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Fluid moment hierarchy equations derived from quantum kinetic theory
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Abstract

A set of quantum hydrodynamic equations are derived from themoments of the electrostatic mean-field Wigner kinetic equation.
No assumptions are made on the particular local equilibriumor on the statistical ensemble wave functions. Quantum diffraction
effects appear explicitly only in the transport equation for the heat flux triad, which is the third-order moment of the Wigner pseudo-
distribution. The general linear dispersion relation is derived, from which a quantum modified Bohm-Gross relation is recovered
in the long wave-length limit. Nonlinear, traveling wave solutions are numerically found in the one-dimensional case.The results
shed light on the relation between quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and quantumfluid
transport around given equilibrium distribution functions.
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1. Introduction

Quantum effects are relevant for macroscopic charged par-
ticle systems when the de Broglie wave-length is comparable
to the mean inter-particle distance or to the size of the sys-
tem, when the thermodynamic temperature is comparable to the
Fermi temperature or for strong magnetic fields, when spin ef-
fects are crucial. In diverse fields such as plasmas [1], semicon-
ductors [2] or dissipative quantum models [3], quantum hydro-
dynamic equations are important tools due to the relative sim-
plicity in comparison to kinetic theories and the direct physical
interpretation of the various quantities involved. Popular ways
to include quantum effects in the fluid equations are through
the so-called Bohm potential [4, 5] or by means of a quantum
spin force [6], among other generalized forms [7]. In these ap-
proaches, some working hypothesis on the underlying quantum
statistical ensemble wave functions or the local equilibrium is
made. However, there are still issues regarding the relation be-
tween the above different approaches that has not been clarified
in the literature.

In the present work, we discuss the moment hierarchy equa-
tions derived from the electrostatic Wigner equation, which is
the quantum counterpart of the Vlasov equation. The moments
approach is traditional in classical kinetic theory [8]. Without
any further constraints or assumptions, a quantum term is ex-
plicitly found only at the transport equation for the third-order
moment of the Wigner function, with no simplifying assump-
tions except that we close the system disregarding higher-order
moments. The use of moment hierarchy quantum fluid equa-
tions is well-known in semiconductor community [9, 10] but,
to the best of our knowledge, was not applied before to the de-
scription of electrostatic waves in quantum plasma. The reason
for this is that in semiconductor devices there is the presence of
a doping profile (an inhomogeneous ionic background) as well
as an external heterojunction potential, which makes the analy-

sis intrinsically nonlinearab initio. Here we assume a fixed ho-
mogeneous ionic background and a mean-field electrostatic po-
tential, so as to obtain a generalized linear dispersion relation,
Eq. (16) below. A quantum modified Bohm-Gross dispersion
relation is recovered in the long wave-length limit. The non-
linear regimes are numerically analyzed in the one-dimensional
case, where traveling-wave solutions are accessible.

Furthermore, our study is also motivated as a remark on
some recent publications [11], in which the path from kinetic
to fluid quantum models have been reversed. They start from
the quantum fluid equations with a Bohm potential term, as
derived from the Madelung decomposition of the one-particle
wave function, and then insert this back as the momentum change
into the Vlasov equation. However, these equations of motion
contain the distribution function itself through the averaging
procedure, and it is doubtful if they can be used as a basis for
kinetic theory. It can be verified that the resulting dispersion
relation disagrees with the Bohm-Pines dispersion relation [12]
from quantum kinetic theory, except for zero-temperature equi-
libria. Since kinetic theories are more accurate than fluid the-
ories, these Bohmian-force methodologies are therefore con-
troversial. See also Ref. [13] for related criticism. The sub-
ject bares close connection to the present work on the moment
quantum hierarchy, but will be more thoroughly discussed ina
separate work.

