , (12)

η2xy − ġ1 + g2B = 0 , η2yy − 2ġ2 − g1B = 0 , (13)

where we have used subscripts to denote partial derivatives. Direct inspection
shows that the choice

g1 = g2 = 0 (14)

keeps B arbitrary and implies that η1 and η2 are linear functions of position,

η1 = g3(t) x+ g4(t) y + a1(t) , (15)

η2 = g5(t) x+ g6(t) y + a2(t) , (16)

where g3, g4, g5, g6, a1 and a2 are functions of time only. It is now worth
to stress that the choice (14) implies no restriction on the magnetic field,
which remains completely arbitrary. Moreover, a detailed calculation involv-
ing equations (11–13) shows that the only way of keeping spatial dependence
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in the magnetic field is to set g1 = g2 = 0. In fact, we are interested in
classes of magnetic fields more general than simply those homogeneous in
space. Hence, we adopt (14), with the corresponding solution (15–16) for η1

and η2. The important point here is that, up to this stage, we have preserved
the complete arbitrariness of the magnetic field.

The terms linear in velocity yield

(g4 + g5)B = −2(ρρ̈+ ρ̇2) + 2ġ3 , (17)

(g4 + g5)B = 2(ρρ̈+ ρ̇2) − 2ġ6 , (18)

GB = (g3 − g6 − 2ρρ̇)B + 2ġ4 , (19)

GB = (g6 − g3 − 2ρρ̇)B − 2ġ5 , (20)

where G is the generator defined in (6).
An examination of equations (17–18) shows that the only way of preserv-

ing space dependence in the magnetic field is to set

g4 = −g5 = −Ω(t) , (21)

where Ω is a function of time only. Moreover, this implies, from (17–18),

g3 = ρρ̇+ k1 , g6 = ρρ̇+ k2 , (22)

with, k1 and k2 numerical constants. Equation (22) and compatibility be-
tween equations (19–20) give

(k1 − k2)B = 0 . (23)

For B not identically zero, the conclusion is

k1 = k2 = k , (24)

where k is a numerical constant. Equations (19–20) now furnishes

GB = −2ρρ̇ B − 2Ω̇ , (25)

where the generator of Lie symmetries may be split into four components

G = GQ +GR +GT +GS . (26)
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In equation (26),

GQ = ρ2(t)
∂

∂t
+ ρρ̇ (x

∂

∂x
+ y

∂

∂y
) , (27)

is the generator of quasi–invariance transformations [8],

GR = Ω(t) (x
∂

∂y
− y

∂

∂x
) (28)

generates time–dependent rotations,

GT = a1(t)
∂

∂x
+ a2(t)

∂

∂y
(29)

generates time–dependent spatial translations and

GS = k

(

x
∂

∂ x
+ y

∂

∂ y

)

(30)

is the generator of dilatations (or, more precisely, of contractions if k <
0). Comparison with the generator of Noether point symmetries for two–
dimensional non–relativistic charged–particle motion [1] shows that the Lie
point symmetry generator has an additional term, depending on the param-
eter k. We also observe that this form is essentially new, and cannot be
expressed in terms of the generators GQ, GR and GT .

The terms independent of velocity in the Lie invariance condition have
also to be taken into account. They produce the equations for the electric
field,

GE1 = (−3ρρ̇ + k)E1 − ΩE2 −
(

(ρρ̈+ ρ̇2)y + Ω̇x+ ȧ2

)

B +

+ (ρ
···

ρ + 3ρ̇ρ̈) x− Ω̈ y + ä1 , (31)

GE2 = (−3ρρ̇ + k)E2 + ΩE1 +
(

(ρρ̈+ ρ̇2)x− Ω̇ y + ȧ1

)

B +

+ (ρ
···

ρ + 3ρ̇ρ̈) y + Ω̈x+ ä2 . (32)

Let us summarize the results obtained so far. Implicitly, in our treat-
ment, we excluded the excessively restricted class of spatially homogeneous
magnetic fields depending on time only. This approach yields the system
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equations (25), (31–32), which must be satisfied by the electromagnetic fields
associated to Lie point symmetries of the planar charged particle motion. The
Lie symmetry generator in equations (25), (31–32), which constitute a sys-
tem of linear, first order, coupled partial differential equations for E1, E2 and
B, is given by (26). In comparison with the treatment of two–dimensional
non–relativistic charged particle motion with Noether point symmetries, we
find that Lie point symmetries have an extra component associated to scale
transformation. This extra contribution modifies both the generator of sym-
metries and the equations satisfied by the electromagnetic fields [1].

