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Abstract

We construct an infinite family of one-dimensional equilibrium so-

lutions for purely magnetized quantum plasmas described by the quan-

tum hydrodynamic model. The equilibria depends on the solution of

a third-order ordinary differential equation, which is written in terms

of two free functions. One of these free functions is associated to the

magnetic field configuration, while the other is specified by an equa-

tion of state. The case of a Harris sheet type magnetic field, together

with an isothermal distribution, is treated in detail. In contrast to the

classical Harris sheet solution, the quantum case exhibits an oscilla-

tory pattern for the density.

1 Introduction

Quantum plasmas have attracted renewed attention in the last years, due e.g.
to the relevance of quantum effects in ultra-small semiconductor devices [1],
dense plasmas [2] and very intense laser plasmas [3]. The most recent devel-
opments in collective effects in quantum plasmas comprises wave propagation
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in dusty plasmas [4]-[9], soliton and vortex solutions [10, 11], shielding effects
[12, 13], modulational instabilities [14] and spin effects [15]. Most of these
works have been made using the hydrodynamic model for quantum plasmas
[16]-[20], in contrast to more traditional approaches based on kinetic descrip-
tions [21]. Microscopic descriptions like coupled Schrödinger equations or
Wigner function approaches are more expensive, both numerically and ana-
lytically, specially if magnetic fields are allowed. For a general review on the
available quantum plasma models, see [22].

The electrostatic fluid model for quantum plasmas have been recently
extended to incorporate magnetic fields [23]. The new quantum hydrody-
namic model was derived taking the first two moments of the electromag-
netic Wigner equation, which is the quantum counterpart of the correspond-
ing Vlasov equation, and assuming a closure condition p = p(n). In other
words, the procedure is formally the same as for classical plasma fluid de-
scriptions, while now the starting point is the Wigner-Maxwell and not the
Vlasov-Maxwell system. The electromagnetic quantum fluid model has been
already used for the analysis of shear Alfvén modes in ultra-cold quantum
magnetoplasmas [24], the description of drift modes in nonuniform quantum
magnetoplasmas [25] and of shear electromagnetic waves in electron-positron
plasmas [26]. Instead of the discussion of wave propagation in quantum plas-
mas, the aim of this letter is the analysis of some simple quantum magneto-
static equilibria resembling the well known Harris profile for classical plasma
[27].

2 Quantum magnetoplasma equilibria

For a one-component quantum plasma, the electromagnetic quantum fluid
equations reads [23]

∂n

∂t
+ ∇ · (nu) = 0 , (1)

∂u

∂t
+ u · ∇u = − 1

mn
∇ p − e

m
(E + u ×B)

+
h̄2

2m2
∇
(

∇2
√

n√
n

)

. (2)

All the symbols in eqs. (1-2) have their conventional meaning and the system
is supplemented by Maxwell equations. Only electrons are considered, the
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ions being described by a convenient immobile background. Notice the extra
dispersive term, proportional to h̄2, at the moment transport equation. This
Bohm potential term has profound consequences on the structure of the
equilibrium solutions, as we shall see in the following.

Specifically, consider a purely magnetic one-dimensional class of time-
independent solutions characterized by zero electric field and

B = By(x)ŷ + Bz(x)ẑ ,

n = n(x) , (3)

u = uy(x)ŷ + uz(x)ẑ ,

p = p(n) .

The magnetic field can be given in terms of a vector potential A = Ay(x)ŷ +
Az(x)ẑ, so that By = −dAz/dx and Bz = dAy/dx. Notice that the fluid
model is suitable for the search for static quantum equilibria since the kinetic
(Wigner) equation is not satisfied by arbitrary functions of the invariants of
motion as for Vlasov plasmas. Therefore we are not allowed to use Jeans
theorem for the construction of equilibria.

