
ar
X

iv
:1

30
7.

81
41

v1
  [

ph
ys

ic
s.

pl
as

m
-p

h]
  3

0 
Ju

l 2
01

3

Exact solution to neutrino-plasma two-flavor dynamics
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Abstract

It is shown that the two-flavor neutrino oscillation equations admit an exact analytic solution for

arbitrarily chosen normalized electron neutrino population, provided the electron plasma density

is adjusted in a certain way. The associated formula for the electron plasma density is applied to

the cases of exponentially decaying or oscillating electron neutrino populations.

PACS numbers: 13.15.+g, 52.35.Ra, 95.30.Cq

1

http://arxiv.org/abs/1307.8141v1


I. INTRODUCTION

The energy exchange between neutrino beams and plasma collective modes can be a

crucial mechanism e.g. for shocks in type II supernovae [1]. The associated neutrino charge

coupling [2] leads to kinetic effects such as neutrino Landau damping [3], as well as to

the generation of quasi-static magnetic fields [4] The orthodox approach to the neutrino-

plasma interaction problem is to assume specific medium properties, and then to solve the

dynamical equations, either in approximate or numerical forms. In this respect, one can have

sinusoidal variations of the electron density [5], [6], [7], [8], general time-dependent media

[9], stochastic backgrounds [10], [11] as well as instabilities due to electron density ripples

[12]. In an inverse way, in the present work a certain electron density profile is assumed,

and then the corresponding medium properties are unveiled. The procedure is restricted to

two-flavor neutrino populations. No further approximations are needed.

The work is organized as follows. Section II describes the general method, leading to

Eq. (8), the central result of the paper. Section III briefly discuss the cases of exponentially

decaying or oscillating electron neutrino populations. Section IV is reserved to final remarks.

II. EXACT SOLUTION

The equations for neutrino-flavor oscillations in a plasma are well known [13] and we

present them in the form

Ṗ1 = −Ω(t)P2 , Ṗ2 = Ω(t)P1 − Ω0P3 , Ṗ3 = Ω0P2 , (1)

where P = (P1, P2, P3) is the three-dimensional flavor polarization vector, such that the

density matrix can be written as

ρ =
N0

2
(1 + P · σ) , (2)

using the total neutrino number N0 = Ne +Nµ and the Pauli matrices σ = (σx, σy, σz), with

Ne,µ being the electron (muon) neutrino populations. In Eq. (1),

Ω(t) = ω0(cos 2θ0 − ξ(t)) , Ω0 = ω0 sin 2θ0 , (3)

where we have introduced the characteristic oscillation frequency ω0 = ∆m2/2E, with

∆m2 = m2

2
− m2

1
being the square mass difference between mass eigenstates and E the
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energy associated to the neutrino Dirac spinor, while θ0 is the pertinent mixing angle. Fi-

nally, we have ξ(t) =
√

2GF ne/ω0 being the coupling function between the neutrino and

the embedding plasma medium, where GF is the Fermi constant and ne the electron plasma

density. In our analysis, it is important to keep in mind that P3 = (Ne − Nµ)/N0.

From the first and the last equations in Eq. (1) we get

Ω = − Ṗ1

P2

, P2 =
Ṗ3

Ω0

. (4)

Substituting the results shown in Eq. (4) into the mid equality in Eq. (1) and integrating

once yields

I = Ṗ 2

3
+ Ω2

0
(P 2

3
+ P 2

1
) = Ω2

0
, (5)

where I is a constant of motion, dI/dt = 0. The last equality in Eq. (5) follows from

Ṗ3 = Ω0P2 and the normalization condition, |P| = 1. Our central result comes from the fact

that Eq. (5) can be solved up to a sign choice for P1 in terms of P3, or

P1 = ±(Ω2

0
− Ṗ 2

3
− Ω2

0
P 2

3
)1/2

Ω0

. (6)

Correspondingly, using Eqs. (4) and (6) we find

Ω = ± P̈3 + Ω2

0
P3

(Ω2
0 − Ṗ 2

3 − Ω2
0P 2

3 )1/2
. (7)

Therefore, we have a very simple recipe to generate exact solutions for the two-flavor

neutrino-plasma oscillation equations. Instead of prescribing a given plasma density ne as

usual, one can start choosing P3, which is interpreted as the normalized difference between

neutrino flavor populations. Afterward, Eqs. (6) and the last in Eq. (4) gives resp. the

coherences P1 and P2. Finally, Eq. (7) gives the corresponding Ω, which is linked to the

plasma medium properties. To have meaningful solutions at least some requirements should

be taken into account, namely |P3| ≤ 1, otherwise one would eventually get negative flavor

populations. In addition, P3 should be a double-differentiable function of time.