In the remaining of this paper, we are essentially concerned with finding
all the solutions of the system of partial differential equations (25), (31–32).
These solutions yield the most general electromagnetic field under which the
planar motion of charged particles present Lie point symmetry. An useful
remark is that B satisfies an equation decoupled from the equations for E1

and E2, whereas the equations for the electric field do depend on B. Thus, we
must first solve (25) for B and only afterwards treat (31–32) for the electric
field.

Finally, if these solutions should constitute true electromagnetic fields,
the additional requirement of Faraday’s law

E2x −E1y +Bt = 0 , (33)

must be imposed, to comply with Maxwell’s equations.
To treat the system (25), (31–32) and to find its complete solution, we

shall use canonical group coordinates. These variables are introduced in the
section that follows.

3 Canonical group coordinates

Canonical group coordinates [6, 7] are defined by imposing that the sym-
metry transformation behaves merely like time translation. Denoting new
coordinates by (x̄, ȳ, t̄), this means that, in canonical group coordinates,

G =
∂

∂t̄
, (34)

where t̄ is the new time parameter. This implies that canonical group coor-
dinates satisfy the equations

G x̄ = 0 , G ȳ = 0 , G t̄ = 1 . (35)
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This set of uncoupled linear partial differential equations, can be solved, for
the generator (26), in closed form by the method of characteristics. We find
four classes of solutions, listed below.

3.1 The case ρ 6= 0

When ρ 6= 0, it is convenient to write

a1 = ρ2α̇1 − (ρρ̇+ k)α1 , (36)

a2 = ρ2α̇2 − (ρρ̇+ k)α2 (37)

for suitable functions α1(t) and α2(t), which are therefore defined in terms
of a1 and a2.

In terms of (36–37), we have the following canonical group coordinates,

t̄ =
∫ t

dµ/ρ2(µ) , (38)

x̄ =
e−kt̄

ρ
((x− α1) cos T + (y − α2) sin T ) + δ1 , (39)

ȳ =
e−kt̄

ρ
(−(x− α1) sin T + (y − α2) cos T ) + δ2 , (40)

where new functions T = T (t), δ1 = δ1(t) and δ2 = δ2(t) were defined
according to

T (t) =
∫ t

dµΩ(µ)/ρ2(µ) , (41)

δ1(t) = −

∫ t

dµ
Ω(µ)

ρ3(µ)
e−kt̄(λ) (α1(µ) sin T (µ) − α2(µ) cos T (µ)) , (42)

δ2(t) = −

∫ t

dµ
Ω(µ)

ρ3(µ)
e−kt̄(λ) (α1(µ) cos T (µ) + α2(µ) sin T (µ)) . (43)

Notice that the requirement ρ 6= 0 is essential, for otherwise the canonical
group variables (38–40) would not be well defined.

For k = Ω = α1 = α2 = 0, the transformation (38–40) is known as
the quasi-invariance transformation [8]. In the general case, however, the
transformations includes also dilatation, time–dependent rotation and time
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dependent translation. In comparison with the Noether point symmetry ap-
proach, the present set of canonical group variables are in direct correspon-
dence with case 3.1 of reference [1]. In fact, when k = 0, formulae (38–40)
become formulae (42–44) of [1].

3.2 The case ρ = k = 0 and Ω 6= 0

In this case, we have Noether point symmetry [1]. The canonical group
variables are

t̄ =
1

Ω
tan−1

(

y − β2

x− β1

)

, (44)

x̄ =
(

(x− β1)
2 + (y − β2)

2
)1/2

, (45)

ȳ = t , (46)

with
β1 = β1(t) = −a2/Ω , β2 = β2(t) = a1/Ω . (47)

The variables x̄ and t̄ are translated polar coordinates, the new time pa-
rameter playing the role of an azimuthal angle and x̄ the role of a radial
coordinate.