2. Governing equations

Given the one-particle Schrödinger equation

i~
∂ψ

∂t
+
~

2

2m
∇2ψ + eφψ = 0 , (1)
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with the electrostatic potentialφ, we can define the Wigner
quasi-distribution function according to

f (v, r ) =
( m
2π~

)3
∫

dsexp[imv · s/~] ψ∗(r + s/2)ψ(r − s/2). (2)

Then, from the Schrödinger equation, we obtain the quantum
kinetic equation

∂ f
∂t
+ v · ∇ f +

∫

dv′ K(v′ − v, r ) f (v′, r ) = 0 , (3)

for the Wigner function, coupled to Poisson’s equation for the
mean-field potential,

∇2φ =
e
ε0

(∫

dv f (v, r ) − n0

)

, (4)

wheren0 is a fixed homogeneous ionic background andK(v′ −
v, r ) is defined by

K(v′ − v, r ) =
i e
~

( m
2π~

)3
∫

ds exp
[

i m (v − v′) · s/~
]

×
[

φ(r + s/2)− φ(r − s/2)
]

. (5)

For brevity, the time-dependence of the various quantitiesis
omitted. The Wigner equation (3) holds equally well in the
case of mixed states.

It is interesting to note that a free wave function, given by
a Gaussian wave packet, experience a dispersive spreading (as
expected), while the corresponding Wigner function does not
spread for a fixed value ofv [14]. This can also be seen di-
rectly from the structure of Eqs. (1) and (3). For instance, in
the one-dimensional free-particle case and for a Gaussian ini-
tial stateψ(t = 0) = (

√
πσ)−1/2 exp[−x2/(2σ2)], in terms of

a varianceσ, the Wigner function can be expressed viāf =
exp

[

−(x̄− v̄ t̄)2 − v̄2
]

. Here the rescaled variables̄f = (π~/m) f ,

x̄ = x/σ, v̄ = m vσ/~, and t̄ = ~ t/(mσ2) are employed. The
corresponding contour-plot graphics are shown in Fig. 1.

2.1. Moment equations

To obtain macroscopic equations, let us introduce the mo-
ments

n =
∫

dv f , (6)

nu =
∫

dv f v , (7)

Pi j = m

(∫

dv f vi v j − n ui u j

)

, (8)

Qi jk = m
∫

dv (vi − ui)(v j − u j)(vk − uk) f , (9)

Ri jkl = m
∫

dv (vi − ui)(v j − u j)(vk − uk)(vl − ul) f ,(10)

from which, in particular, we can derive a scalar pressurep =
(1/3) Pii and a heat flux vectorqi = (1/2) Q j ji . Here and in the
following, the summation convention is applied. The Wigner
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Figure 1: Time-evolution of the free-particle rescaled Wigner function f̄ =
(π~/m) f , in terms of non-dimensional variables ¯x = x/σ , v̄ = m vσ/~ and
t̄ = ~ t/(mσ2). Initial wave function:ψ(t = 0) = (

√
πσ)−1/2 exp[−x2/(2σ2)].

Upper, left: t̄ = 0; upper, right:t̄ = 2; bottom, left:t̄ = 4; bottom, right:t̄ = 6.

equation then gives the following macroscopic equations,

D n
D t
= −n∇ · u , (11)

D ui

D t
= −

∂ jPi j

mn
+

e
m
∂iφ , (12)

DPi j

D t
= −Pk(i ∂

ku j) − Pi j∇ · u − ∂ kQi j k , (13)

D Qi jk

D t
=

1
m n

P(i j∂
lPk)l − Ql(i j ∂

luk) − Qi jk∇ · u

−e~2n
4m2

∂ 3
i jkφ − ∂

lRi jkl , (14)

where∂ i = δi j∂
j = ∂/∂ r i and the material derivative isD/D t =

∂/∂ t+ u · ∇. The calculation assumese.g.decaying or periodic
boundary conditions and uses the symmetry properties ofPi j ,
Qi j k and Ri jkl under permutation of indices. Finally, in Eqs.
(13)–(14), the round brackets denote symmetrization, where we
use a minimal sum over permutations of free indicices neededto
get symmetric tensors. Thus, for example, with this convention
Pk(i ∂

ku j) is defined asPk(i ∂
ku j) = Pki ∂

ku j+P jk ∂
jui+Pi j ∂

iuk.
We here remark that a) there is no assumption on the par-

ticular equilibrium Wigner function. This is a difference in
comparison with some previous approaches [4] relying on the
first-order quantum correction to Maxwell-Boltzmann equilib-
ria [15]. Therefore, the model is not semi-classical and is not
restricted to classical statistics; b) the explicit dependence on
Planck’s constant appear only when the heat flux triad trans-
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port equation is considered. In addition, the quantum contribu-
tion disappears in Eq. (14) when the scalar potential is absent.
This is similar to Gardner’s approach [4] and in contrast to the
method of Ref. [5], where quantum effects modeled by a Bohm
potential appear already at the momentum transport equation,
via the pressure dyadPi j and the associated Madelung decom-
position of the quantum statistical ensemble wave functions.
Here the usual quantum force is replaced by the third-order
derivative of the scalar potential term in Eq. (14).

