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Abstract

A canonical Hamiltonian formalism is derived for a class of Ermakov sys-
tems specified by several different frequency functions. This class of systems
comprises all known cases of Hamiltonian Ermakov systems and can always
be reduced to quadratures. The Hamiltonian structure is explored to find
exact solutions for the Calogero system and for a noncentral potential with
dynamic symmetry. Some generalizations of these systems possessing exact
solutions are also identified and solved.

1 Introduction

Ermakov systems have been intensively studied since the late sixties both in
view of their nice mathematical properties and of the application potential
of their celebrated invariants. More recently, the identification of additional
structures in the original Ermakov-Pinney system and in its generalized ver-
sion, the Ermakov-Lewis-Ray-Reid (ELRR) system (see e. g. [1] and [2] and
references therein for an updated appraisal of the subject and its applications)
has called for extra attention. After the early scrutiny of the symmetry prop-
erties of the ELRR system [1] and the exploration of several generalization
schemes [3, 4], the attention has been, more recently, centered on the joint
existence of a second independent constant of motion or a Hamiltonian for
sub classes of Ermakov systems [5]–[8]. This particular topic is important
per se because, for Ermakov systems, the existence of a second constant of
motion usually implies, as shown in section 2, complete integration. Most
importantly, however, the Hamiltonian structure is fundamental in various
contexts of Physics like quantization and perturbation theory.

A generic ELRR system for two independent variables is given by equa-
tions (1–2) below. This paper considers Ermakov systems for which ω is
generalized to be a function of the variables x and y besides the time t. By
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choosing the function f and g appropriately, it is possible to fit the equations
into a Hamiltonian formalism and eventually derive another constant of mo-
tion, distinct from the commonly known Lewis-Ray-Reid invariant (LRRI)
given by equation (3). When two integrals exist for this Hamiltonian Er-
makov system then we show that the equations are completely integrable.

A Hamiltonian structure for the ELRR system can be enforced by spe-
cializing the arbitrary functions f , g and ω. For w = ω(t), that is, when ω is
a function of t only, the Hamiltonian constraint involves only f and g. This
specialization has already served to important applications [7] where the po-
tential in the resulting Hamiltonian is essentially built with what remains of
the functions f and g. In a more general situation where ω depends also on
the dynamic variables, the Hamiltonian constraint results less restrictive and
applies for a wider class of admissible systems.

In this paper we consider the Hamiltonian property of the generalized
ELRR system in which ω may depend not only on time but also on x and y.
In section 2, a quadratic form in the momenta is proposed for the Hamiltonian
and the consequences of this choice are explored analytically. In this way,
all known cases of Hamiltonian Ermakov systems in two spatial components
are recovered and generalized. The general class of nonlinear systems thus
determined is, in addition, shown to be exactly integrable. This remarkable
fact encounters application in several areas of Physics. In section 3 we apply
the technique in two different situations which in our understanding illustrate
its applicability both in recovering results already known in the literature and
in identifying new exactly solvable models. Among the new results we quote a
modified version of the Calogero potential [9] and a variation of a noncentral
Hartmann potential, known to possess dynamic symmetry [10]–[12].

The most general system in two configuration variables that qualifies for
an Ermakov or ELRR system is usually written as

ẍ + ω2x =
1

yx2
f(y/x) , (1)

ÿ + ω2y =
1

xy2
g(x/y) , (2)

where the over dot stands for time derivative, f and g are arbitrary functions
of their arguments and ω is an arbitrary function of time t and of x, y and
their time derivatives of first and higher orders. For practical reasons, we
shell consider only ω = ω(x, y, t).
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The system of equations (1–2) possesses the Lewis-Ray-Reid invariant
[13]

I =
1

2
(xẏ − yẋ)2 +

∫ y/x

f(s) ds +
∫ x/y

g(s) ds . (3)

The invariant (3) persists for arbitrary dependence of ω on x and y [1, 5].
We can therefore merge ω2 and g in a single function and redefine f according
to the following rules:

ω2 7−→ Ω2 ≡ ω2(x, y, t) − 1

xy3
g(x/y) , (4)

f(s) 7−→ F (s) = f(s) − 1

s2
g(1/s) , (5)

g(s) 7−→ 0 . (6)