3.3 The case ρ = k = Ω = 0 and a2 6= 0

Again, we have Noether point symmetry with canonical group variables

t̄ = y/a2 , (48)

x̄ = x− a1y/a2 , (49)

ȳ = t . (50)

We finally mention that the case ρ = 0, Ω = 0 and a1 6= 0 is strictly analogous
to this last case and deserves no special consideration.

3.4 The case ρ = 0, k 6= 0.

In this case the canonical coordinates are

t̄ =
1

2k
log

(

(x− γ1)
2 + (y − γ2)

2
)

, (51)
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x̄ = arctan

(

y − γ2

x− γ1

)

− Ωt̄ , (52)

ȳ = t , (53)

where

γ1 = −
k a1 + Ω a2

k2 + Ω2
, γ2 =

Ω a1 − k a2

k2 + Ω2
. (54)

The symmetry transformation represents a dilatation, plus a time–depen-
dent rotation and a time–dependent translation.

4 Electromagnetic fields

We now tackle equations (25), (31–32) for the electromagnetic fields in each
of the four possible symmetry transformations expressed in canonical group
variables.

4.1 The case ρ 6= 0

Equation (25), which involves only the magnetic field acquires, in canonical
group coordinates, the form

Bt̄ = −
2ρ′

ρ
B −

2Ω′

ρ2
, (55)

where prime denotes total differentiation with respect to t̄. The general
solution for (55) is

B = −
2Ω

ρ2
+

1

ρ2
B̄(x̄, ȳ) , (56)

where B̄(x̄, ȳ) is an arbitrary function of the indicated arguments. Notice
that the resulting magnetic field is not necessarily homogeneous, since it can
depend on the spatial coordinates through x̄ and ȳ. This is a significant im-
provement on earlier results [9]. Formally, B is identical to the magnetic field
of case 4.1 in reference [1] on Noether point symmetries. Notice, however,
the different form of canonical group variables.

To find the corresponding electric field, we must solve the system (31–32),
taking the solution (56) into account. In this case, it is useful to introduce
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the quantities Σ1 and Σ2 defined by

Σ1 = ρ3e−kt̄(E1 cos T + E2 sin T ) , (57)

Σ2 = ρ3e−kt̄(−E1 sin T + E2 cos T ) , (58)

representing a rotation plus a rescaling of the electric field which, in this
case, can be viewed as of a circularly polarized wave with time-dependent
amplitude. In the new variables, the system (31–32) decouples and can be
cast into the form

∂Σ1

∂t̄
=
∂ψ1

∂t̄
,

∂Σ2

∂t̄
=
∂ψ2

∂t̄
, (59)

where

ψ1 =

(

−
ρ′

ρ
(ȳ − δ2) + δ′2 + kδ2 − Ω(x̄− δ1) +

e−kt̄

ρ
(α′

1 sin T − α′

2 cos T )

)

B̄(x̄, ȳ) +

+

(

ρ′′

ρ
− 2

ρ′2

ρ2
+ Ω2

)

(x̄− δ1) −

(

Ω′ − 2
ρ′

ρ
Ω

)

(ȳ − δ2) +

+
e−kt̄

ρ

(

Ω′α1 − Ω(α′

1 +
ρ′

ρ
α1) + α′′

2 − 2
ρ′

ρ
α′

2 + Ω2α2

)

sin T + (60)

+
e−kt̄

ρ

(

−Ω′α2 + Ω(α′

2 +
ρ′

ρ
α2) + α′′

1 − 2
ρ′

ρ
α′

1 + Ω2α1

)

cos T

− k (δ′1 + kδ1) ,

ψ2 =

(

+
ρ′

ρ
(x̄− δ1) − δ′1 − kδ1 − Ω(ȳ − δ2) +

e−kt̄

ρ
(α′

1 cos T + α′

2 sin T )

)

B̄(x̄, ȳ) +

+

(

ρ′′

ρ
− 2

ρ′2

ρ2
+ Ω2

)

(ȳ − δ2) +

(

Ω′ − 2
ρ′

ρ
Ω

)

(x̄− δ1)

−
e−kt̄

ρ

(

−Ω′α2 + Ω(α′

2 +
ρ′

ρ
α2) + α′′

1 − 2
ρ′

ρ
α′

1 + Ω2α1

)

sin T + (61)

+
e−kt̄

ρ

(

+Ω′α1 − Ω(α′

1 +
ρ′

ρ
α1) + α′′

2 − 2
ρ′

ρ
α′

2 + Ω2α2

)

cos T

− k (δ′2 + kδ2) .