It is to be expected from the very beginning that Planck’s
constant would not appear through the moments of the Wigner
equation when there is no electric field, because in this casethe
Wigner equation reduces to the free-particle Vlasov equation
(see the discussion above and Fig. 1) and the initial conditions
on the Wigner function determines the quantum aspects of its
evolution. To conclude, in the present context there are two
sources of quantum terms, one via the explicit dependence of
the Wigner equation in~ and the other via the definition of the
Wigner function associated with the proper quantum statistical
ensemble.

2.2. Closure and dispersion relation

In this work we choose the simplest way to achieve clo-
sure of the system (11)–(14), neglecting the contribution from
the fourth-order momentRi jkl . We take into account Poisson’s
equation and linearize around the homogeneous equilibriumn =
n0, u = 0,

[Pi j ] = n0κB

[

T0⊥(x̂ ⊗ x̂ + ŷ ⊗ ŷ) + T0‖ẑ⊗ ẑ
]

, (15)

Qi jk = 0, andφ = 0, where the equilibrium temperatures per-
pendicular and parallel to the wave propagationT0⊥ andT0‖ can
be unequal. Here,κB is Boltzmann’s constant and plane wave
perturbations proportional to exp(ik z− iωt) are assumed, with-
out loss of generality. It follows that

ω2 =
ω2

p

2















1+













1+
12κB T0‖ k2

mω2
p

+
~

2 k4

m2ω2
p













1/2 













, (16)

whereωp = (e2n0/mǫ0)1/2 is the plasma frequency and the
equilibrium temperatureT0⊥ perpendicular to the wave prop-
agation does not contribute. In the particular case of small
wave-vector and quantum effects, Eq. (16) reduces to the usual
quantum Langmuir dispersion relationω2 = ω2

p+3κB T0 k2/m+
~

2 k4/4m2. However, even in the formal classical limit (H ≡ 0),
Eq. (16) yields the Bohm-Gross dispersion relation only for
long wave-lengths. Finally, despite the appearance, the new dis-
persion relation is not restricted to Maxwell-Boltzmann equilib-
ria. For instance, in the case of a zero-temperature, degenerate
electron gas, the only basic change would be the substitution of
the parameterT0‖ by the Fermi temperature.

Contrarily to the habitual usage, a scalar pressure dyadPi j =

pδi j is not a valid assumption even in our electrostatic case. In-
deed, linearization of Eqs. (12)–(14) withPi j = P0i j + ǫδPi j ,
φ = ǫδφ, ǫ ≪ 1, gives

δPi j = −
eδφ k2

mω2

(

P0i j + P0(izδ jz) +
n0 ~

2 k2 δiz δ jz

4m

)

(17)

as the first-order perturbation of the pressure dyad, assuming
ki = kδiz without loss of generality. Clearly the wave propaga-
tion itself is a source of anisotropy, even for isotropic equilib-
ria and/or purely classical plasma. The result (17) also follows
from the kinetic theory in the long wave-length limit. Further-
more, as apparent from Eq. (17), it is legitimate to postulate

[Pi j ] = nκB

[

T⊥(x̂ ⊗ x̂ + ŷ ⊗ ŷ) + T‖ẑ⊗ ẑ
]

, (18)

where the perpendicular and parallel temperaturesT⊥ andT‖ in
general are different.

