Publications

Export 4 results:
Ordenar por: [ Autor  (Asc)] Título Tipo Ano
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Garcia, CS, Eckard D, Netto JC, Pereira CE, Müller I.  2015.  Bluetooth Enabled Data Collector for Wireless Sensor Networks. 2015 Brazilian Symposium on Computing Systems Engineering (SBESC). :54–57., Foz do Iguaçu: IEEE Abstract

The wireless sensor networks (WSN) are gradually gaining attention because it is a key technology for the Internet of Things. For most of these networks, the data is usually collected in a manual way, by removing a memory unit or connecting the collector node to a personal computer. This is a constraint, because it demands the manipulation of the collector radio by the operator, which consists in a problem in practical applications. The main goal of this work is to present a non-invasive alternative way to collect the data by means of Bluetooth technology. The approach allows the development of hermetic devices, which is a desirable feature for practical deployment of the sensor nodes.

Garcia, G, Tarbouriech S, Gomes da Silva Jr. JM, Eckhard D.  2009.  Finite {L2} gain and internal stabilisation of linear systems subject to actuator and sensor saturations. IET Control Theory Applications. 3:799–812., Number 7 Abstract

This study addresses the control of linear systems subject to both sensor and actuator saturations and additive L2-bounded disturbances. Supposing that only the output of the linear plant is measurable, the synthesis of stabilising output feedback dynamic controllers, allowing to ensure the internal closed-loop stability and the finite L2-gain stabilisation, is considered. In this case, it is shown that the closed-loop system presents a nested saturation term. Therefore, based on the use of some modified sector conditions and appropriate variable changes, synthesis conditions in a quasi-linear matrix inequality (LMI) form are stated in both regional (local) as well as global stability contexts. Different LMI-based optimisation problems for computing a controller in order to maximise the disturbance tolerance, the disturbance rejection or the region of stability of the closed-loop system are proposed.

Gomes da Silva Jr., JM, Castelan EB, Corso J, Eckhard D.  2013.  Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators. Journal of the Franklin Institute. 350:464–484., Number 3 Abstract

In the present work a systematic methodology for computing dynamic output stabilizing feedback control laws for nonlinear systems subject to saturating inputs is presented. In particular, the class of Lur'e type nonlinear systems is considered. Based on absolute stability tools and a modified sector condition to take into account input saturation effects, an \{LMI\} framework is proposed to design the controller. Asymptotic as well as input-to-state and input-to-output (in a L2 sense) stabilization problems are addressed both in regional (local) and global contexts. The controller structure is composed of a linear part, an anti-windup loop and a term associated to the output of the dynamic nonlinearity. Convex optimization problems are proposed to compute the controller considering different optimization criteria. A numerical example illustrates the potentialities of the methodology.

Gomes da Silva Jr., JM, Lescher F, Eckhard D.  2007.  Design of time-varying controllers for discrete-time linear systems with input saturation. IET Control Theory Applications. 1:155–162., Number 1 Abstract

A method for computing time-varying dynamic output feedback controllers for discrete-time linear systems subject to input saturation is proposed. The method is based on a locally valid polytopic representation of the saturation term. From this representation, it is shown that, at each sampling time, the matrices of the stabilising time-varying controller can be computed from the current system output and from constant matrices obtained as a solution of some matrix inequalities. Linear matrix inequality-based optimisation problems are therefore proposed in order to compute the controller aiming at the maximisation of the basin attraction of the closed-loop system, as well as aiming at ensuring a level of {L2} disturbance tolerance and rejection.