Alternatively, we can use P3 = 2Ne/N0 − 1 to express the results in terms of the electron

neutrino population. From Eqs. (4), (6) and (7) we get

P1 = ±2



N̄e − N̄2

e −
˙̄N2

e

Ω2

0





1/2

, P2 =
2 ˙̄Ne

Ω0

, Ω = ±
¨̄Ne + Ω2

0
(N̄e − 1/2)

Ω0

(

N̄e − N̄2
e − ˙̄N2

e /Ω2
0

)1/2
, (8)

where N̄e ≡ Ne/N0. The results in Eq. (8) compactly represents the basic findings of this

work.
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FIG. 1: Polarization vector components for an exponentially decaying electron neutrino population,

according to Eqs. (8) and (9). Parameters, ω0 = 1, r0 = 1, sin2 2θ0 = 0.15, N̄e(t0) exp(t0/r0) =

0.13.

III. APPLICATIONS

A. Exponentially decaying electron neutrino population

As a first example, consider the case of an exponentially decaying electron neutrino

population,

N̄e = N̄e(t0) exp
(

−t − t0

r0

)

, (9)

which models the change of the electron number density along the path of the solar neutrinos

moving radially from the central region to the surface of the Sun [14], [15]. In this context

r0 is the scale height and t−t0 is the distance traveled by the neutrinos. To have meaningful

solutions from Eq. (8) (or, real P1,2,3) one should have N̄e(t0) exp(t0/r0) > (1 + 1/Ω2

0
r2

0
)−1,

as can be readily verified. We use stretched time and space variables so that ω0 = 1, r0 = 1.

Moreover, the mixing angle satisfy sin2 2θ0 = 0.15, so that Ω0 = 0.39. Finally, we chose

N̄e(t0) exp(t0/r0) = 0.13, which assures the produced solutions to be non-complex. The

resulting polarization vector components are shown in Fig. 1, while Ω(t) is shown in Fig.

2, with the plus sign chosen in Eq. (8). It can be shown that in this case one has the

asymptotic dependence Ω ∝ −Ω0 exp(t/2r0) when t → ∞. Evidently, an infinite class of

profiles can be generated via the same procedure. One can e.g. consider the case of an

oscillating electron neutrino population, discussed in the following.
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FIG. 2: Function Ω(t) for an exponentially decaying electron neutrino population, according to

Eqs. (8) and (9) and the same parameters as in Fig. 1.
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FIG. 3: Polarization vector components for an oscillating electron neutrino population, according

to Eqs. (8) and (10). Parameters, Ω0 = 0.39, ε = 0.39, Ω̃ = 1.0.

B. Periodic electron density

Now consider an initially unpolarized electron neutrino beam,

N̄e =
1

2
+

ε

2
sin Ω̃t , (10)

including an amplitude parameter ε ≥ 0 and an arbitrary frequency Ω̃. A simple analysis

shows that ε < Inf(1, Ω0/Ω̃) is the condition to avoid singularities. The corresponding

polarization vector components and Ω(t) function are shown resp. in Figs. 3 and 4, for

Ω0 = 0.39 as before and for ε = 0.39, Ω̃ = 1.0.
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FIG. 4: Function Ω(t) for an oscillating electron neutrino population, according to Eqs. (8) and

(10) and the same parameters as in Fig. 3.

IV. CONCLUSION

In this work the usual route for solving the two-flavor neutrino-plasma oscillation equa-

tions has been subverted. Namely, instead of setting a certain electron plasma density and

then looking for the polarization vector components, here the third component P3(t) and

equivalently the electron neutrino population Ne(t) are chosen ab initio. Consequently, sim-

ple formulas for the coherences P1,2(t) are readily found. The necessary condition for the

recipe to work is to adjust the function Ω(t) and hence the electron plasma density ne(t)

so that Eq. (7) holds. The results can be expressed in terms of the electron neutrino pop-

ulation only, see Eq. (8). In a sense, our exact neutrino flavor solution has similarities

with the celebrated Bernstein-Greene-Kruskal equilibria for the Vlasov-Poisson system [16],

where arbitrarily chosen electrostatic potentials can be constructed provided specific trapped

electron distributions are set.
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