These redefinitions simplify future considerations and cast the ELRR system
and the LRRI in the more compact forms

ẍ + Ω2x =
1

yx2
F (y/x) , (7)

ÿ + Ω2y = 0 , (8)

I =
1

2
(xẏ − yẋ)2 +

∫ y/x

F (s) ds . (9)

The transformations (4–6) also indicate that the conventional ELRR sys-
tem comprises only two arbitrary functions and not three as implied by the
traditional notation. Of course, all previous results found in the literature,
obtained in the standard notation, remain true. Notice, however, that we
can always consider the Hamiltonian property of ELRR system in the form
(7–8) without any loss of generality.

2 Hamiltonian Formalism

As already mentioned, ω in (1–2) can be a function of time and of any
combinations of the dynamic variables x, y and their time derivatives of
arbitrary order. In this work we shell consider the Hamiltonian property
of the ELRR system for which the frequency function is allowed to depend
not only on time (as usual) but also on x and y. In this case, the resulting
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constraint becomes less restrictive and we can find a much wider class of
ELRR systems satisfying the Hamiltonian property.

We shall consider for the Hamiltonian of the Ermakov system (7–8) the
function

H =
A

2
p2

x + Bpxpy +
C

2
p2

y + V (x, y, t) , (10)

where A, B and C are numbers such that AC − B2 6= 0 and V (x, y, t) is a
potential function depending on time and on the spatial variables.

The ansatz (10) is justified in Douglas theory for two dimensional La-
grangian systems [14], where it is shown that the coefficients of the quadratic
terms in the velocities in a Lagrangian are constants of motion, at least for
velocity-free force fields. In particular, these coefficients can be taken as nu-
merical constants. As one can show, the addition of a term linear in the
momenta does not alter the generality of the description. Finally, two cases
of Hamiltonian Ermakov systems known in the literature are of this proposed
form [5, 6].

We now impose that the canonical Hamilton equations generate the ELRR
system (7–8). The Hamiltonian function (10) generates the following equa-
tions for the motion of the system:

ẋ = Apx + Bpy , (11)

ẏ = Bpx + Cpy , (12)

ṗx = −∂V

∂x
, (13)

ṗy = −∂V

∂y
. (14)

This first order system of equations in (x, y, px, py) can be easely recast in
the equivalent second order system of equations for (x, y),

ẍ + Ω2x = −A
∂V

∂x
− B

∂V

∂y
+ Ω2x , (15)

ÿ + Ω2y = −B
∂V

∂x
− C

∂V

∂y
+ Ω2y , (16)

where the terms proportional to Ω2 were conveniently added to both sides.
The comparison of equation (16) with (8) leads to the conclusion that the
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admissible frequencies must satisfy

Ω2 =
1

y
(B

∂V

∂x
+ C

∂V

∂y
) . (17)

Also, the comparison of equation (15) with equation (7), when Ω is given
by (17), shows that the potential must obey the linear first order partial
differential equation

(Bx − Ay)
∂V

∂x
+ (Cx − By)

∂V

∂y
=

1

x2
F (y/x) . (18)

The characteristic equations associated to (18) can be written in the form

dx

Bx − Ay
=

dy

Cx − By
=

x2dV

F (y/x)
, (19)

and have - as can be easely checked - the general solution

V =
1

2
Λ(q, t) +

1

q

∫ s

F (s′)ds′ . (20)

Here Λ(q, t) is an arbitrary function of its arguments, and the new variables
q and s are defined in terms of the dynamic variables and the parameters of
the Hamiltonian as

q = Ay2 − 2Bxy + Cx2 , (21)

s = y/x . (22)

It is also convenient to define the function

ξ(s) ≡ As2 − 2Bs + C , (23)

so that q = x2ξ(s).
In the conventional notation, the resulting Hamiltonian ELRR system

implied by the admissible frequencies and potentials, now reads

ẍ + ρ
∂Λ

∂q
x =

1

yx2
f̄(y/x) , (24)