The general solution for (59) is

Σ1 = ψ1 + Ē1(x̄, ȳ) , Σ2 = ψ2 + Ē2(x̄, ȳ) , (62)
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where, as indicated, Ē1 and Ē2 have no dependence on t̄.
We are interested in the electric field, in the original variables. To obtain

the field in this coordinates we use the inverse of the transformation (57–58),

E1 =
ekt̄

ρ3
(Σ1 cos T − Σ2 sin T ) , (63)

E2 =
ekt̄

ρ3
(Σ1 sin T + Σ2 cos T ) . (64)

Substituting equations (63–64) into (62) and transforming back to the origi-
nal variables (x, y, t), yields the electric field components

E1 = α̈1 +
ρ̈

ρ
(x− α1) +

Ω2x

ρ4
− (ρΩ̇ − 2ρ̇Ω)

y

ρ3
+

Ω

ρ3
(ρα̇2 − ρ̇α2) +

+
k2ekt̄

ρ3
(δ2 sin T − δ1 cos T ) −

kΩα2

ρ4
+

+
ekt̄

ρ3

(

Ē1(x̄, ȳ) cos T − Ē2(x̄, ȳ) sin T
)

(65)

−
1

ρ4

(

ρρ̇(y − α2) + ρ2α̇2 + Ωx− kρ ekt̄(δ2 cos T + δ1 sin T )
)

B̄(x̄, ȳ) ,

E2 = α̈2 +
ρ̈

ρ
(y − α2) +

Ω2y

ρ4
+ (ρΩ̇ − 2ρ̇Ω)

x

ρ3
−

Ω

ρ3
(ρα̇1 − ρ̇α1)

−
k2ekt̄

ρ3
(δ2 cos T + δ1 sin T ) +

kΩα1

ρ4
+

+
ekt̄

ρ3

(

Ē2(x̄, ȳ) cos T + Ē1(x̄, ȳ) sin T
)

+ (66)

+
1

ρ4

(

ρρ̇(x− α1) + ρ2α̇1 − Ω y − kρ ekt̄(δ1 cos T − δ2 sin T )
)

B̄(x̄, ȳ) .

It still remains to take into consideration Faraday’s law, which, in our
case, is equivalent to eq. (33). After a detailed calculation using the magnetic
field (56) and the electric field (65–66), we find that Faraday’s law imposes

Ē2x̄ − Ē1ȳ = k
(

x̄B̄x̄ + ȳB̄ȳ

)

. (67)
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For k = 0 (the Noether point symmetry subcase), equation (67) has the
general solution

Ē1 = −
∂

∂x̄
V̄ (x̄, ȳ) , Ē2 = −

∂

∂ȳ
V̄ (x̄, ȳ) , (68)

where V̄ (x̄, ȳ) is an arbitrary function of the indicated argument. For k 6= 0
equation (67) is a different constraint to be imposed on the electromagnetic
field.

In conclusion, we have obtained a very general class of electromagnetic
fields yielding Lie point symmetries. The magnetic field is given by eq. (56)
and the electric field by eqs. (65–66), together with condition (67). The
electromagnetic field involves several arbitrary functions, namely ρ(t), α1(t),
α2(t), Ω(t), B̄(x̄, ȳ) and Ē1(x̄, ȳ) or Ē2(x̄, ȳ), where x̄ and ȳ are defined by
eqs. (39–40). For instance, for given B̄ and Ē1 the constraint (67) defines
Ē2 up to the addition of an arbitrary function of ȳ.

To conclude this subsection, let us write the equations of motion in trans-
formed coordinates,

x̄′′ + 2kx̄′ + k2x̄ = Ē1(x̄, ȳ) + (ȳ′ + kȳ)B̄(x̄, ȳ) , (69)

ȳ′′ + 2kȳ′ + k2ȳ = Ē2(x̄, ȳ) − (x̄′ + kx̄)B̄(x̄, ȳ) . (70)

As they stand, these equations are not integrable in the general case.