Neutrality is enforced by an appropriate immobile ionic background de-
scribed by an ionic density ni(x). Therefore, Poisson’s equation can be ig-
nored. Now inserting the form (3) into Ampère’s law and the quantum fluid
equations gives

d2Ay

dx2
= eµ0nuy , (4)

d2Az

dx2
= eµ0nuz , (5)

dp

dx
= −en(uy

dAy

dx
+ uz

dAz

dx
)

+
h̄2n

2m

d

dx

(

d2
√

n/dx2

√
n

)

. (6)

As in the classical situation [28], it is useful to restrict to the cases
where the magnetic field is indirectly defined through a pseudo-potential
V = V (Ay, Az) for which

nuy = − 1

eµ0

∂V

∂Ay

, (7)

nuz = − 1

eµ0

∂V

∂Az

, (8)
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so that (4-5) is transformed into a two-dimensional autonomous Hamiltonian
system,

d2Ay

dx2
= − ∂V

∂Ay
, (9)

d2Az

dx2
= − ∂V

∂Az
. (10)

In this system, x plays the rôle of time, while the components of the vector
potential play the rôle of spatial coordinates. After specifying the pseudo-
potential V and solving eqs. (9-10), we regain the magnetic field using B =
∇× A. The current then follows from eqs. (7-8).

The choice expressed at eqs. (7-8) imposes a restriction on the classes
of equilibria, since not all density and velocity fields can be cast in this
potential form. However, introducing the pseudo-potential V has at least two
advantages. First, we can learn from Hamiltonian dynamics how to design
specific pseudo-potentials V in order to obtain special classes of magnetic
fields. For instance, periodic magnetic fields can be easily obtained from well
known potentials associated to periodic solutions. Second, the formalism
becomes more compact in terms of the function V .

In terms of V , the balance eq. (6) reads

d

dx

(

p − V

µ0

)

=
h̄2n

2m

d

dx

(

d2
√

n/dx2

√
n

)

. (11)

It can be shown that, apart from an irrelevant numerical constant, the
pseudo-potential V is directly related to magnetic pressure, V = −|B|2/2,
showing that the left-hand side of eq. (11) refers to the usual (classical)
pressure balance equation. The right-hand side, however, has a pure quan-
tum nature. Not only there must be a balance between kinetic and magnetic
pressures, since the quantum pressure arising from the Bohm potential term
has to be taken into account. This quantum pressure manifests e.g. in
the dispersion of wave-packets in standard quantum mechanics. In plasmas,
the quantum pressure is responsible for subtle effects like in the case of the
quantum two-stream instability, where the instability is magnified for small
wave-numbers and suppressed for large wave-numbers [16, 20].

In the quantum case where h̄ 6= 0, eq. (11) is a third-order ODE for the
density. It is useful to express this equation in terms of a variable a =

√
n.
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Taking into account the equation of state p = p(n) and defining a new
function Ṽ (x) = V (Ay(x), Az(x)), we get

aa′′′ − a′a′′ + f(a)a′ + g(x) = 0 , (12)

where the prime denotes differentiation with respect to x and we have intro-
duced the quantities

f(a) = −4ma

h̄2

dp

dn
(n = a2) , (13)

g(x) =
2m

µ0h̄
2

dṼ

dx
. (14)

The strategy to derive the solutions is now clear. Choosing a pseudo-potential
V (Ay, Az) and then solving the Hamiltonian system (9-10) for the vector
potential, we determine simultaneously the magnetic field and Ṽ . Quantum
effects manifests in the equation for the density, eq. (12), which also deserves
the function of state p = p(n).

Another legitimate interpretation of the balance equation (12) is to first
specify the particle density n and the magnetic pressure −V/µ0 and then
solving for the kinetic pressure. This would give an equation of state with a
quantum correction. However, in most applications, one supposes a certain
equation of state and then proceeds to the calculation of the density and
velocity fields. This will be our preferred approach in what follows. In the
next section, we consider in detail the case of Harris sheet magnetic fields.

3 Quantum Harris sheet

Exactly as for the classical Harris solution, suppose a isothermal plasma,
p = nκBT , and a pseudo-potential function

V =
B2

∞

2
exp(

2Az

B∞L
) , (15)

where L is a characteristic length and B∞ is a (constant) magnetic field
reference value. The Hamiltonian system (9-10) is then

d2Ay

dx2
= 0 ,

d2Az

dx2
= −B∞

L
exp(

2Az

B∞L
) . (16)
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If we further take the boundary conditions Az(x = 0) = (dAz/dx)(x = 0) =
0, we easily solve (16) to get

Ay = Ay0 + B0x , Az = −B∞L ln cosh(x/L) , (17)

where Ay0 and B0 are integration constants. The magnetic field following
from this vector potential characterizes the well-known Harris sheet solution,

By = B∞ tanh(x/L) , Bz = B0 , (18)

also allowing for a superimposed homogeneous magnetic field.
In addition, the velocity field follows from (4-5),

uy = 0 , uz =
B∞

eµ0nL
sech2(

x

L
) . (19)

Notice that any departure from the classical density solution would imply
further changes in the velocity field.