ÿ + ρ
∂Λ

∂q
y =

1

xy2
ḡ(x/y) , (25)
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where

f̄(s) = 2ρ
s

ξ2

∫ s

F (s′)ds′ +
s

ξ
(As − B)F (s) , (26)

ḡ(1/s) = 2ρ
s3

ξ2

∫ s

F (s′)ds′ +
s2

ξ
(Bs − C)F (s) , (27)

and
ρ = AC − B2 . (28)

There remains two arbitrary functions in the Hamiltonian ELRR system,
namely Λ(q, t) and F (y/x). In fact, f̄ and ḡ in (24–25) are determined by the
single homogeneous function F , and one can check directly that they satisfy

s(Bs − C)
df̄

ds
+ (C + 2Bs)f̄ = (As − B)

dḡ

ds
+ (A +

2B

s
)ḡ . (29)

It is interesting to compare this result with those in the literature. Cerveró
and Lejarreta’s Hamiltonian Ermakov systems [6] are obtained from the
present formalism by setting A = C = 1, B = 0, and Λ = ω2(t)q in (10)
and (20). The resulting functions f̄ and ḡ do satisfy their Hamiltonian con-
straint [6], which is precisely relation (29) specialized for the appropriated
parameter values. This formalism has already been used to study the prop-
agation of elliptic gaussian beams in nonlinear, dispersive media [7, 8]. Also
the completely integrable class of Ermakov systems determined by Goedert
[5] is Hamiltonian and derivable from the present formalism. In this case
the right choice is A = C = 0, B = 1, and Λ = 2

∫

−q/2 w2(q′)dq′. Needless
to say, the functions f̄ and ḡ resulting from this prescription do satisfy the
integrability condition stated in [5].

According to Liouville-Arnold theorem, 2n−dimensional Hamiltonian sys-
tems possessing n independent constants of motion in involution with com-
pact level surfaces are integrable by quadratures [15]. For these systems, the
motion is quasiperiodic and restricted to n−dimensional tori. The present
class of four dimensional Hamiltonian ELRR systems will posses two inde-
pendent constants of motion in involution provided that the Hamiltonian
does not depend on time. In this case, H itself is a constant of the motion
independent of the LRRI. So, when the function Λ(q, t), which is the source of
time-dependence in the Hamiltonian, does not contain t, one can expect that
the problem is completely integrable. In fact, the level surfaces H =const.
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and I =const. are not compact in general, but the differential equations
nevertheless are reducible to quadratures. Consequently the Hamiltonian
ELRR system treated here must be included in the non trivial class of solv-
able ELRR systems, to which belong, for instance, some systems analyzed
by Govinder and Leach who considered frequency functions depending only
on time [16].

The Hamiltonian formalism can be used to solve elegantly the equations
of motion. Clearly x and y are not the natural coordinates for the problem.
Changing from (x, y) to the new coordinates (q, s), recasts the Hamiltonian
and the LRRI in the form

H = 2ρqp2

q +
1

2
Λ(q, t) +

I(s, ps)

q
, (30)

I =
1

2
ξ2(s)p2

s +
∫ s

F (s′)ds′ , (31)

where pq and ps are the momenta conjugate to q and s respectively. This
transformation decouples the dynamics and allows to treat separately the
subsets (pq, q) and (ps, s) of the phase space. Moreover, when Λ is time-
independent, H is also an invariant. In this situation, we can proceed in a
manner similar to that used in the energy integral method of standard clas-
sical mechanics and split the problem in two separable ordinary differential
equations,

(dq/dt)2 = 4ρ(2qH − qΛ(q) − 2I) , (32)

(ds/dt)2 = 2q−2(t)ξ2(s)
(

I −
∫ s

F (s′)ds′
)

. (33)

Equations (32-33) can be successively solved in terms of quadratures yielding
a formal solution to the ELRR system. In fact, the solution of (33) requires
the knowledge of q(t) obtained from (32).