4.2 The case ρ = 0, k = 0 and Ω 6= 0

In this case we have Noether point symmetry. Hence, we simply quote the
main results from reference [1]. The electromagnetic field is given by

B = B̄(x̄, ȳ) , (71)

E1 = β̈1 − β̇2B̄(x̄, ȳ) +

+ (x− β1)Ē1(x̄, ȳ) − (y − β2)Ē2(x̄, ȳ) , (72)

E2 = β̈2 + β̇1B̄(x̄, ȳ) +

+ (x− β1)Ē2(x̄, ȳ) + (y − β2)Ē1(x̄, ȳ) , (73)

where B̄, Ē1 and Ē2 are arbitrary functions of x̄, ȳ given in equations (45–46).
Faraday’s law requires

x̄Ē2x̄ + 2Ē2 = −B̄ȳ , (74)
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whose solution is

Ē2 =
1

x̄2

∂ψ

∂ȳ
, B̄ = −

1

x̄

∂ψ

∂x̄
, (75)

for arbitrary ψ = ψ(x̄, ȳ).
In conclusion, the electromagnetic field is given by eqs. (71–73), with the

constraint (75). There remains four arbitrary functions, namely E1(x̄, ȳ),
ψ(x̄, ȳ), β1(t) and β2(t), with x̄, ȳ defined in equations (45–46). We also
observe that in the present case Ω(t) has to be chosen constant in order
to produce physically meaningful electromagnetic field (for details, see [1]).
Without loss of generality, we take Ω = 1.

4.3 The case ρ = 0, k = 0, Ω = 0 and a2 6= 0

Again we have Noether point symmetry. The eletromagnetic fields, from ref.
[1], are

B = B̄(x̄, ȳ) , (76)

E1 =
ä1y

a2

−
ȧ2y

a2

B̄(x̄, ȳ) + Ē1(x̄, ȳ) , (77)

E2 =
ä2y

a2

+
ȧ1y

a2

B̄(x̄, ȳ) + Ē2(x̄, ȳ) , (78)

where B̄, Ē1 and Ē2 are arbitrary functions and x̄, ȳ are defined in equations
(49–50).

After solving the differential equations arising from Noether’s symmetry
condition, we must verify the constraint imposed by Faraday’s law, which,
in this case, implies

B̄ = ψx̄ , (79)

Ē1 = −V̄x̄ , (80)

Ē2 =
ä1

a2
x̄−

ȧ2

a2
ψ − ψȳ +

a1

a2
V̄x̄ . (81)

Here, ψ = ψ(x̄, ȳ) and V̄ = V̄ (x̄, ȳ) are arbitrary functions.
This completely determines this class of solutions for the electromagnetic

field. B is given by eq. (76) and E1 and E2 are given by eqs. (77–78). The
functions B̄, Ē1 and Ē2, appearing in the solution, are given by eqs. (79–
81), in terms of the arbitrary functions ψ(x̄, ȳ) and V̄ (x̄, ȳ) with x̄, ȳ given
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by (49–50). The arbitrary functions a1(t) and a2(t) are also present in the
electromagnetic field, so that four arbitrary functions participate in the final
solution.

4.4 The case ρ = 0 and k 6= 0

In this case the equation for the magnetic field is

Bt̄ = −2Ω̇(ȳ) , (82)

with solution
B = −2Ω̇(ȳ)t̄+ B̄(x̄, ȳ) . (83)

Inserting this magnetic field in the equations for the electric field, yields

E1t̄ = k E1 − ΩE2 + (Ω̇x+ ȧ2)(2Ω̇t̄− B̄) − Ω̈ y + ä1 , (84)

E2t̄ = k E2 + ΩE1 + (Ω̇ y − ȧ1)(2Ω̇t̄− B̄) + Ω̈x+ ä2 . (85)

This system may be handled with the more convenient variables

Σ1 = e−kt̄(E1 cos Ωt̄+ E2 sin Ωt̄) , (86)

Σ2 = e−kt̄(−E1 sin Ωt̄+ E2 cos Ωt̄) . (87)

Using these new variables, we have the transformed equations

∂Σ1

∂t̄
=
∂ψ1

∂t̄
,

∂Σ2

∂t̄
=
∂ψ2

∂t̄
, (88)

where

ψ1 = (Ω̇2t̄2 − Ω̇B̄t̄) cos x̄− Ω̈t̄ sin x̄+

+ (2Ω̇γ̇2t̄+ γ̈1 − γ̇2B̄) e−kt̄ cos Ωt̄+ (89)