We note that the Bohm-Gross dispersion relation is recov-
ered from Eqs. (11)–(13) in the adiabatic and classic case. In-
deed, settingQi jk = 0 and linearizing, the result isω2 = ω2

p +

3 (κB T0‖/m) k2, where only the componentP0zz ≡ n0 κB T0‖ of
the equilibrium pressure dyad contributes. On the other hand,
insisting on an isotropic pressure dyadPi j = pδi j and tak-
ing Qi jk = 0, and combining the continuity equation with Eq.
(13) we getp = n0κBT0 (n/n0)γ, whereγ = 5/3, implying
the dispersion relationω2 = ω2

p + γ (κBT0/m) k2. To prop-
erly recover the Bohm-Gross dispersion relation in an adiabatic,
scalar pressure fluid theory retaining only up to the first or-
der moment, there is the need of a phenomenological adiabatic
exponentγ = 3, reflecting the fact that plane wave propaga-
tion is essentially a one-dimensional phenomena [16]. Alter-
native moment hierarchy formulations [10], closed at the tem-
perature (basically the trace of the second-order moment ofthe
Wigner function) evolution equation, can be shown to resultin
ω2 = ω2

p+(5/3) (κBT0/m) k2+~2 k4/(12m2), which goes neither
to the Bohm-Gross nor Bohm-Pines dispersion relations in the
classical or zero-temperature limits, respectively. In contrast, as
shown here, the quantum modified Bohm-Gross dispersion re-
lation is a natural consequence from third-order moment theory,
in the long wave-length limit of Eq. (16).

2.3. Dynamics

As an example of the dynamics of the third order hierarchy
model, we look at the strictly one-dimensional case, such that
(∂i = δix ∂x, ui = uδix, Pi j = pδixδ jx, Qi jk = Qδixδ jxδkx),

ṅ+ n∂xu = 0 , (19)

u̇ = −∂xp
m n
+

e∂xφ

m
, (20)

ṗ = −3 p∂xu− ∂xQ , (21)

Q̇ =
3 p∂xp

m n
−

e~2 n∂3
xφ

4m2
− 4 Q∂xu , (22)

and

∂2
xφ =

e
ε0

(n− n0) , (23)

where the dot represents the convective derivative and disre-
garding the fourth-order moment. The dispersion relation in
Eq. (16) follows from Eqs. (19–23).

Assuming traveling solutions with all quantities depending
only on the variableξ = x−v t, wherev is a fixed parameter, the
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following nonlinear system of ordinary differential equations is
obtained,

(u− v) u′ = −
p′

m n
+

eφ′

m
, (24)

(u− v) p′ = −3 p u′ − Q′ , (25)

(u− v) Q′ =
3 p p′

m n
− e~2 nφ

′′′

4m2
− 4 Q u′ , (26)

φ
′′
=

e
ε0

(n− n0) , (27)

where the prime denotes derivative with respect toξ. Finally,
the continuity equation can be integrated ton0u0 = n(u− v) ≡
cte., in terms of a reference velocityu0 which we assume to be
nonzero to exclude trivial cases.

Eliminating n through the continuity equation, it can be
shown that the system of Eqs. (24)–(27) admit linearly stable
oscillations around the equilibriumu = u0 + v, p = p0,Q =
0, φ = φ′ = 0, provided the inequality~ωp/(m u2

0) < 2 is sat-
isfied. Figures 2 and 3 show typical oscillations in this case.
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Figure 2: Particle density and velocity field oscillations from the system of Eqs.
(24–27), whereξ = x − v t, u0 , 0 and for~ωp/(m u2

0) = 1. Initial conditions
such thatn(0) = (2/3)n0,u(0)− v = (3/2)u0, p(0) = m n0 u2

0,Q(0) = 0, φ(0) =
0, φ′(0) = 0.

3. Conclusions

To conclude, a higher order moment quantum hydrodynamic
model for quantum plasmas was derived, starting from the elec-
trostatic Wigner equation. Quantum effects appear explicitly
going up to the third-order moments hierarchy, without the need
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Figure 3: Pressure, heat flux and electric field oscillationsfrom the system
of Eqs. (24–27), whereξ = x − v t, u0 , 0, and for~ωp/(m u2

0) = 1. Initial
conditions such thatn(0) = (2/3)n0, u(0)−v = (3/2)u0, p(0) = m n0 u2

0,Q(0) =
0, φ(0) = 0, φ′(0) = 0.

of a Madelung decomposition of the underlying quantum statis-
tical ensemble wave functions or assumptions on the local equi-
librium configuration. A generalized dispersion relation for lin-
ear waves is derived, from which the quantum modified Bohm-
Gross dispersion relation is recovered in the long wave-length
limit. For closure, fourth-order moments were discarded. More
sophisticated closure schemes [17] designed to reproduce some
of the results from kinetic theory, as well as the inclusion of
spin effects, are postponed to future considerations.
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