The structure of (33) suggests the rescaling of the time variable according
to

dτ(t) = dt/q(t) . (34)

Such rescaling is applicable globally only when q(t) is positive definite in time
and τ results monotonic. Under this circuntances system (32-33) reads

(

dq

dτ

)2

= 4ρq2 (2qH − qΛ(q) − 2I) , (35)
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(

ds

dτ

)2

= 2ξ2(s)
(

I −
∫ s

F (s′)ds′
)

, (36)

which is a decoupled set of separable equations and, therefore, reducible to
quadratures. This procedure specifies a general solution of the problem that
involves four arbitrary constants, namely H , I and two constants arising
from (35) and (36)

One interesting remark concerning the Hamiltonian Ermakov system is
the following: changing Λ(q) according to Λ(q) 7−→ Λ(q) + k1 or according
to Λ(q) 7−→ Λ(q) + 2k2/q, where k1 and k2 are constants, is equivalent to
changing the values of the contants H or I in (32) and, therefore, will not
change the nature of the integral to be performed. This transformation can
be explored to identify variations of a known, exactly solvable, systems that
are also exactly solvable. In one hand the addition of k1 to Λ does not lead
to a relevant variation of the problem, since it only implies a change in the
numerical value of H . On the other hand, the addition of 2k2/q to Λ does
imply a qualitative change in the potential with no relevant change in the
calculations. We only need to replace I in the original equations according
to

I 7−→ I + k2 . (37)

As a concluding remark to this section, we stress that the Hamiltonian
ELRR has been reduced to quadratures. Whether these quadratures can
actually be performed globally is a different question to be examined in each
particular application. Another important follow-up remark concerns the
nonlinear superposition law [13] associated to the ELRR systems. In general,
this nonlinear superposition law is implicit in the sense that it cannot be
actually applied in view of the coupling between the equations. However,
when at least one of the equations decouples, the integration can be carried
through and the corresponding nonlinear superposition law becomes explicit.
For Hamiltonian ELRR systems, we arrive at equations (34) and (36) which
constitute an explicit nonlinear superposition law. This is clear since s(t) is
constructed using q(t) obtained from a decoupled equation, namely equation
(32).
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3 Sample applications

In this section we work out some sample applications of the theory. In par-
ticular we analyze the Calogero potential and a super integrable example of
a noncentral potential. Several other potentials which represent generaliza-
tions of either the harmonic or the Coulomb potentials could be treated in a
similar way at least in what concerns the dynamics of the two-dimensional
motion obtained by projection in an appropriate plane. The super integrable
Hartmann potential and some generalizations or variations of it (see [11, 12])
certainly belong to this category. A generalized version of the coupled Pin-
ney equations of interest in two-layer shallow-water wave theory [3] can also
be solved analitically by the formalism of this paper.

3.1 The Calogero system as a Hamiltonian ELRR

system

As a first example to illustrates the analytical integration of a Hamiltonian
ELRR system, we consider the Calogero potential and its associated system
[9], which is a one-dimensional three body problem given by the Hamiltonian

HC =
1

2
(p2

1 + p2

2 + p2

3) +
σ2

6
((x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2)

+
g1

(x1 − x2)2
+

g2

(x2 − x3)2
+

g3

(x3 − x1)2
, (38)

where σ, g1, g2 and g3 are non negative constants. A rescaling of time and
space coordinates allows to set σ ≡ 1. Moreover, in view of the translational
invariance of the problem, we transform to the center of mass and Jacobi
coordinates

R =
1

3
(x1 + x2 + x3) ,

x =
1√
2
(x1 − x2) , (39)

y =
1√
6
(x1 + x2 − 2x3) .
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The center of mass only executes free motion, and the (x, y) dynamics is
described by the reduced Hamiltonian

H =
1

2
(p2

x + p2

y) +
1

2
(x2 + y2) +

g1

2x2
+

2g2

(x −
√

3y)2
+

2g3

(x +
√

3y)2
. (40)

As it can be easily checked, the reduced Hamiltonian (40) is of Ermakov
type. Moreover, being autonomous, it is integrable. The coefficients A, B
and C in (10) become, in this case, A = C = 1 and B = 0. Consequently,
q = x2 + y2 = r2 and the corresponding Ermakov potential reads

V =
q

2
+

1 + s2

2q

(

g1 +
4g2

(1 −
√

3s)2
+

4g3

(1 +
√

3s)2

)