+ (−2Ω̇γ̇1t̄+ γ̈2 + γ̇1B̄) e−kt̄ sin Ωt̄ ,

ψ2 = (Ω̇2t̄2 − Ω̇B̄t̄) sin x̄+ Ω̈t̄ cos x̄+

+ (−2Ω̇γ̇1t̄+ γ̈2 + γ̇1B̄) e−kt̄ cos Ωt̄ (90)

− (2Ω̇γ̇2t̄+ γ̈1 − γ̇2B̄) e−kt̄ sin Ωt̄ .
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The solutions to (88) are

Σ1 = ψ1 + Ē1(x̄, ȳ) , Σ2 = ψ2 + Ē2(x̄, ȳ) , (91)

The inverse transformation for (86–87) is

E1 = ekt̄(Σ1 cos Ωt̄− Σ2 sin Ωt̄) , (92)

E2 = ekt̄(Σ1 sin Ωt̄+ Σ2 cos Ωt̄) . (93)

Back in the original coordinates, the resulting electric field becomes

E1 = γ̈1 + 2Ω̇γ̇2t̄− γ̇2B̄ + Ω̇t̄(Ω̇t̄− B̄)(x− γ1)

− Ω̈t̄(y − γ2) + ekt̄ (Ē1 cos Ωt̄− Ē2 sin Ωt̄) , (94)

E2 = γ̈2 − 2Ω̇γ̇1t̄+ γ̇1B̄ + Ω̇t̄(Ω̇t̄− B̄)(y − γ2)

+ Ω̈t̄(x− γ1) + ekt̄ (Ē1 sin Ωt̄+ Ē2 cos Ωt̄) . (95)

Here it is more convinient to use a hybrid notation with transformed time t̄
in order to obtain simpler expressions. We should also stress the generality
of the resulting electromagnetic field, which possesses six arbitrary functions,
namely γ1, γ2, Ω, B̄, Ē1 and Ē2.

To finalize, the constraint arising from Faraday’s law becomes

k
∂B̄

∂ȳ
= −Ω̈(ȳ) + (k sin x̄− Ω(ȳ) cos x̄)Ē1 − (k cos x̄+ Ω(ȳ) sin x̄)Ē2

+ (k cos x̄− Ω(ȳ) sin x̄)
∂Ē1

∂x̄
+ (k sin x̄+ Ω(ȳ) cos x̄)

∂Ē2

∂x̄
. (96)

This condition must be satisfied by the arbitrary functions appearing in the
solution. For instance, after specifying Ω, Ē1 and Ē2, we can consider (96)
as an equation determining B̄ up to the addition of an arbitrary function of
x̄.

5 Conclusion

We have found all classes of electromagnetic fields for which planar non–
relativistic charged particle motion is compatible with Lie point symmetries.
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Our procedure is based on the resolution of the basic system of linear first–
order partial differential equations (25), (31–32) satisfied by the electromag-
netic field, using canonical group variables. As shown in section 2, there
exist four types of canonical group variables, yielding four classes of electro-
magnetic fields compatible with Lie point symmetry. In comparison with the
Noether point symmetry analysis [1], an additional dilatation invariance term
appears in the generator of Lie point symmetries. This dilatation invariance
is associated with an extra category of electromagnetic fields compatible with
Lie point symmetries. The electromagnetic fields of subsections 4.2 and 4.3
just fit into the Noether point symmetry case. The electromagnetic field of
section 4.1 can be viewed as a natural extension of the Noether point sym-
metry case treated in subsection 4.1 of reference [1]. The class shown in
section 4.4 of the present work, however, is essentially new. Its origin can be
traced back to the additional dilatation invariance which is not possible in
the Noether’s theorem framework.

In our treatment, we do not include some symmetries corresponding to
excessively particular classes of electromagnetic fields homogeneous in space.
In this way, we concentrate on classes of electromagnetic fields depending on
arbitrary functions of certain similarity variables involving space coordinates.
These classes may be useful, for example, in the search for new exact or ap-
proximate solutions for the Vlasov–Maxwell system in colisionless plasma
physics. Also, as pointed out in the introduction, symmetry may help reduc-
ing the number of relevant coordinates of the problem and this may represent
a considerable reduction in the cost of its numerical treatment.
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