To derive the density we have to solve the third-order ODE eq. (12),
constructed in terms of the functions f(a) and g(x) at (13-14). Using the
isothermal equation of state, the form (15) for the pseudo-potential V and
the Harris sheet solution, we get

f(a) = −4mκBT

h̄2
a , (20)

g(x) = − mB2

∞

µ0h̄
2L

sech2(
x

L
) tanh(

x

L
) . (21)

Adopting the dimensionless variables

α = a/
√

n0 , X = x/L , (22)

where n0 is some ambient density such that

n0κBT =
B2

∞

4µ0

, (23)

eq. (8) is finally expressed as

α
d3α

dX3
− dα

dX

d2α

dX2
− α

H2

dα

dX
=

1

H2
sech2X tanh X , (24)
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in terms of a new dimensionless parameter

H =
h̄

mVaL
, (25)

where Va = B∞/(µ0mn0)
1/2 is the Alfvén velocity.

The parameter H is a measure of the relevance of the quantum effects.
It is essentially the ratio of the scaled Planck constant h̄ to the action of
a particle of mass m travelling with the Alfvén velocity and confined in a
length L related to the thickness of the sheet. The larger the ambient density
n0 and the smaller the characteristic length L or the characteristic magnetic
field B∞, the larger are the quantum effects.

In order to understand the rôle of the quantum terms, we may investigate
(24) with

α(X = 0) = 1 ,
dα

dX
(X = 0) = 0 ,

d2α

dX2
(X = 0) = −1 , (26)

which reproduces the boundary conditions for the classical Harris sheet, when
α = sechX. With the choice (26), eq. (24) integrated once gives

α
d2α

dX2
−
(

dα

dX

)2

+ 1 =
1

2H2

(

α2 − sech2X
)

. (27)

In the ultra-quantum limit H → ∞, the left-hand side of (27) vanishes. In
this situation and using the prescribed boundary conditions, the solution is

α = cos X . (28)

This imply a qualitative change (from localized to oscillatory) on the solution
due to quantum effects. In order to further investigate this tendency, we show
the numerical solution for (27) with the appropriate boundary conditions for
a few values of H . This is shown in the figs. 1 and 2, where increasingly
oscillatory solutions are shown, according to H = 1 or H = 5 respectively.
On the opposite case, (27) shows that when H → 0 we regain the classical
Harris solution, α = sechX.

Another interesting possibility is an equation of state for an ultra-cold
Fermi gas,

p =
2κBTF

5n
2/3

0

n5/3 , (29)
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Figure 1: Density oscillations for H = 1. Parameters: n0 = L = 1.
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Figure 2: Density oscillations for H = 5. Parameters: n0 = L = 1.
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where TF is the Fermi temperature and n0 is the ambient density. Proceeding
exactly as before and assuming

n0κBTF =
3B2

∞

8µ0

, (30)

we obtain

α
d3α

dX3
− dα

dX

d2α

dX2
− α7/3

H2

dα

dX
=

1

H2
sech2X tanh X , (31)

where α and X are defined in (22)and H in (25). Similar oscillatory behaviour
is also found for nonzero H and suitable boundary conditions.

4 Summary

Equation (12) describes a whole class of quantum equilibria for magnetoplas-
mas. The particle density compatible with a tanh magnetic field shows an
increasingly oscillatory pattern, in comparison to the classical system associ-
ated to a localized sech2 solution. Other classes of equilibria can be built for
different choices of pseudo-potentials V = V (Ay, Az) and equations of state
p = p(n). The ideas in the present formulation may be a starting point for
magnetic equilibria relevant for dense astrophysical objects like white dwarfs.
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