. (41)

By comparing this form and equation (20) we find that for the Calogero
system,

Λ = q , (42)

and
∫ s

F (s′)ds′ =
1 + s2

2

(

g1 +
4g2

(1 −
√

3s)2
+

4g3

(1 +
√

3s)2

)

. (43)

Equation (32) can be solved analytically for Λ given in (42) and it can be
verified directly that the rescaling t 7→ τ is properly defined, that is, q(t) is
positive definite in time. The resulting system of equations to be solved are
now

(

dq

dτ

)2

= 4q2(2Hq − q2 − 2I) , (44)

(

ds

dτ

)2

= (1+s2)2

(

2I−(1+s2)

(

g1+
4g2

(1−
√

3s)2
+

4g3

(1+
√

3s)2

))

.(45)

It is now easy to find the solution q(τ ′), where we make the convenient
replacement τ 7→ τ ′ ≡

√
2Iτ (I is strictly positive for the Calogero system):

q(τ ′) =
2I

H −
√

H2 − 2I sin(2(τ ′ + c1))
, (46)

where c1 is the integration constant arising from (44). This integration con-
stant and the integration constant c2 arising from the integration of (45)
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below can always be expressed in terms of the initial position and of H and
I.

The function s(τ) can be evaluated in closed form for a few different values
of gi. We choose g1 = g2 = g3 ≡ g, which is perhaps the most interesting
case yielding solutions in terms of circular functions

s(τ ′) = tan

(

1

3
sin−1

(

(

1 − 9g

2I

)1/2

sin(3(τ ′ + c2))

))

, (47)

where c2 is the integration constant refered to before.
The last two equations express the parametric orbits of the problem and

is a general solution involving four integration constants, namely H, I, c1 and
c2. This solution is in full agreement with the results of Khandekar and
Lawande [17], but are obtained in a more systematic way.

As mentioned before, the addition of 2g4/q to Λ, where g4 is a constant,
does not alter the nature of the analytic solutions. It only requires the change
I → I + g4 in all formulae. This proves the existence of closed form solutions
for the modified Hamiltonian

H =
1

2
(p2

x + p2

y) +
σ2

2
(x2 + y2) +

g1

2x2

+
2g2

(x −
√

3y)2
+

2g3

(x +
√

3y)2
+

g4

x2 + y2
. (48)

Therefore, in the original variables, the one-dimensional three body problem
described by the Hamiltonian

H̄C =
1

2
(p2

1 + p2

2 + p2

3) +
σ2

6

(

(x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2
)

+

g1

(x1−x2)2
+

g2

(x2−x3)2
+

g3

(x3−x1)2
+

3g4

(x1−x2)2 + (x2−x3)2 + (x3−x1)2
(49)

is also exactly solvable. H̄C can be viewed as an integrable modification of
the Calogero system. Notice that the term in g4 is a new contribution that
did not belong to the original system. We remark that this generalization is
possible thanks to the fact that, in Jacobi coordinates, the Calogero system
possesses the structure of a Hamiltonian ELRR system.
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3.2 A Hamiltonian with dynamic symmetry

The noncentral problem described by the Hamiltonian

H =
1

2
(p2

x + p2

y) −
σ√

x2 + y2
+

g1

y2
+

g2x

y2
√

x2 + y2
, (50)

where σ, g1 and g2 are positive constants, is known to possess a dynamic
symmetry group [10] and is separable in parabolic and polar coordinates.
Three dimensional extensions of H are super integrable systems [11], and
have received attention as a noncentral force problem amenable to Feynman
quantization [12]. Several other two-dimensional versions of three dimen-
sional super integrable models can be reduced to Hamiltonian ELRR systems.
We selected (50) as a good example to illustrate the technique proposed in
section 2.

