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We show that theorems 8, 9 and 11 in the work cited in the title are incorrect

in general. The existence of globally well-defined first integrals or flow invariant

functions for dynamical systems in Rn can not be taken for granted.
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Our concern are theorems 8, 9 and 11 in Gürses, Guseinov and Zheltukhin work, hereafter

referred as paper GGZ1. For completeness, we reproduce the cited theorems from GGZ, in

literal form:

“Theorem 8: All dynamical systems in R3 are Hamiltonian. This means that any

vector field in R3 is Hamiltonian vector field. Furthermore, all dynamical systems in R3 are

bi-Hamiltonian.

Theorem 9: All dynamical systems in Rn are Hamiltonian. Furthermore, all dynamical

systems in Rn are n− 1-Hamiltonian.

Theorem 11: All autonomous dynamical systems in Rn are superintegrable.”

It is well known2 that, due to the theorem on straightening of trajectories, in a small

neighborhood of any point x0 ∈ Rn which is not an equilibrium position there exist coor-

dinates x1, ..., xn in which the differential equations of any dynamical system on Rn can be

expressed as

ẋ1 = 1 , ẋ2 = ... = ẋn = 0 . (1)

Therefore, the coordinates x2, ..., xn form a “complete” set of first integrals. Any other first

integral is a function x2, ..., xn.

However, it is also well known that the existence of a complete set of global (as opposed to

local) first integrals is a major question for any dynamical system. Sometimes, one can even

have explicit expressions for the local first integrals, although the dynamical system admit

no globally well-defined first integral at all. In each particular case there is the need of a

separate analysis of the integrable or non-integrable character of the dynamics. Integrable

systems are the exception rather than the rule, contrarily to the statements in the cited

theorems of GGZ. The concept of integrability suppose the existence of invariant, regular

foliations whose leaves are embedded flow-invariant submanifolds, of the smallest dimension

possible. This by no means can be taken for granted.

In the same context, superintegrable systems are even more scarce. For instance, we

have few superintegrable potentials on the two- and three-dimensional Euclidean spaces

with invariants that are quadratic polynomials in the canonical momenta3,4. A similar

analysis was provided for the 2D and 3D spheres5, for the 2D hyperbolic plane6,7 and for

the 3D hyperbolic space8. In addition, the existence of superintegrable systems with two

degrees of freedom possessing three independent globally defined constants of motion which

are quadratic in the velocities was studied in an unified way on the 2D sphere and on the
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2D hyperbolic plane9.

Clearly the method for the construction of generalized Hamiltonian structures presented

in GGZ and theorems 8, 9 and 11 in it neglect the need of explicitly finding globally well-

defined first integrals (or at least invariant functions) of the flow, a highly non-trivial task. In

contrast, there are alternative approaches10,11 which can be successful in generating Poisson

structures for 3D dynamical systems with only one (not necessarily two) available invariant

function (see for instance the case of certain three-dimensional Lotka-Volterra systems11).

Obviously any maximally superintegrable system can be easily cast in a generalized Hamil-

tonian form, following e.g. the Nambu mechanics scheme12.

In conclusion, in practice the existence of at least one globally well-posed invariant func-

tion is a necessary condition for constructing any generalized Hamiltonians formalism.

The fact that in GGZ the authors consider complete sets of invariant functions which are

not necessarily first integrals is immaterial for the present discussion.
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