A rescaling of time and space allows to set σ ≡ 2 without any loss of
generality. For this problem also q = x2 + y2 = r2 and it is convenient
to introduce polar coordinates so that s = tan θ. The potential, in (r, θ)
coordinates, now reads

V = −2

r
+

1

r2 sin2 θ
(g1 + g2 cos θ) . (51)

Comparison of equations (51) and (20) shows that in this case

Λ(q) = −4

r
, (52)

and
∫ s=tan θ

F (s′)ds′ =
1

sin2 θ
(g1 + g2 cos θ) . (53)

Let us restrict considerations to the cases where the rescaled time τ is well
defined and monotonic. A detailed analysis shows that for positive definite
LRRI invariant (sufficiently high angular momentum) the trajectories never
cross the origin. For I > 0 the variable q = r2 never vanishes and τ is
monotonically increasing as can be calculated directly from equation (34).
We note that for I > 0, q 6= 0 is also required for the right hand side of the
equation (32) to be positive definite, a necessary condition for the existence
of real valued solutions. We therefore consider I > 0 and reduce the original
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problem to the set of differential equations

(

dr

dτ

)2

= 2r2(Hr2 + 2r − I) , (54)

(

dθ

dτ

)2

= 2
(

I − 1

sin2 θ
(g1 + g2 cos θ)

)

. (55)

A direct integration of (54–55) (with τ 7→ τ ′ ≡
√

2Iτ) yields the parametric
orbit equation

r(τ ′) =
I

1 −
√

1 + HI sin(τ ′ + c1)
, (56)

cos θ(τ ′) = − g2

2I

(

1 −
√

1 + 4I(I − g1)/g2
2 sin(τ ′ + c2)

)

, (57)

where c1, c2 are integration constants which can be expressed in terms of
the initial position and of H and I. For negative values of the energy, the
motion is bounded. When the energy is positive we find open trajectories that
escape to infinity for finite values of τ ′. However in the original parameter t
this process is regular and takes an infinite amount of time as expected on
physical grounds. Another interesting feature of the bounded motion is the
fact that it does not explore the entire range θ = 0 to θ = 2π. This is evident
from equation (57), which inplies χ− ≤ cos θ ≤ χ+, where

χ∓ = − g2

2I

(

1 ±
√

1 + 4I(I − g1)/g2
2

)

. (58)

It is ease to verifie that χ+ < 1 which corresponds to the fact that the
trajectories never visit that sector of the plane where θ ≤ arccos χ+. It
is also clear that for sufficiently small values of g2 there may exist another
excluded sector around θ = π. This is the case when χ− > −1 which is
possible if and only if 2I > g2 and g1 > g2.

As in the first example, the addition of a term 2g3/q to Λ(q), where g3

is a new constant, does not alter the calculations. The new exactly solvable
potential is given by

V =
1

2
(p2

x + p2

y) −
σ√

x2 + y2
+

g1

y2
+

g2x

y2
√

x2 + y2
+

g3

x2 + y2
. (59)
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Here we should stress that the term proportional do g3 is novel and represent
an incorporation to the original potential that preserves the integrability
property. Again this was possible thanks to the Hamiltonian character of
this Ermakov system.

4 Conclusions

A quite general class of exactly integrable Hamiltonian ELRR system has
been identified and solved. The basic result comes from the fact that an
Ermakov system being Hamiltonian (with a quadratic form in the momenta)
is exactly solvable in terms of quadratures. Also the ultimate equations
for those systems are decoupled, a fact that leads to practical nonlinear
superposition laws.

Another important feature of the formalism stems from the fact that for
each exactly solvable model there always exists a modified version of the
problem that is also integrable analytically. This provides a mechanism to
spawn new integrable Ermakov systems. Two examples of physically inter-
esting applications were treated in detail to illustrate the practical value of
the method. The application scope of the method, however, is much wider
and a detailed assessment of its reach is an open question that deserve further
study.

Some open questions are readily identified. A first open question con-
cerns the expansion of the method to higher dimensional Ermakov systems.
From the point of view of Physics, this would be most interesting, mainly
for three space dimensions. A second open question concerns the Hamilto-
nian character of ELRR systems with velocity dependent frequency function.
Still another interesting question concerns the perturbations theory of ELRR
systems. This completely unexplored subject has not been touched so far,
perhaps because of the lack of an Hamiltonian structure. The results of this
paper opens a new prospective for such issues.
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